Bounds on Weighted CSPs Using Constraint Propagation and Super-Reparametrizations

Tomáš Dlask¹, Tomáš Werner¹, Simon de Givry²

¹ Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
 ² Université Fédérale de Toulouse, ANITI, INRAE, UR 875, Toulouse, France

CP 2021 conference paper

presented at

Combinatorial Image Analysis Workshop, TU Dresden

(Binary) Weighted Constraint Satisfaction Problem (WCSP)

- finite set of variables V
- finite domain *D* of each variable
- set of variable pairs (edges) E
- find assignment $x \in D^V$ (i.e., $x \colon V \to D$) maximizing

$$F(x|f) = \sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j)$$
(1)

• weight functions $f_i \colon D \to \mathbb{R}$ and $f_{ij} \colon D^2 \to \mathbb{R}$

(Binary) Weighted Constraint Satisfaction Problem (WCSP)

- finite set of variables V
- finite domain *D* of each variable
- set of variable pairs (edges) E
- find assignment $x \in D^V$ (i.e., $x \colon V \to D$) maximizing

$$F(x|f) = \sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j)$$
(1)

- weight functions $f_i \colon D \to \mathbb{R}$ and $f_{ij} \colon D^2 \to \mathbb{R}$
- WCSP instances are identified with vectors $f \in \mathbb{R}^T$
- set of tuples:

$$T = \{ (i,k) \mid i \in V, \ k \in D \} \cup \{ \{ (i,k), (j,l) \} \mid \{i,j\} \in E, \ k,l \in D \}$$
(2)

• Note: F(x|f) is linear in f

• V, D, E, T as for WCSP, recall:

 $T = \{ (i,k) \mid i \in V, \ k \in D \} \ \cup \ \{ \{ (i,k), (j,l) \} \mid \{i,j\} \in E, \ k,l \in D \}$

• a set $A \subseteq T$ of allowed tuples (tuples in T - A are forbidden)

• V, D, E, T as for WCSP, recall:

 $T = \{ (i,k) \mid i \in V, \ k \in D \} \ \cup \ \{ \{ (i,k), (j,l) \} \mid \{i,j\} \in E, \ k,l \in D \}$

- a set $A \subseteq T$ of allowed tuples (tuples in T A are forbidden)
- CSP instances are identified with subsets of T
- assignment $x \in D^V$ is a solution to CSP A if

 $orall i \in V : (i, x_i) \in A$ $orall \{i, j\} \in E : \{(i, x_i), (j, x_j)\} \in A$

For a WCSP $f \in \mathbb{R}^T$:

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i,j\} \in E} \max_{k,l \in D} f_{ij}(k,l)$$

For a WCSP $f \in \mathbb{R}^T$:

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i,j\} \in E} \max_{k,l \in D} f_{ij}(k,l) \ge \max_{x \in D^V} \underbrace{\left(\sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j)\right)}_{F(x|f)}$$
(3)

For a WCSP $f \in \mathbb{R}^T$:

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i,j\} \in E} \max_{k,l \in D} f_{ij}(k,l) \ge \max_{x \in D^V} \underbrace{\left(\sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j)\right)}_{F(x|f)}$$
(3)
tuple $t = (i, k) \in T$ is active if $f_i(k) = \max_{k' \in D} f_i(k')$
tuple $t = \{(i, k), (j, l)\} \in T$ is active if $f_{ij}(k, l) = \max_{k', l' \in D} f_{ij}(k', l')$

For a WCSP $f \in \mathbb{R}^T$:

۲

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i,j\} \in E} \max_{k,l \in D} f_{ij}(k,l) \ge \max_{x \in D^V} \underbrace{\left(\sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i,x_j)\right)}_{F(x|f)}$$
(3)
tuple $t = (i,k) \in T$ is active if $f_i(k) = \max_{k' \in D} f_i(k')$

- tuple $t = \{(i, k), (j, l)\} \in T$ is active if $f_{ij}(k, l) = \max_{k', l' \in D} f_{ij}(k', l')$
- set of all active tuples for f is denoted by $A^*(f) \subseteq T$

