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Block-Coordinate Descent (BCD)

Iterative method, optimizes a multivariate function by solving
block-variable subproblems while keeping the other variables constant

Fixed points may not be global optima (even for convex problems)

Convex message-passing algorithms

BCD applied to dual LP relaxation of Weighted CSP (a.k.a. MAP
inference in graphical models/discrete energy minimization)
Fixed points characterized by local consistency conditions
(arc consistency/node-edge agreement/...)
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Primal-Dual Approach With Constraint Propagation2

Upper-bounding LPs

Iteratively improves a dual solution by detecting infeasibility of
complementary slackness conditions by constraint propagation

Generalization of Virtual Arc Consistency algorithm1

Fixed points also characterized by a local consistency condition

1Cooper et al.: Soft arc consistency revisited
2Dlask and Werner: Bounding Linear Programs by Constraint Propagation:

Application to Max-SAT
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Overview of Results

Block-coordinate descent

Primal-dual approach

Constraint propagation rule performed by BCD in any LP.

BCD optimal ⇐⇒ propagation is refutation-complete.

Characterization of LPs optimally solvable by BCD by tools of
constraint programming.

Characterization of types of local minima in BCD using local
consistency conditions
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Identical fixed points



Optimization Problem

Primal-dual pair of linear programs:

max cT x min bT y (1a)

Ax = b y ∈ Rm (1b)

x ≥ 0 AT y ≥ c (1c)

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

Suppose:

dual-feasible solution y is provided

collection of subsets B ⊆ 2[m] is given ([m] = {1, ...,m} for brevity)
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Block-Coordinate Descent and Relative Interior Rule3

Recall the dual LP: min{bT y | AT y ≥ c , y ∈ Rm}

Block-coordinate descent (input: feasible solution y):

1 Choose B ∈ B (e.g., cyclic choice)

2 Update y such that yB ∈ argmin
y ′
B∈RB

{bTB y ′B | AT (y ′B , y−B) ≥ c)} (2)

3 Unless termination condition is satisfied, go to 1.

Relative interior rule: yB ∈ ri argmin
y ′
B∈RB

{bTB y ′B | AT (y ′B , y−B) ≥ c)} (3)

Definition: A point y feasible to the dual in (1) is

a local minimum (LM) w.r.t. B if (2) holds ∀B ∈ B,

an interior local minimum (ILM) w.r.t. B if (3) holds ∀B ∈ B,

a pre-interior local minimum (pre-ILM) w.r.t. B if ... (see 3)
3Werner et al.: Relative interior rule in block-coordinate descent
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Primal-Dual Approach with Constraint Propagation2

max cT x min bT y

Ax = b y ∈ Rm

x ≥ 0 AT y ≥ c

Define J(y) = {j ∈ [n] = {1, ..., n} | AT
j y = cj}

(Aj is j-th column of A)

Complementary slackness: dual-feasible y is optimal if and only if

Ax = b (5a)

xj ≥ 0 ∀j ∈ J(y) (5b)

xj = 0 ∀j ∈ [n]− J(y) (5c)
is feasible.
By Farkas’ lemma, (5) is infeasible if and only if ∃ȳ ∈ Rm:

bT ȳ < 0 (6a)

AT
j ȳ ≥ 0 ∀j ∈ J(y) (6b)

2Dlask and Werner: Bounding Linear Programs by Constraint Propagation:
Application to Max-SAT
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Primal-Dual Approach with Constraint Propagation2

2Dlask and Werner: Bounding Linear Programs by Constraint Propagation:
Application to Max-SAT
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Considered Constraint Propagation Rule

Rule: Choose a subset of (in)equalities, infer which hold with equality.

