Bounds on Weighted CSPs
Using Constraint Propagation and Super-Reparametrizations

Tomáš Dlask¹, Tomáš Werner¹, Simon de Givry²

¹ Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
² Université Fédérale de Toulouse, ANITI, INRAE, UR 875, Toulouse, France

CP 2021 conference paper
presented at
Combinatorial Image Analysis Workshop, TU Dresden
(Binary) Weighted Constraint Satisfaction Problem (WCSP)

- finite set of variables V
- finite domain D of each variable
- set of variable pairs (edges) E
- find assignment $x \in D^V$ (i.e., $x : V \to D$) maximizing

$$F(x \mid f) = \sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j)$$ \hspace{1cm} (1)

- weight functions $f_i : D \to \mathbb{R}$ and $f_{ij} : D^2 \to \mathbb{R}$
(Binary) Weighted Constraint Satisfaction Problem (WCSP)

- finite set of **variables** V
- finite **domain** D of each variable
- set of variable pairs (edges) E
- find assignment $x \in D^V$ (i.e., $x : V \to D$) maximizing
 \[
 F(x \mid f) = \sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j)
 \] (1)
- **weight functions** $f_i : D \to \mathbb{R}$ and $f_{ij} : D^2 \to \mathbb{R}$
- WCSP instances are identified with vectors $f \in \mathbb{R}^T$
- set of **tuples**:
 \[
 T = \{ (i, k) \mid i \in V, \; k \in D \} \cup \{ \{(i, k), (j, l)\} \mid \{i, j\} \in E, \; k, l \in D \}
 \] (2)
- Note: $F(x \mid f)$ is linear in f
(Binary) Constraint Satisfaction Problem (CSP)

- \(V, D, E, T \) as for WCSP, recall:

\[
T = \{(i, k) \mid i \in V, k \in D\} \cup \{(i, k), (j, l)\} \mid \{i, j\} \in E, k, l \in D\}
\]

- a set \(A \subseteq T \) of **allowed tuples** (tuples in \(T - A \) are forbidden)
(Binary) Constraint Satisfaction Problem (CSP)

- V, D, E, T as for WCSP, recall:

$$T = \{(i, k) \mid i \in V, k \in D\} \cup \{(i, k), (j, l)\} \mid \{i, j\} \in E, k, l \in D$$

- A set $A \subseteq T$ of allowed tuples (tuples in $T - A$ are forbidden)

- CSP instances are identified with subsets of T

- Assignment $x \in D^V$ is a solution to CSP A if

$$\forall i \in V : (i, x_i) \in A$$
$$\forall \{i, j\} \in E : \{(i, x_i), (j, x_j)\} \in A$$
For a WCSP \(f \in \mathbb{R}^T \):

- upper bound on the optimal value of WCSP \(f \):

\[
B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i, j\} \in E} \max_{k, l \in D} f_{ij}(k, l)
\]

(3)
Upper Bound and Active-Tuple CSP

For a WCSP $f \in \mathbb{R}^T$:

- **upper bound** on the optimal value of WCSP f:

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i,j\} \in E} \max_{k,l \in D} f_{ij}(k, l) \geq \max_{x \in D^V} \left(\sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j) \right)$$ \hspace{1cm} (3)
Upper Bound and Active-Tuple CSP

For a WCSP $f \in \mathbb{R}^T$:

- **upper bound** on the optimal value of WCSP f:

 $$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i, j\} \in E} \max_{k, l \in D} f_{ij}(k, l) \geq \max_{x \in D^V} \left(\sum_{i \in V} f_i(x_i) + \sum_{\{i, j\} \in E} f_{ij}(x_i, x_j) \right)$$ (3)

- tuple $t = (i, k) \in T$ is **active** if $f_i(k) = \max_{k' \in D} f_i(k')$

- tuple $t = \{(i, k), (j, l)\} \in T$ is **active** if $f_{ij}(k, l) = \max_{k', l' \in D} f_{ij}(k', l')$
For a WCSP $f \in \mathbb{R}^T$:

- **upper bound** on the optimal value of WCSP f:

$$B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \sum_{\{i, j\} \in E} \max_{k, l \in D} f_{ij}(k, l) \geq \max_{x \in D^V} \left(\sum_{i \in V} f_i(x_i) + \sum_{\{i, j\} \in E} f_{ij}(x_i, x_j) \right)$$ (3)

- tuple $t = (i, k) \in T$ is **active** if $f_i(k) = \max_{k' \in D} f_i(k')$

- tuple $t = \{(i, k), (j, l)\} \in T$ is **active** if $f_{ij}(k, l) = \max_{k', l' \in D} f_{ij}(k', l')$

- set of all **active tuples** for f is denoted by $A^*(f) \subseteq T$
Upper Bound and Active-Tuple CSP

For a WCSP $f \in \mathbb{R}^T$:

- **upper bound** on the optimal value of WCSP f:

\[
B(f) = \sum_{i \in V} \max_{k \in D} f_i(k) + \max_{\{i,j\} \in E} \max_{k, l \in D} f_{ij}(k, l) \geq \max_{x \in D^V} \left(\sum_{i \in V} f_i(x_i) + \sum_{\{i,j\} \in E} f_{ij}(x_i, x_j) \right)
\]

- tuple $t = (i, k) \in T$ is **active** if $f_i(k) = \max_{k' \in D} f_i(k')$

- tuple $t = \{(i, k), (j, l)\} \in T$ is **active** if $f_{ij}(k, l) = \max_{k', l' \in D} f_{ij}(k', l')$

- set of all **active tuples** for f is denoted by $A^*(f) \subseteq T$

Theorem\(^1\): Upper bound is tight (i.e., $B(f) = \max_x F(x \mid f)$) iff CSP $A^*(f)$ is satisfiable.