For a WCSP $f \in \mathbb{R}^T$:

• **upper bound** on the optimal value of WCSP *f*:

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i,j\} \in E} \max_{k,l \in D} f_{ij}(k,l) \ge \max_{x \in D^V} \underbrace{\left(\sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i,x_j)\right)}_{F(x|f)}$$
(3)
• tuple $t = (i,k) \in T$ is active if $f_i(k) = \max_{k' \in D} f_i(k')$

- tuple $t = \{(i, k), (j, l)\} \in T$ is active if $f_{ij}(k, l) = \max_{k', l' \in D} f_{ij}(k', l')$
- set of all active tuples for f is denoted by $A^*(f) \subseteq T$

Theorem¹: Upper bound is tight (i.e., $B(f) = \max_{x} F(x|f)$) iff CSP $A^*(f)$ is satisfiable.

¹Werner: A linear programming approach to max-sum problem: A review

Example

T. Dlask, T. Werner, S. de Givry Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations CIA Workshop 5 / 17

WCSP f is a reparametrization of WCSP g if F(x|f) = F(x|g) for all x.

WCSP f is a reparametrization of WCSP g if F(x|f) = F(x|g) for all x.

Given a WCSP $g \in \mathbb{R}^{T}$, minimize the upper bound over reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \qquad \text{subject to} \qquad F(x|f) = F(x|g) \ \forall x \in D^V \tag{4}$$

• a polynomially-sized LP formulation exists² – dual of the basic LP relaxation of WCSP g

²Werner: A linear programming approach to max-sum problem: A review

WCSP f is a reparametrization of WCSP g if F(x|f) = F(x|g) for all x.

Given a WCSP $g \in \mathbb{R}^{T}$, minimize the upper bound over reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \qquad \text{subject to} \qquad F(x|f) = F(x|g) \ \forall x \in D^V \tag{4}$$

ullet a polynomially-sized LP formulation ${\rm exists}^2$ – dual of the basic LP relaxation of WCSP g

• many algorithms for its (approximate) optimization:

(a) block-coordinate descent (e.g., max-sum diffusion^{2,3}, TRWS⁴, SPAM⁵, ...)

(b) soft local consistencies (e.g., EDAC⁶, AugDAG⁷/VAC⁸, ...)

²Werner: A linear programming approach to max-sum problem: A review
³Kovalevsky et al.: A diffusion algorithm for decreasing energy of max-sum labeling problem
⁴Kolmogorov: Convergent tree-reweighted message passing for energy minimization
⁵Tourani et al.: Taxonomy of dual block-coordinate ascent methods for discrete energy minimization
⁶Larrosa et al.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs
⁷Koval et al.: Two-dimensional programming in image analysis problems
⁸Cooper et al.: Soft arc consistency revisited

WCSP f is a super-reparametrization of WCSP g if $F(x|f) \ge F(x|g)$ for all x.

WCSP f is a super-reparametrization of WCSP g if $F(x|f) \ge F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^{T}$, minimize the upper bound over super-reparametrizations:⁹

$$\min_{f \in \mathbb{R}^T} B(f) \qquad ext{subject to} \qquad F(x \mid f) \geq F(x \mid g) \ \ \forall x \in D^V$$

(5)

WCSP f is a super-reparametrization of WCSP g if $F(x|f) \ge F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^{T}$, minimize the upper bound over super-reparametrizations:⁹

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{ subject to } \quad F(x|f) \ge F(x|g) \ \forall x \in D^V$$

(5)

• for any feasible $f: B(f) \ge \max_{x} F(x|f) \ge \max_{x} F(x|g)$

WCSP f is a super-reparametrization of WCSP g if $F(x|f) \ge F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^{T}$, minimize the upper bound over super-reparametrizations:⁹

$$\min_{f \in \mathbb{R}^T} B(f) \qquad \text{subject to} \qquad F(x|f) \geq F(x|g) \ \forall x \in D^V$$

(5)

- for any feasible $f: B(f) \ge \max_{x} F(x|f) \ge \max_{x} F(x|g)$
- optimal value of (5) is $\max_{x} F(x|g)$