Apply to the previously shown system:

Ax = b (7a)

xj ≥ 0 ∀j ∈ J (7b)

xj = 0 ∀j ∈ [n]− J (7c)

1 Initialize J := J(y).

2 Choose a subset B ∈ B, find all j ∈ J such that

Aix = bi ∀i ∈ B ⊆ [m] (8a)

xj ≥ 0 ∀j ∈ J (8b)

xj = 0 ∀j ∈ [n]− J (8c)
implies xj = 0.
(Ai is the i-th row of A)

3 Remove such indices from J.

4 Go to 2 until J does not change or (8) is infeasible for some B ∈ B.
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Constraint Propagation

Aix = bi ∀i ∈ B (8a)

xj ≥ 0 ∀j ∈ J (8b)

xj = 0 ∀j ∈ [n]− J (8c)

Definition (propagator PB : 2[n] → 2[n] ∪ {⊥}): Let B ⊆ [m], J ⊆ [n].

PB(J) =

{
⊥ if (8) is infeasible

J − {j ∈ J | (8) implies xj = 0} otherwise

Definition: For B ⊆ [m], a set J ⊆ [n] is B-consistent if (8) is feasible
and for every j ∈ J system (8) does not imply xj = 0.

Proposition: If J, J ′ are B-consistent, J ∪ J ′ is B-consistent.
→ join-semilattice structure
→ set {J ⊆ [n] | J is B-consistent} ∪ {⊥} is a complete lattice
→ PB is the (dual) closure operator associated with the complete lattice
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Constraint Propagation

Propagation algorithm is defined by B ⊆ 2[m] and is given J ⊆ [n]:

1 Find B ∈ B with PB(J) 6= J, update J := PB(J).

2 Repeat 1 until no such B ∈ B exists or J = ⊥
3 Return J

Definition: For B ⊆ 2[m], J is B-consistent if it is B-consistent ∀B ∈ B.

Properties:

Result of the algorithm does not depend on choices of B ∈ B
→ denote the result as PB(J)

PB is connected to the complete lattice {J | J is B-consistent} ∪ {⊥}
→ PB is the maximal B-consistent subset of J (if J has such a subset)

If PB(J) = ⊥:
→ original system is infeasible (but not vice versa)
→ it is possible to construct certificate of infeasibility ȳ
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Relation Between BCD and Constraint Propagation

Theorem: Let y be a feasible point for dual (1), then:

y is an LM of dual (1) w.r.t. B if and only if PB(J(y)) 6= ⊥ ∀B ∈ B
y is an ILM of dual (1) w.r.t. B if and only if J(y) is B-consistent,
i.e., PB(J(y)) = J(y)

y is a pre-ILM of dual (1) w.r.t. B if and only if PB(J(y)) 6= ⊥.

Corollary: The following are equivalent:

For all dual-feasible y , if complementary slackness (5) is infeasible,
then PB(J(y)) = ⊥ (refutation-completeness).

Any (pre-)ILM y of the dual (1) w.r.t. B is a global minimum.

These results can be generalized to any linear program in any form.
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BCD and Constraint Propagation in Existing Algorithms

For basic LP relaxation of Weighted CSP:

VAC1 / AugDAG4,5 algorithm correspond to the primal-dual approach
with the specified propagation rule

Max-sum diffusion6 satisfies3 relative interior rule → fixed points are
ILMs (i.e., points y where J(y) is B-consistent)

Fixed points of MPLP7 and MPLP++8 are3 pre-ILMs (PB(J(y)) 6= ⊥
means node-edge agreement, i.e., non-empty arc consistency closure)

1Cooper et al.: Soft arc consistency revisited
4Koval and Schlesinger: Two-dimensional Programming in Image Analysis Problems
5Werner: A Linear Programming Approach to Max-sum Problem: A Review
6Kovalevsky and Koval: A diffusion algorithm for decreasing energy of max-sum

labeling problem
3Werner et al.: Relative interior rule in block-coordinate descent
7Globerson and Jaakkola: Fixing max-product: Convergent message passing

algorithms for MAP LP-relaxations
8Tourani et al.: MPLP++: Fast, parallel dual block-coordinate ascent for dense

graphical models
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BCD and Constraint Propagation in Existing Algorithms

LP relaxation of SAT (Boolean satisfiability problem):

PB performs unit propagation9

Fixed points of BCD (with relative interior rule) on the dual
(implicitly) define variables set to true/false via J(y)

9Dlask: Unit Propagation by Means of Coordinate-Wise Minimization
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