\(^1\)Werner: A linear programming approach to max-sum problem: A review
Example

\[V = \{1, 2\}, \ D = \{A, B\}, \ E = \\{\{1, 2\}\}, \ F(x | f) = f_1(x_1) + f_2(x_2) + f_{12}(x_1, x_2) \]
WCSP f is a **reparametrization** of WCSP g if $F(x|f) = F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x|f) = F(x|g) \quad \forall x \in \mathbb{D}$$

A polynomially-sized LP formulation exists:

2. dual of the basic LP relaxation of WCSP g

Many algorithms for its (approximate) optimization:

(a) block-coordinate descent (e.g., max-sum diffusion,

2. duality of the basic LP relaxation of WCSP g

Kovalevsky et al.: A diffusion algorithm for decreasing energy of max-sum labeling problem

4. Kolmogorov: Convergent tree-reweighted message passing for energy minimization

5. Tourani et al.: Taxonomy of dual block-coordinate ascent methods for discrete energy minimization

6. Larrosa et al.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs

7. Koval et al.: Two-dimensional programming in image analysis problems

8. Cooper et al.: Soft arc consistency revisited
Minimizing the Upper Bound by Reparametrizations

WCSP f is a **reparametrization** of WCSP g if $F(x|f) = F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x|f) = F(x|g) \quad \forall x \in D^V \quad (4)$$

- a polynomially-sized LP formulation exists2 – dual of the basic LP relaxation of WCSP g

2Werner: A linear programming approach to max-sum problem: A review
Minimizing the Upper Bound by Reparametrizations

WCSP f is a **reparametrization** of WCSP g if $F(x | f) = F(x | g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x | f) = F(x | g) \ \forall x \in D^V \quad (4)$$

- a polynomially-sized LP formulation exists\(^2\) – dual of the basic LP relaxation of WCSP g
- many algorithms for its (approximate) optimization:
 - (a) block-coordinate descent (e.g., max-sum diffusion\(^2,3\), TRWS\(^4\), SPAM\(^5\), ...)
 - (b) soft local consistencies (e.g., EDAC\(^6\), AugDAG\(^7\)/VAC\(^8\), ...)

\(^2\)Werner: A linear programming approach to max-sum problem: A review
\(^3\)Kovalevsky et al.: A diffusion algorithm for decreasing energy of max-sum labeling problem
\(^4\)Kolmogorov: Convergent tree-reweighted message passing for energy minimization
\(^5\)Tourani et al.: Taxonomy of dual block-coordinate ascent methods for discrete energy minimization
\(^6\)Larrosa et al.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs
\(^7\)Koval et al.: Two-dimensional programming in image analysis problems
\(^8\)Cooper et al.: Soft arc consistency revisited
Minimizing the Upper Bound by Super-Reparametrizations

WCSP f is a **super-reparametrization** of WCSP g if $F(x | f) \geq F(x | g)$ for all x.

Given a WCSP $g \in \mathcal{R}_T$, minimize the upper bound over super-reparametrizations:

$$\min_{f \in \mathcal{R}_T} B(f)$$

subject to

$$F(x | f) \geq F(x | g) \forall x \in \mathcal{D}_V$$

for any feasible f:

$$B(f) \geq \max_x F(x | f) \geq \max_x F(x | g)$$

optimal value of (5) is

$$\text{feasible } f \in \mathcal{R}_T \text{ is optimal for (5) iff CSP } A^*(f) \text{ has a solution } x \text{ with } F(x | f) = F(x | g)$$

satisfiability of $A^*(f)$ is a necessary (but generally insufficient) condition of optimality.
WCSP f is a **super-reparametrization** of WCSP g if $F(x|f) \geq F(x|g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over super-reparametrizations:

$$
\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x|f) \geq F(x|g) \quad \forall x \in D^V
$$

(5)

Komodakis, et al.: Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles
Minimizing the Upper Bound by Super-Reparametrizations

WCSP f is a super-reparametrization of WCSP g if $F(x | f) \geq F(x | g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over super-reparametrizations:\footnote{Komodakis, et al.: Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles}

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x | f) \geq F(x | g) \quad \forall x \in D^V$$

for any feasible f: $B(f) \geq \max_x F(x | f) \geq \max_x F(x | g)$
WCSP f is a super-reparametrization of WCSP g if $F(x | f) \geq F(x | g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over super-reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x | f) \geq F(x | g) \quad \forall x \in D^V \quad (5)$$

- for any feasible f: $B(f) \geq \max_x F(x | f) \geq \max_x F(x | g)$
- optimal value of (5) is $\max_x F(x | g)$

9Komodakis, et al.: Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles
WCSP f is a super-reparametrization of WCSP g if $F(x \mid f) \geq F(x \mid g)$ for all x.