WCSP f is a super-reparametrization of WCSP g if $F(x|f) \ge F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^{T}$, minimize the upper bound over super-reparametrizations:⁹

$$\min_{f \in \mathbb{R}^T} B(f)$$
 subject to $F(x|f) \ge F(x|g) \,\, orall x \in D^V$

(5)

- for any feasible $f: B(f) \ge \max_{x} F(x|f) \ge \max_{x} F(x|g)$
- optimal value of (5) is $\max_{x} F(x|g)$
- feasible $f \in \mathbb{R}^T$ is optimal for (5) iff CSP $A^*(f)$ has a solution x with F(x|f) = F(x|g)
- satisfiability of $A^*(f)$ is a necessary (but generally insufficient) condition of optimality

Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with B(f+h) < B(f) and $F(x|h) \ge 0$ for all $x \in D^V$.

Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with B(f + h) < B(f) and $F(x|h) \ge 0$ for all $x \in D^V$. Such h is a certificate of unsatisfiability for f.

Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with B(f + h) < B(f) and $F(x|h) \ge 0$ for all $x \in D^V$. Such h is a certificate of unsatisfiability for f.

Iterative scheme for (approximate) optimization: (WCSP g given as input)

- 1: Initialize f := g.
- 2: If CSP $A^*(f)$ is satisfiable, stop.
- 3: Find certificate h.
- 4: Update f := f + h and go to 2.

Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with B(f + h) < B(f) and $F(x|h) \ge 0$ for all $x \in D^V$. Such h is a certificate of unsatisfiability for f.

Iterative scheme for (approximate) optimization: (WCSP g given as input)

- 1: Initialize f := g.
- 2: If CSP $A^*(f)$ is satisfiable, stop.
- 3: Find certificate h.
- 4: Update f := f + h and go to 2.

Properties:

- B(f) decreases after each iteration
- $F(x|f+h) = F(x|f) + F(x|h) \ge F(x|f)$
- $\max_{x} F(x|f)$ increases or stays the same after each iteration
- obtained bound is limited by the fact that $B(f) \ge \max F(x|f)$

Idea: Try to detect unsatisfiability of CSP $A^*(f)$ by constraint propagation.

Next, we will show:

- how to compute a certificate h using any constraint propagation algorithm
- how to obtain good certificates
- experiments with singleton arc consistency

Deactivating Directions

Definition: Let $A \subseteq T$ and $S \subseteq A$, $S \neq \emptyset$. An *S*-deactivating direction for CSP *A* is a vector $d \in \mathbb{R}^T$ satisfying (a) $d_t < 0$ for all $t \in S$, (b) $d_t = 0$ for all $t \in A - S$, (c) $F(x|d) \ge 0$ for all $x \in D^V$.

Deactivating Directions

Definition: Let $A \subseteq T$ and $S \subseteq A$, $S \neq \emptyset$. An *S*-deactivating direction for CSP *A* is a vector $d \in \mathbb{R}^T$ satisfying (a) $d_t < 0$ for all $t \in S$, (b) $d_t = 0$ for all $t \in A - S$, (c) $F(x|d) \ge 0$ for all $x \in D^V$.

Theorem: An *S*-deactivating direction $d \in \mathbb{R}^T$ for *A* exists iff CSPs *A* and A - S have the same solution set.

Deactivating Directions

Definition: Let $A \subseteq T$ and $S \subseteq A$, $S \neq \emptyset$. An *S*-deactivating direction for CSP *A* is a vector $d \in \mathbb{R}^{T}$ satisfying (a) $d_t < 0$ for all $t \in S$. (b) $d_t = 0$ for all $t \in A - S$. (c) $F(x|d) \ge 0$ for all $x \in D^V$.

Theorem: An S-deactivating direction $d \in \mathbb{R}^T$ for A exists iff CSPs A and A - S have the same solution set.