Given a WCSP $g \in \mathbb{R}^T$, minimize the upper bound over super-reparametrizations:

$$\min_{f \in \mathbb{R}^T} B(f) \quad \text{subject to} \quad F(x \mid f) \geq F(x \mid g) \quad \forall x \in D^V \quad (5)$$

- for any feasible f: $B(f) \geq \max_x F(x \mid f) \geq \max_x F(x \mid g)$
- optimal value of (5) is $\max_x F(x \mid g)$
- feasible $f \in \mathbb{R}^T$ is optimal for (5) iff CSP $A^*(f)$ has a solution x with $F(x \mid f) = F(x \mid g)$
- satisfiability of $A^*(f)$ is a necessary (but generally insufficient) condition of optimality

\[^9\text{Komodakis, et al.: Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles}\]
Iterative Scheme

Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with $B(f + h) < B(f)$ and $F(x|h) \geq 0$ for all $x \in D^V$.
Iterative Scheme

Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with $B(f + h) < B(f)$ and $F(x| h) \geq 0$ for all $x \in D^V$. Such h is a **certificate of unsatisfiability** for f.

Iterative scheme for (approximate) optimization:

1. Initialize $f := g$.
2. If CSP $A^*(f)$ is satisfiable, stop.
3. Find certificate h.
4. Update $f := f + h$ and go to 2.

Properties:

- $B(f)$ decreases after each iteration
- $F(x| f + h) = F(x| f) + F(x| h) \geq F(x| f)$
- $\max_x F(x| f)$ increases or stays the same after each iteration

obtained bound is limited by the fact that $B(f) \geq \max_x F(x| f)$
Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with $B(f + h) < B(f)$ and $F(x \mid h) \geq 0$ for all $x \in D^V$. Such h is a **certificate of unsatisfiability** for f.

Iterative scheme for (approximate) optimization:
(WCSP g given as input)

1: Initialize $f := g$.
2: If CSP $A^*(f)$ is satisfiable, stop.
3: Find certificate h.
4: Update $f := f + h$ and go to 2.
Theorem: Let $f \in \mathbb{R}^T$. CSP $A^*(f)$ is unsatisfiable iff $\exists h \in \mathbb{R}^T$ with $B(f + h) < B(f)$ and $F(x|h) \geq 0$ for all $x \in D^V$. Such h is a **certificate of unsatisfiability** for f.

Iterative scheme for (approximate) optimization:
(WCSP g given as input)

1: Initialize $f := g$.
2: If CSP $A^*(f)$ is satisfiable, stop.
3: Find certificate h.
4: Update $f := f + h$ and go to 2.

Properties:
- $B(f)$ decreases after each iteration
- $F(x | f + h) = F(x | f) + F(x | h) \geq F(x | f)$
- $\max_x F(x | f)$ increases or stays the same after each iteration
- Obtained bound is limited by the fact that $B(f) \geq \max_x F(x | f)$
Iterative Scheme with Constraint Propagation

Idea: Try to detect unsatisfiability of CSP $A^*(f)$ by constraint propagation.

Next, we will show:

- how to compute a certificate h using any constraint propagation algorithm
- how to obtain good certificates
- experiments with singleton arc consistency
Deactivating Directions

Definition: Let \(A \subseteq T \) and \(S \subseteq A, \ S \neq \emptyset \).

An **\(S \)-deactivating direction** for **CSP** \(A \) is a vector \(d \in \mathbb{R}^T \) satisfying

(a) \(d_t < 0 \) for all \(t \in S \),
(b) \(d_t = 0 \) for all \(t \in A - S \),
(c) \(F(x|d) \geq 0 \) for all \(x \in D^V \).
Deactivating Directions

Definition: Let $A \subseteq T$ and $S \subseteq A$, $S \neq \emptyset$.

An **S-deactivating direction for CSP A** is a vector $d \in \mathbb{R}^T$ satisfying

1. $d_t < 0$ for all $t \in S$,
2. $d_t = 0$ for all $t \in A - S$,
3. $F(x \mid d) \geq 0$ for all $x \in D^V$.

Theorem: An S-deactivating direction $d \in \mathbb{R}^T$ for A exists iff CSPs A and $A - S$ have the same solution set.
Deactivating Directions

Definition: Let $A \subseteq T$ and $S \subseteq A$, $S \neq \emptyset$.

An S-deactivating direction for CSP A is a vector $d \in \mathbb{R}^T$ satisfying

(a) $d_t < 0$ for all $t \in S$,

(b) $d_t = 0$ for all $t \in A - S$,

(c) $F(x \mid d) \geq 0$ for all $x \in D^V$.

Theorem: An S-deactivating direction $d \in \mathbb{R}^T$ for A exists iff CSPs A and $A - S$ have the same solution set.

Example: $V = \{1, 2\}$, $D = \{A, B\}$, $E = \{\{(1, 2)\}\}$, $S = \{((1, A), (2, B))\}$
Deactivating Directions

Domain wipeout: for some $i \in V$, $(i, k) \notin A$ for all $k \in D$

Edge wipeout: for some $\{i, j\} \in E$, $\{(i, k), (j, l)\} \notin A$ for all $k, l \in D$

\implies A is unsatisfiable
Deactivating Directions

Domain wipeout: for some $i \in V$, $(i, k) \notin A$ for all $k \in D$

Edge wipeout: for some $\{i, j\} \in E$, $\{(i, k), (j, l)\} \notin A$ for all $k, l \in D$

\[\implies A \text{ is unsatisfiable} \]

Theorem: Let $f \in \mathbb{R}^T$ and d be an S-deactivating direction for $A^*(f)$.

- If there is domain or edge wipeout in $A^*(f) - S$, then $\exists \alpha > 0: B(f + \alpha d) < B(f)$.
- Otherwise, $\exists \alpha > 0: B(f + \alpha d) = B(f)$ and $A^*(f + \alpha d) = A^*(f) - S$.

Computing Deactivating Directions

One iteration of a local consistency algorithm applied to CSP $A \subseteq T$
- identify tuples $S \subseteq A$ such that CSPs A and $A - S$ have the same solution set
- forbid these tuples: update CSP to $A - S$
Computing Deactivating Directions

One iteration of a local consistency algorithm applied to CSP $A \subseteq T$

- identify tuples $S \subseteq A$ such that CSPs A and $A - S$ have the same solution set
- forbid these tuples: update CSP to $A - S$

Refinement: proof set $P \subseteq T - A$

- for any CSP $A' \subseteq T - P$, CSPs A' and $A' - S$ have the same solution set
- e.g., $P = T - A$

Theorem: S-deactivating direction for A:

$$d_t = \begin{cases}
-1 & \text{if } t \in S \\
0 & \text{if } t \in P \\
\text{otherwise}
\end{cases}$$

where n is the number of weight functions (unary or binary) with at least one tuple in S. Note: P is preferred to be small (so that values $F(x|d)$ are small).
Computing Deactivating Directions

One iteration of a local consistency algorithm applied to CSP $A \subseteq T$
- identify tuples $S \subseteq A$ such that CSPs A and $A - S$ have the same solution set
- forbid these tuples: update CSP to $A - S$

Refinement: proof set $P \subseteq T - A$
- for any CSP $A' \subseteq T - P$, CSPs A' and $A' - S$ have the same solution set
- e.g., $P = T - A$

Example: $S = \{\{(1, A), (2, B)\}\}$, $P = \{(2, B)\}$, CSP A:

```
+---+---+
| A | B |
+---+---+
  |   |
+ ---+---+
```
Computing Deactivating Directions

One iteration of a local consistency algorithm applied to CSP $A \subseteq T$

- identify tuples $S \subseteq A$ such that CSPs A and $A - S$ have the same solution set
- forbid these tuples: update CSP to $A - S$

Refinement: **proof set** $P \subseteq T - A$

- for any CSP $A' \subseteq T - P$, CSPs A' and $A' - S$ have the same solution set
- e.g., $P = T - A$

Example (Singleton Arc Consistency): Let $i \in V$, $k \in D$, and $A \subseteq T$.

If $A|_{x_i = k}$ has empty AC closure:

- There is no solution of CSP A with $x_i = k$ and we can forbid (i, k).
- $S = \{(i, k)\}$
- P is, e.g., the set of forbidden tuples needed to infer empty AC closure of $A|_{x_i = k}$.

\[d_t = \begin{cases} -1 & \text{if } t \in S \\ n & \text{if } t \in P \\ 0 & \text{otherwise} \end{cases}\]

where n is the number of weight functions (unary or binary) with at least one tuple in S.

Note: P is preferred to be small (so that values $F(x|d_t)$ are small).
Computing Deactivating Directions

One iteration of a local consistency algorithm applied to CSP $A \subseteq T$

- identify tuples $S \subseteq A$ such that CSPs A and $A - S$ have the same solution set
- forbid these tuples: update CSP to $A - S$

Refinement: proof set $P \subseteq T - A$

- for any CSP $A' \subseteq T - P$, CSPs A' and $A' - S$ have the same solution set
- e.g., $P = T - A$

Theorem: S-deactivating direction for A:

$$d_t = \begin{cases}
-1 & \text{if } t \in S \\
 n & \text{if } t \in P \\
 0 & \text{otherwise}
\end{cases}$$

(6)

where n is the number of weight functions (unary or binary) with at least one tuple in S.

Note: P is preferred to be small (so that values $F(x|d)$ are small)
Composing Deactivating Directions

Let $f \in \mathbb{R}^T$.

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:

- Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 - S_0$, store S_0-deactivating direction d^0 for A_0.

...

- Forbid tuples $S_q \subseteq A_q$, let $A_{q+1} = A_q - S_q$, store S_q-deactivating direction d^q for A_q.

Theorem: The sequence $d^0, d^1, ..., d^q$ can be composed into a single S-deactivating direction d for $A^*(f)$ where $S = S_0 \cup S_1 \cup ... \cup S_q$.

Note: $A_{q+1} = A_0 - S$.

Corollary: If there is domain or edge wipeout in $A_{q+1} = A^*(f) - S$, d can be used to improve the bound as $B(f^\alpha d) < B(f)$.
Composing Deactivating Directions

Let $f \in \mathbb{R}^T$.

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:

- Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 - S_0$, store S_0-deactivating direction d^0 for A_0.
- Forbid tuples $S_1 \subseteq A_1$, let $A_2 = A_1 - S_1$, store S_1-deactivating direction d^1 for A_1.

...
Composing Deactivating Directions

Let \(f \in \mathbb{R}^T \).