Example: $V = \{1, 2\}, D = \{A, B\}, E = \{\{1, 2\}\}, S = \{\{(1, A), (2, B)\}\}$

T. Dlask, T. Werner, S. de Givrv Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations 10 / 17

Domain wipeout: for some $i \in V$, $(i, k) \notin A$ for all $k \in D$ **Edge wipeout**: for some $\{i, j\} \in E$, $\{(i, k), (j, l)\} \notin A$ for all $k, l \in D$ $\Rightarrow A \text{ is unsatisfiable}$ **Domain wipeout**: for some $i \in V$, $(i, k) \notin A$ for all $k \in D$ **Edge wipeout**: for some $\{i, j\} \in E$, $\{(i, k), (j, l)\} \notin A$ for all $k, l \in D$ $\Rightarrow A \text{ is unsatisfiable}$

Theorem: Let $f \in \mathbb{R}^T$ and d be an *S*-deactivating direction for $A^*(f)$.

- If there is domain or edge wipeout in $A^*(f) S$, then $\exists \alpha > 0 : B(f + \underbrace{\alpha d}_{f}) < B(f)$.
- Otherwise, $\exists \alpha > 0 : B(f + \alpha d) = B(f)$ and $A^*(f + \alpha d) = A^*(f) S$.

One iteration of a local consistency algorithm applied to CSP ${\it A} \subseteq {\it T}$

- identify tuples $S \subseteq A$ such that CSPs A and A S have the same solution set
- forbid these tuples: update CSP to A S

One iteration of a local consistency algorithm applied to CSP $A\subseteq \mathcal{T}$

- identify tuples $S \subseteq A$ such that CSPs A and A S have the same solution set
- forbid these tuples: update CSP to A S

Refinement: proof set $P \subseteq T - A$

• for any CSP $A' \subseteq T - P$, CSPs A' and A' - S have the same solution set

• e.g., P = T - A

One iteration of a local consistency algorithm applied to CSP $A\subseteq \mathcal{T}$

- identify tuples $S \subseteq A$ such that CSPs A and A S have the same solution set
- forbid these tuples: update CSP to A S

Refinement: proof set $P \subseteq T - A$

• for any CSP $A' \subseteq T - P$, CSPs A' and A' - S have the same solution set

• e.g., P = T - A

Example:
$$S = \{\{(1, A), (2, B)\}\}, P = \{(2, B)\}, CSP A:$$

T. Dlask, T. Werner, S. de Givry Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations CIA Workshop 12 / 17

One iteration of a local consistency algorithm applied to CSP $A\subseteq \mathcal{T}$

- identify tuples $S \subseteq A$ such that CSPs A and A S have the same solution set
- forbid these tuples: update CSP to A S

Refinement: proof set $P \subseteq T - A$

- for any CSP $A' \subseteq T P$, CSPs A' and A' S have the same solution set
- e.g., P = T A

Example (Singleton Arc Consistency): Let $i \in V, k \in D$, and $A \subseteq T$.

- If $A|_{x_i=k}$ has empty AC closure:
 - There is no solution of CSP A with $x_i = k$ and we can forbid (i, k).
 - $S = \{(i, k)\}$
 - *P* is, e.g., the set of forbidden tuples needed to infer empty AC closure of $A|_{x_i=k}$.

One iteration of a local consistency algorithm applied to CSP $A\subseteq \mathcal{T}$

- identify tuples $S \subseteq A$ such that CSPs A and A S have the same solution set
- forbid these tuples: update CSP to A S

Refinement: proof set $P \subseteq T - A$

• for any CSP $A' \subseteq T - P$, CSPs A' and A' - S have the same solution set

d

• e.g., P = T - A

Theorem: S-deactivating direction for A:

$$f_t = \begin{cases} -1 & \text{if } t \in S \\ n & \text{if } t \in P \\ 0 & \text{otherwise} \end{cases}$$
 (6)

where *n* is the number of weight functions (unary or binary) with at least one tuple in *S*. Note: *P* is preferred to be small (so that values F(x|d) are small)

Let $f \in \mathbb{R}^T$.

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:

• Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 - S_0$, store S_0 -deactivating direction d^0 for A_0 .

Let $f \in \mathbb{R}^T$.

:

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:

- Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 S_0$, store S_0 -deactivating direction d^0 for A_0 .
- Forbid tuples $S_1 \subseteq A_1$, let $A_2 = A_1 S_1$, store S_1 -deactivating direction d^1 for A_1 .