Given CSP \(A_0 = A^*(f) \), apply constraint propagation to forbid some tuples:

- Forbid tuples \(S_0 \subseteq A_0 \), let \(A_1 = A_0 - S_0 \), store \(S_0 \)-deactivating direction \(d^0 \) for \(A_0 \).
- Forbid tuples \(S_1 \subseteq A_1 \), let \(A_2 = A_1 - S_1 \), store \(S_1 \)-deactivating direction \(d^1 \) for \(A_1 \).

 :

- Forbid tuples \(S_q \subseteq A_q \), let \(A_{q+1} = A_q - S_q \), store \(S_q \)-deactivating direction \(d^q \) for \(A_q \).

Theorem: The sequence \(d^0, d^1, \ldots, d^q \) can be composed into a single \(S \)-deactivating direction \(d \) for \(A^*(f) \) where \(S = S_0 \cup S_1 \cup \ldots \cup S_q \).

Note: \(A_{q+1} = A_0 - S \)

Corollary: If there is domain or edge wipeout in \(A_{q+1} = A^*(f) - S \), \(d \) can be used to improve the bound as \(B(f + \alpha d) < B(f) \).
Composing Deactivating Directions

Let $f \in \mathbb{R}^T$.

Given CSP $A_0 = A^*(f)$, apply constraint propagation to forbid some tuples:
- Forbid tuples $S_0 \subseteq A_0$, let $A_1 = A_0 - S_0$, store S_0-deactivating direction d^0 for A_0.
- Forbid tuples $S_1 \subseteq A_1$, let $A_2 = A_1 - S_1$, store S_1-deactivating direction d^1 for A_1.
- Forbid tuples $S_q \subseteq A_q$, let $A_{q+1} = A_q - S_q$, store S_q-deactivating direction d^q for A_q.

Theorem: The sequence d^0, d^1, \ldots, d^q can be composed into a single S-deactivating direction d for $A^*(f)$ where $S = S_0 \cup S_1 \cup \ldots \cup S_q$.

Note: $A_{q+1} = A_0 - S$

Corollary: If there is domain or edge wipeout in $A_{q+1} = A^*(f) - S$, d can be used to improve the bound as $B(f + \alpha d) < B(f)$.

Iterative scheme for computing an upper bound $B(f)$ on $\max_x F(x \mid g)$:

1: Initialize $f := g$.

2: Apply constraint propagation on $A^*(f)$ while storing deactivating directions $d^0, ..., d^q$.

3: If there is domain or edge wipeout:
 3.1: Compose (possibly a subset of) the sequence $d^0, ..., d^q$ into a single vector d.
 3.2: Compute step size α.
 3.3: Update $f := f + \alpha d$, go to 2.

4: Return $B(f)$.
Overview

Iterative scheme for computing an upper bound $B(f)$ on $\max_x F(x | g)$:

1: Initialize $f := g$.
2: Apply constraint propagation on $A^*(f)$ while storing deactivating directions $d^0, ..., d^q$
3: If there is domain or edge wipeout:
 3.1: Compose (possibly a subset of) the sequence $d^0, ..., d^q$ into a single vector d.
 3.2: Compute step size α.
 3.3: Update $f := f + \alpha d$, go to 2.
4: Return $B(f)$.
Experiments

Data: Cost Function Library benchmark10

Compared methods:
- Virtual singleton arc consistency via super-reparametrizations (VSAC-SR)
- Virtual cycle consistency via super-reparametrizations (VCC-SR) (11)
- EDAC12, VAC13, pseudo-triangles14, triangle-based consistencies: PIC, EDPIC, maxRPC, EDmaxRPC15

Only the upper bound is computed.

10https://forgemia.inra.fr/thomas.schiex/cost-function-library
11Komodakis, et al.: Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles
12Larrosa et al.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs
13Cooper et al.: Soft arc consistency revisited
14Option \texttt{−t = 8000} in toulbar2; https://miat.inrae.fr/toulbar2
15Nguyen, et al.: Triangle-based consistencies for cost function networks
<table>
<thead>
<tr>
<th>Instance Group</th>
<th>Instances</th>
<th>EDAC</th>
<th>VAC</th>
<th>VSAC-SR</th>
<th>VCC-SR</th>
<th>Pseudo-tr.</th>
<th>PIC</th>
<th>EDPIC</th>
<th>maxRPC</th>
<th>EDimaxRPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>/biqmaclib/</td>
<td>157</td>
<td>0.02</td>
<td>0.11</td>
<td>0.90</td>
<td>0.22</td>
<td>0.92</td>
<td>0.83</td>
<td>0.81</td>
<td>0.79</td>
<td>0.81</td>
</tr>
<tr>
<td>/crafted/academics/</td>
<td>8</td>
<td>0.88</td>
<td>0.88</td>
<td>0.97</td>
<td>0.95</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>/crafted/auction/paths/</td>
<td>420</td>
<td>0.00</td>
<td>0.09</td>
<td>0.91</td>
<td>0.35</td>
<td>0.99</td>
<td>0.45</td>
<td>0.68</td>
<td>0.64</td>
<td>0.57</td>
</tr>
<tr>
<td>/crafted/auction/regions/</td>
<td>411</td>
<td>0.00</td>
<td>0.05</td>
<td>0.99</td>
<td>0.10</td>
<td>0.98</td>
<td>0.08</td>
<td>0.18</td>
<td>0.23</td>
<td>0.13</td>
</tr>
<tr>
<td>/crafted/auction/scheduling/</td>
<td>419</td>
<td>0.00</td>
<td>0.02</td>
<td>1.00</td>
<td>0.09</td>
<td>0.80</td>
<td>0.41</td>
<td>0.38</td>
<td>0.41</td>
<td>0.24</td>
</tr>
<tr>
<td>/crafted/coloring/</td>
<td>33</td>
<td>0.94</td>
<td>0.94</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>/crafted/feedback/</td>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.54</td>
<td>0.58</td>
<td>0.71</td>
<td>0.49</td>
<td>0.53</td>
<td>0.51</td>
<td>0.72</td>
</tr>
<tr>
<td>/crafted/kbtree/</td>
<td>1800</td>
<td>0.25</td>
<td>0.29</td>
<td>0.60</td>
<td>0.67</td>
<td>0.80</td>
<td>0.73</td>
<td>0.81</td>
<td>0.76</td>
<td>0.89</td>
</tr>
<tr>
<td>/crafted/maxclique/dimacs_maxclique/</td>
<td>49</td>
<td>0.06</td>
<td>0.24</td>
<td>0.98</td>
<td>0.39</td>
<td>0.87</td>
<td>0.39</td>
<td>0.50</td>
<td>0.51</td>
<td>0.55</td>
</tr>
<tr>
<td>/crafted/maxcut/spinglass_maxcut/unweighted/</td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.42</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>/crafted/maxcut/spinglass_maxcut/weighted/</td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.38</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>/crafted/modularity/</td>
<td>6</td>
<td>0.17</td>
<td>0.19</td>
<td>0.38</td>
<td>0.25</td>
<td>0.99</td>
<td>0.96</td>
<td>0.94</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>/crafted/planning/</td>
<td>65</td>
<td>0.00</td>
<td>0.54</td>
<td>0.94</td>
<td>0.72</td>
<td>0.32</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.17</td>
</tr>
<tr>
<td>/crafted/suncoloring/</td>
<td>43</td>
<td>0.04</td>
<td>0.15</td>
<td>0.47</td>
<td>0.50</td>
<td>0.81</td>
<td>0.53</td>
<td>0.63</td>
<td>0.64</td>
<td>0.61</td>
</tr>
<tr>
<td>/crafted/warehouses/</td>
<td>49</td>
<td>0.35</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.35</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>/qaplib/</td>
<td>5</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.41</td>
<td>0.99</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>/qplib/</td>
<td>23</td>
<td>0.00</td>
<td>0.10</td>
<td>0.96</td>
<td>0.38</td>
<td>0.27</td>
<td>0.25</td>
<td>0.25</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>/random/maxcsp/complete.loose/</td>
<td>50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>/random/maxcsp/complete.tight/</td>
<td>50</td>
<td>0.00</td>
<td>0.12</td>
<td>0.57</td>
<td>0.72</td>
<td>0.88</td>
<td>0.94</td>
<td>0.99</td>
<td>0.69</td>
<td>0.76</td>
</tr>
<tr>
<td>/random/maxcsp/dense.loose/</td>
<td>50</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>/random/maxcsp/dense.tight/</td>
<td>50</td>
<td>0.02</td>
<td>0.14</td>
<td>0.52</td>
<td>1.00</td>
<td>0.68</td>
<td>0.48</td>
<td>0.49</td>
<td>0.52</td>
<td>0.60</td>
</tr>
<tr>
<td>/random/maxcsp/parse.loose/</td>
<td>90</td>
<td>0.96</td>
<td>0.96</td>