Let $f \in \mathbb{R}^T$.

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:

- Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 S_0$, store S_0 -deactivating direction d^0 for A_0 .
- Forbid tuples $S_1 \subseteq A_1$, let $A_2 = A_1 S_1$, store S_1 -deactivating direction d^1 for A_1 .

• Forbid tuples $S_q \subseteq A_q$, let $A_{q+1} = A_q - S_q$, store S_q -deactivating direction d^q for A_q .

Let $f \in \mathbb{R}^T$.

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:

- Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 S_0$, store S_0 -deactivating direction d^0 for A_0 .
- Forbid tuples $S_1 \subseteq A_1$, let $A_2 = A_1 S_1$, store S_1 -deactivating direction d^1 for A_1 .
- Forbid tuples $S_q \subseteq A_q$, let $A_{q+1} = A_q S_q$, store S_q -deactivating direction d^q for A_q .

Theorem: The sequence $d^0, d^1, ..., d^q$ can be composed into a single S-deactivating direction d for $A^*(f)$ where $S = S_0 \cup S_1 \cup ... \cup S_q$.

Note: $A_{q+1} = A_0 - S$

Corollary: If there is domain or edge wipeout in $A_{q+1} = A^*(f) - S$, d can be used to improve the bound as $B(f + \alpha d) < B(f)$.

T. Dlask, T. Werner, S. de Givry Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations CIA Workshop 13 / 17

Iterative scheme for computing an upper bound B(f) on max F(x|g):

1: Initialize f := g.

2: Apply constraint propagation on $A^*(f)$ while storing deactivating directions $d^0, ..., d^q$

Iterative scheme for computing an upper bound B(f) on max F(x|g):

- 1: Initialize f := g.
- 2: Apply constraint propagation on $A^*(f)$ while storing deactivating directions $d^0, ..., d^q$
- 3: If there is domain or edge wipeout:
 - 3.1: Compose (possibly a subset of) the sequence $d^0, ..., d^q$ into a single vector d.
 - 3.2: Compute step size α .
 - 3.3: Update $f := f + \alpha d$, go to 2.
- 4: Return B(f).

Data: Cost Function Library benchmark¹⁰

Compared methods:

- Virtual singleton arc consistency via super-reparametrizations (VSAC-SR)
- Virtual cycle consistency via super-reparametrizations (VCC-SR) (¹¹)
- EDAC¹², VAC¹³, pseudo-triangles¹⁴, triangle-based consistencies: PIC, EDPIC, maxRPC, EDmaxRPC¹⁵

Only the upper bound is computed.