<td>1.00</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>/random/maxcsp/parse.tight/</td>
<td>50</td>
<td>0.01</td>
<td>0.12</td>
<td>0.54</td>
<td>1.00</td>
<td>0.64</td>
<td>0.40</td>
<td>0.40</td>
<td>0.43</td>
<td>0.51</td>
</tr>
<tr>
<td>/random/maxcut/complete.loose/</td>
<td>400</td>
<td>0.00</td>
<td>0.00</td>
<td>0.77</td>
<td>0.13</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>/random/maxcut/complete.tight/</td>
<td>500</td>
<td>0.09</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>/random/ramdonsat/</td>
<td>493</td>
<td>0.01</td>
<td>0.02</td>
<td>0.75</td>
<td>0.22</td>
<td>0.95</td>
<td>0.91</td>
<td>0.89</td>
<td>0.86</td>
<td>0.87</td>
</tr>
<tr>
<td>/random/wqueens/</td>
<td>6</td>
<td>0.00</td>
<td>0.52</td>
<td>0.96</td>
<td>0.94</td>
<td>0.48</td>
<td>0.12</td>
<td>0.29</td>
<td>0.13</td>
<td>0.72</td>
</tr>
<tr>
<td>/real/cellar/</td>
<td>23</td>
<td>0.00</td>
<td>0.05</td>
<td>0.08</td>
<td>0.16</td>
<td>0.97</td>
<td>0.66</td>
<td>0.66</td>
<td>0.78</td>
<td>0.95</td>
</tr>
<tr>
<td>/real/maxclique/protein_maxclique/</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.03</td>
<td>0.93</td>
<td>0.04</td>
<td>0.04</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>/real/spot5/</td>
<td>1</td>
<td>0.00</td>
<td>0.08</td>
<td>1.00</td>
<td>0.49</td>
<td>1.00</td>
<td>0.74</td>
<td>0.66</td>
<td>0.41</td>
<td>0.74</td>
</tr>
<tr>
<td>/real/tagsnp/tagsnp_r0.5/</td>
<td>23</td>
<td>0.04</td>
<td>0.86</td>
<td>0.95</td>
<td>0.86</td>
<td>0.31</td>
<td>0.31</td>
<td>0.33</td>
<td>0.29</td>
<td>0.46</td>
</tr>
<tr>
<td>/real/tagsnp/tagsnp_r0.8/</td>
<td>80</td>
<td>0.13</td>
<td>0.66</td>
<td>0.91</td>
<td>0.68</td>
<td>0.29</td>
<td>0.39</td>
<td>0.38</td>
<td>0.33</td>
<td>0.47</td>
</tr>
<tr>
<td>Average over all groups</td>
<td>5371</td>
<td>0.20</td>
<td>0.36</td>
<td>0.82</td>
<td>0.58</td>
<td>0.72</td>
<td>0.56</td>
<td>0.58</td>
<td>0.56</td>
<td>0.62</td>
</tr>
<tr>
<td>Average over groups with ≥ 5 instances</td>
<td>5369</td>
<td>0.21</td>
<td>0.38</td>
<td>0.80</td>
<td>0.60</td>
<td>0.71</td>
<td>0.57</td>
<td>0.59</td>
<td>0.58</td>
<td>0.63</td>
</tr>
<tr>
<td>Instance Group</td>
<td>Instances</td>
<td>EDAC</td>
<td>VAC</td>
<td>VSAC-SR</td>
<td>VCC-SR</td>
<td>Pseudo-tr.</td>
<td>PIC</td>
<td>EDPIC</td>
<td>maxRPC</td>
<td>EDmaxRPC</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-----</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>/biqmaclib/</td>
<td>157</td>
<td>0.11</td>
<td>0.12</td>
<td>180.07</td>
<td>34.60</td>
<td>83.25</td>
<td>1240.00</td>
<td>1241.29</td>
<td>1242.16</td>
<td>1271.86</td>
</tr>
<tr>
<td>/crafted/academics/</td>
<td>8</td>
<td>0.11</td>
<td>0.11</td>
<td>28.61</td>
<td>1.04</td>
<td>29.08</td>
<td>121.44</td>
<td>120.86</td>
<td>108.08</td>
<td>104.47</td>
</tr>
<tr>
<td>/crafted/auction/paths/</td>
<td>420</td>
<td>0.04</td>
<td>0.04</td>
<td>1.96</td>
<td>0.83</td>
<td>1.92</td>
<td>0.19</td>
<td>0.23</td>
<td>0.48</td>
<td>0.64</td>
</tr>
<tr>
<td>/crafted/auction/regions/</td>
<td>411</td>
<td>0.20</td>
<td>0.32</td>
<td>32.14</td>
<td>9.45</td>
<td>673.42</td>
<td>49.85</td>
<td>51.37</td>
<td>102.61</td>
<td>110.48</td>
</tr>
<tr>
<td>/crafted/auction/scheduling/</td>
<td>419</td>
<td>0.10</td>
<td>0.12</td>
<td>16.22</td>
<td>2.03</td>
<td>49.85</td>
<td>26.90</td>
<td>26.89</td>
<td>32.06</td>
<td>32.30</td>
</tr>
<tr>
<td>/crafted/coloring/</td>
<td>33</td>
<td>0.09</td>
<td>0.10</td>
<td>4.99</td>
<td>1.40</td>
<td>0.20</td>
<td>545.50</td>
<td>545.50</td>
<td>545.50</td>
<td>545.50</td>
</tr>
<tr>
<td>/crafted/feedback/</td>
<td>6</td>
<td>0.70</td>
<td>0.70</td>
<td>3588.39</td>
<td>3600.11</td>
<td>11.64</td>
<td>1860.89</td>
<td>1874.08</td>
<td>1875.93</td>
<td>1873.07</td>
</tr>
<tr>
<td>/crafted/kbtree/</td>
<td>1800</td>
<td>0.02</td>
<td>0.02</td>
<td>3.13</td>
<td>11.25</td>
<td>0.10</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>/crafted/maxclique/dimacs_maxclique/</td>
<td>49</td>
<td>0.71</td>
<td>1.32</td>
<td>279.08</td>
<td>126.90</td>
<td>955.60</td>
<td>1345.67</td>
<td>1362.14</td>
<td>1429.73</td>
<td>1428.12</td>
</tr>
<tr>
<td>/crafted/maxcut/spinglass_maxcut/unweighted/</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>0.82</td>