¹²Larrosa et al.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs

¹³Cooper et al.: Soft arc consistency revisited

¹⁴Option -t = 8000 in toulbar2; https://miat.inrae.fr/toulbar2

¹⁵Nguyen, et al.: Triangle-based consistencies for cost function networks

T. Dlask, T. Werner, S. de Givry Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations CIA Workshop 15 / 17

¹⁰https://forgemia.inra.fr/thomas.schiex/cost-function-library

¹¹Komodakis, et al.: Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles

Instance Group	Instances	EDAC	VAC	VSAC-SR	VCC-SR	Pseudo-tr.	PIC	EDPIC	maxRPC	EDmaxRPC
/biqmaclib/	157	0.02	0.11	0.90	0.22	0.92	0.83	0.81	0.79	0.81
/crafted/academics/	8	0.88	0.88	0.97	0.95	0.88	0.88	0.88	0.88	1.00
/crafted/auction/paths/	420	0.00	0.09	0.91	0.35	0.99	0.45	0.68	0.64	0.57
/crafted/auction/regions/	411	0.00	0.05	0.99	0.10	0.98	0.08	0.18	0.23	0.13
/crafted/auction/scheduling/	419	0.00	0.02	1.00	0.09	0.80	0.41	0.38	0.41	0.24
/crafted/coloring/	33	0.94	0.94	0.99	0.97	0.98	1.00	1.00	1.00	0.99
/crafted/feedback/	6	0.00	0.00	0.54	0.58	0.71	0.49	0.53	0.51	0.72
/crafted/kbtree/	1800	0.25	0.29	0.60	0.67	0.80	0.73	0.81	0.76	0.89
/crafted/maxclique/dimacs maxclique/	49	0.06	0.24	0.98	0.39	0.87	0.39	0.50	0.51	0.55
/crafted/maxcut/spinglass maxcut/unweighted/	5	0.00	0.00	1.00	0.42	0.15	0.15	0.15	0.15	0.15
/crafted/maxcut/spinglass maxcut/weighted/	5	0.00	0.00	1.00	0.38	0.17	0.17	0.17	0.17	0.17
/crafted/modularity/	6	0.17	0.19	0.38	0.25	0.99	0.96	0.94	0.96	0.97
/crafted/planning/	65	0.00	0.54	0.94	0.72	0.32	0.07	0.09	0.07	0.17
/crafted/sumcoloring/	43	0.04	0.15	0.47	0.50	0.81	0.53	0.63	0.64	0.61
/crafted/warehouses/	49	0.35	0.99	1.00	0.99	0.35	0.42	0.42	0.42	0.42
/gaplib/	5	0.40	0.40	0.40	0.41	0.99	0.97	0.97	0.98	0.97
/qplib/	23	0.00	0.10	0.96	0.38	0.27	0.25	0.25	0.24	0.25
/random/maxcsp/completeloose/	50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
/random/maxcsp/completetight/	50	0.00	0.12	0.57	0.72	0.88	0.94	0.99	0.69	0.76
/random/maxcsp/denseloose/	50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
/random/maxcsp/densetight/	50	0.02	0.14	0.52	1.00	0.68	0.48	0.49	0.52	0.60
/random/maxcsp/sparseloose/	90	0.96	0.96	1.00	0.96	0.96	0.96	0.96	0.96	0.96
/random/maxcsp/sparsetight/	50	0.01	0.12	0.54	1.00	0.64	0.40	0.40	0.43	0.51
/random/maxcut/random maxcut/	400	0.00	0.00	0.77	0.13	0.95	0.98	0.98	0.97	0.99
/random/mincut/	500	0.09	1.00	1.00	1.00	0.10	0.10	0.10	0.10	0.10
/random/randomksat/	493	0.01	0.02	0.75	0.22	0.95	0.91	0.89	0.86	0.87
/random/wqueens/	6	0.00	0.52	0.96	0.94	0.48	0.12	0.29	0.13	0.72
/real/celar/	23	0.00	0.05	0.08	0.16	0.97	0.66	0.66	0.78	0.95
/real/maxclique/protein maxclique/	1	0.00	0.00	1.00	0.03	0.93	0.04	0.04	0.08	0.04
/real/spot5/	1	0.00	0.08	1.00	0.49	1.00	0.74	0.66	0.41	0.74
/real/tagsnp/tagsnp_r0.5/	23	0.04	0.86	0.95	0.86	0.31	0.31	0.33	0.29	0.46
/real/tagsnp/tagsnp_r0.8/	80	0.13	0.66	0.91	0.68	0.29	0.39	0.38	0.33	0.47
Average over all groups	5371	0.20	0.36	0.82	0.58	0.72	0.56	0.58	0.56	0.62
Average over groups with ≥ 5 instances	5369	0.21	0.38	0.80	0.60	0.71	0.57	0.59	0.58	0.63