<td>0.44</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>/crafted/maxcut/spinglass_maxcut/weighted/</td>
<td>5</td>
<td>0.02</td>
<td>0.02</td>
<td>1.09</td>
<td>0.53</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>/crafted/modularity/</td>
<td>6</td>
<td>0.19</td>
<td>0.29</td>
<td>1023.48</td>
<td>127.39</td>
<td>66.25</td>
<td>706.30</td>
<td>783.02</td>
<td>741.91</td>
<td>1452.47</td>
</tr>
<tr>
<td>/crafted/planning/</td>
<td>65</td>
<td>0.16</td>
<td>0.29</td>
<td>638.85</td>
<td>60.62</td>
<td>7.41</td>
<td>0.93</td>
<td>0.96</td>
<td>2.33</td>
<td>4.73</td>
</tr>
<tr>
<td>/crafted/sumcoloring/</td>
<td>43</td>
<td>1.29</td>
<td>1.94</td>
<td>727.49</td>
<td>963.61</td>
<td>255.72</td>
<td>1508.37</td>
<td>1508.36</td>
<td>1509.34</td>
<td>1512.68</td>
</tr>
<tr>
<td>/crafted/warehouse/</td>
<td>49</td>
<td>4.10</td>
<td>9.48</td>
<td>735.80</td>
<td>735.83</td>
<td>4.09</td>
<td>29.48</td>
<td>29.54</td>
<td>28.80</td>
<td>29.82</td>
</tr>
<tr>
<td>/qaplil/</td>
<td>5</td>
<td>0.08</td>
<td>0.09</td>
<td>119.05</td>
<td>278.53</td>
<td>7.38</td>
<td>1448.63</td>
<td>1444.95</td>
<td>1450.09</td>
<td>1449.22</td>
</tr>
<tr>
<td>/qaplil/</td>
<td>23</td>
<td>0.13</td>
<td>0.14</td>
<td>255.85</td>
<td>43.11</td>
<td>195.32</td>
<td>626.25</td>
<td>626.24</td>
<td>626.27</td>
<td>626.36</td>
</tr>
<tr>
<td>/random/maxcsp/completeloose/</td>
<td>50</td>
<td>0.06</td>
<td>0.06</td>
<td>1.31</td>
<td>0.16</td>
<td>0.48</td>
<td>0.09</td>
<td>0.10</td>
<td>0.19</td>
<td>0.18</td>
</tr>
<tr>
<td>/random/maxcsp/completetight/</td>
<td>50</td>
<td>0.02</td>
<td>0.03</td>
<td>6.35</td>
<td>12.68</td>
<td>0.47</td>
<td>0.21</td>
<td>0.25</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>/random/maxcsp/denseloose/</td>
<td>50</td>
<td>0.02</td>
<td>0.02</td>
<td>166.78</td>
<td>0.06</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>/random/maxcsp/densetight/</td>
<td>50</td>
<td>0.02</td>
<td>0.02</td>
<td>4.20</td>
<td>17.38</td>
<td>0.10</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>/random/maxcsp/sparsetight/</td>
<td>90</td>
<td>0.03</td>
<td>0.03</td>
<td>611.38</td>
<td>0.05</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>/random/maxcsp/sparse tight/</td>
<td>50</td>
<td>0.02</td>
<td>0.02</td>
<td>11.00</td>
<td>9.74</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>/random/maxcut/random_maxcut/</td>
<td>400</td>
<td>0.01</td>
<td>0.01</td>
<td>0.73</td>
<td>0.15</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>/random/mincut/</td>
<td>500</td>
<td>1.09</td>
<td>2.43</td>
<td>14.40</td>
<td>86.22</td>
<td>1.12</td>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>/random/randomksat/</td>
<td>493</td>
<td>0.02</td>
<td>0.02</td>
<td>3.42</td>
<td>0.17</td>
<td>0.13</td>
<td>0.07</td>
<td>0.10</td>
<td>0.16</td>
<td>0.31</td>
</tr>
<tr>
<td>/random/wqueens/</td>
<td>6</td>
<td>1.33</td>
<td>1.49</td>
<td>992.85</td>
<td>502.42</td>
<td>644.87</td>
<td>1800.15</td>
<td>1800.20</td>
<td>1800.18</td>
<td>1800.60</td>
</tr>
<tr>
<td>/real/cellar/</td>
<td>23</td>
<td>0.27</td>
<td>0.28</td>
<td>1798.51</td>
<td>2972.69</td>
<td>66.56</td>
<td>300.76</td>
<td>219.91</td>
<td>495.26</td>
<td>1066.87</td>
</tr>
<tr>
<td>/real/maxclique/protein_maxclique/</td>
<td>1</td>
<td>0.26</td>
<td>0.44</td>
<td>25.24</td>
<td>6.77</td>
<td>1196.62</td>
<td>114.62</td>
<td>114.99</td>
<td>215.30</td>
<td>220.81</td>
</tr>
<tr>
<td>/real/spot5/</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.62</td>
<td>0.08</td>
<td>0.11</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>/real/tagsnp/tagsnp_r0.5/</td>
<td>23</td>
<td>4.83</td>
<td>378.77</td>
<td>3338.53</td>
<td>2897.83</td>
<td>239.38</td>
<td>3155.96</td>
<td>3148.66</td>
<td>3172.58</td>
<td>3295.19</td>
</tr>
<tr>
<td>/real/tagsnp/tagsnp_r0.8/</td>
<td>80</td>
<td>1.52</td>
<td>22.82</td>
<td>1329.73</td>
<td>858.83</td>
<td>90.05</td>
<td>195.12</td>
<td>206.76</td>
<td>359.55</td>
<td>409.88</td>
</tr>
</tbody>
</table>

Average over all groups: 5371 | 0.55 | 13.17 | 495.38 | 417.59 | 143.17 | 471.21 | 471.49 | 491.88 | 538.35
Average over groups with ≥ 5 instances: 5369 | 0.58 | 14.04 | 527.54 | 445.20 | 112.82 | 498.80 | 499.08 | 517.49 | 566.88