T. Dlask, T. Werner, S. de Givry Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations CIA

Instance Group	Instances	EDAC	VAC	VSAC-SR	VCC-SR	Pseudo-tr.	PIC	EDPIC	maxRPC	EDmaxRPC
/biqmaclib/	157	0.11	0.12	180.07	34.60	83.25	1240.00	1241.29	1242.16	1271.86
/crafted/academics/	8	0.11	0.11	28.61	1.04	29.08	121.44	120.86	108.08	104.47
/crafted/auction/paths/	420	0.04	0.04	1.96	0.83	1.92	0.19	0.23	0.48	0.64
/crafted/auction/regions/	411	0.20	0.32	32.14	9.45	673.42	49.85	51.37	102.61	110.48
/crafted/auction/scheduling/	419	0.10	0.12	16.22	2.03	49.85	26.90	26.89	32.06	32.30
/crafted/coloring/	33	0.09	0.10	4.99	1.40	0.20	545.50	545.50	545.51	545.50
/crafted/feedback/	6	0.70	0.70	3588.39	3600.11	11.64	1860.89	1874.08	1875.93	1873.07
/crafted/kbtree/	1800	0.02	0.02	3.13	11.25	0.10	0.04	0.05	0.06	0.07
/crafted/maxclique/dimacs_maxclique/	49	0.71	1.32	279.08	126.90	955.60	1345.67	1342.14	1429.73	1428.12
/crafted/maxcut/spinglass_maxcut/unweighted/	5	0.02	0.02	0.82	0.44	0.02	0.01	0.01	0.01	0.01
/crafted/maxcut/spinglass_maxcut/weighted/	5	0.02	0.02	1.09	0.53	0.02	0.01	0.01	0.01	0.01
/crafted/modularity/	6	0.19	0.29	1023.48	127.39	66.25	706.30	783.02	741.91	1442.57
/crafted/planning/	65	0.16	0.29	638.85	60.62	7.41	0.93	0.96	2.33	4.73
/crafted/sumcoloring/	43	1.29	1.94	727.49	963.61	255.72	1508.37	1508.36	1509.34	1512.68
/crafted/warehouses/	49	4.10	9.48	735.80	735.83	4.09	29.48	29.54	28.80	29.82
/qaplib/	5	0.08	0.09	119.05	278.53	7.38	1448.63	1444.95	1450.09	1449.22
/qplib/	23	0.13	0.14	255.85	43.11	195.32	626.25	626.24	626.27	626.36
/random/maxcsp/completeloose/	50	0.06	0.06	1.31	0.16	0.48	0.09	0.10	0.19	0.18
/random/maxcsp/completetight/	50	0.02	0.03	6.35	12.68	0.47	0.21	0.25	0.31	0.33
/random/maxcsp/denseloose/	50	0.02	0.02	166.78	0.06	0.11	0.03	0.03	0.03	0.03
/random/maxcsp/densetight/	50	0.02	0.02	4.20	17.38	0.10	0.06	0.07	0.07	0.08
/random/maxcsp/sparseloose/	90	0.03	0.03	611.38	0.05	0.06	0.04	0.04	0.04	0.04
/random/maxcsp/sparsetight/	50	0.02	0.02	11.00	9.74	0.06	0.04	0.05	0.05	0.05
/random/maxcut/random_maxcut/	400	0.01	0.01	0.73	0.15	0.04	0.03	0.03	0.05	0.07
/random/mincut/	500	1.09	2.43	14.40	86.22	1.12	0.88	0.87	0.87	0.87
/random/randomksat/	493	0.02	0.02	3.42	0.17	0.13	0.07	0.10	0.16	0.31
/random/wqueens/	6	1.33	1.49	992.85	502.42	644.87	1800.15	1800.20	1800.18	1800.60
/real/celar/	23	0.27	0.28	1798.51	2972.69	66.56	300.76	219.91	495.26	1066.87
/real/maxclique/protein_maxclique/	1	0.26	0.44	25.24	6.77	1196.62	114.62	114.99	215.30	220.81
/real/spot5/	1	0.01	0.01	0.62	0.08	0.11	0.03	0.03	0.04	0.04
/real/tagsnp/tagsnp_r0.5/	23	4.83	378.77	3338.53	2897.83	239.38	3155.96	3148.66	3172.58	3295.19
/real/tagsnp/tagsnp_r0.8/	80	1.52	22.82	1239.73	858.83	90.05	195.12	206.76	359.55	409.88
Average over all groups	5371	0.55	13.17	495.38	417.59	143.17	471.21	471.49	491.88	538.35
Average over groups with ≥ 5 instances	5369	0.58	14.04	527.54	445.20	112.82	498.80	499.08	517.49	566.88

T. Dlask, T. Werner, S. de Givry Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations CIA Workshop