On Relation Between Constraint Propagation and Block-Coordinate Descent in Linear Programs

Tomáš Dlask, Tomáš Werner

Czech Technical University in Prague, Faculty of Electrical Engineering {dlaskto2,werner}@fel.cvut.cz

24 January 2022, Heidelberg

- Iterative method, optimizes a multivariate function by solving block-variable subproblems while keeping the other variables constant
- Fixed points may not be global optima (even for convex problems)
- Convex message-passing algorithms
 - BCD applied to dual LP relaxation of Weighted CSP (a.k.a. MAP inference in graphical models/discrete energy minimization)
 - Fixed points characterized by local consistency conditions (arc consistency/node-edge agreement/...)

- Upper-bounding LPs
- Iteratively improves a dual solution by detecting infeasibility of complementary slackness conditions by constraint propagation
- Generalization of Virtual Arc Consistency algorithm¹
- Fixed points also characterized by a local consistency condition

T. Dlask, T. Werner (FEE CTU in Prague) Constraint Propagation and Block-Coordinate Descent in LPs 3 / 14

¹Cooper et al.: Soft arc consistency revisited

²Dlask and Werner: Bounding Linear Programs by Constraint Propagation: Application to Max-SAT

- Block-coordinate descent
 Primal-dual approach
 Identical fixed points

- Constraint propagation rule performed by BCD in any LP.
- BCD optimal \iff propagation is refutation-complete.
- Characterization of LPs optimally solvable by BCD by tools of constraint programming.
- Characterization of types of local minima in BCD using local consistency conditions

Primal-dual pair of linear programs:

r

max
$$c^T x$$
min $b^T y$ (1a) $Ax = b$ $y \in \mathbb{R}^m$ (1b) $x \ge 0$ $A^T y \ge c$ (1c)

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.

Suppose:

- dual-feasible solution y is provided
- collection of subsets $\mathcal{B} \subseteq 2^{[m]}$ is given $([m] = \{1, ..., m\}$ for brevity)

Block-Coordinate Descent and Relative Interior Rule³

Recall the dual LP: min{ $b^T y \mid A^T y \ge c, y \in \mathbb{R}^m$ }

Block-coordinate descent (input: feasible solution y):

- Choose B ∈ B (e.g., cyclic choice)
 Update y such that y_B ∈ argmin_{y'_B∈ℝ^B} {b^T_By'_B | A^T(y'_B, y_{-B}) ≥ c)} (2)
- **O** Unless termination condition is satisfied, go to 1.

Relative interior rule: $y_B \in \operatorname{ri} \operatorname{argmin}_{y'_B \in \mathbb{R}^B} \{ b_B^T y'_B \mid A^T(y'_B, y_{-B}) \ge c) \}$ (3)

Definition: A point y feasible to the dual in (1) is

- a local minimum (LM) w.r.t. \mathcal{B} if (2) holds $\forall B \in \mathcal{B}$,
- an interior local minimum (ILM) w.r.t. \mathcal{B} if (3) holds $\forall B \in \mathcal{B}$,

• a pre-interior local minimum (pre-ILM) w.r.t. ${\cal B}$ if ... (see ³)

³Werner et al.: Relative interior rule in block-coordinate descent

T. Dlask, T. Werner (FEE CTU in Prague)

Primal-Dual Approach with Constraint Propagation²

$\max c^T x$	min $b^T y$
Ax = b	$y \in \mathbb{R}^m$
$x \ge 0$	$A^T y \ge c$

• Define $J(y) = \{j \in [n] = \{1, ..., n\} \mid A_j^T y = c_j\}$ (A_j is *j*-th column of A)

ľ

.

• Complementary slackness: dual-feasible y is optimal if and only if

$$A_X = b$$
 (5a)

$$x_j \ge 0$$
 $\forall j \in J(y)$ (5b)

$$x_j = 0$$
 $\forall j \in [n] - J(y)$ (5c)

is feasible.

• By Farkas' lemma, (5) is infeasible if and only if $\exists \bar{y} \in \mathbb{R}^m$: $h^T \bar{v} < 0$

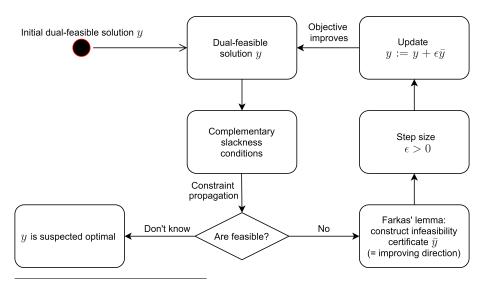
$$\bar{y} < 0$$
 (6a)

$$A_j^T ar{y} \ge 0 \qquad \qquad \forall j \in J(y)$$
 (6b)

²Dlask and Werner: Bounding Linear Programs by Constraint Propagation: Application to Max-SAT

T. Dlask, T. Werner (FEE CTU in Prague) Constraint Propagation and Block-Coordinate Descent in LPs 7 / 14

Primal-Dual Approach with Constraint Propagation²



²Dlask and Werner: Bounding Linear Programs by Constraint Propagation: Application to Max-SAT

T. Dlask, T. Werner (FEE CTU in Prague) Constraint Propagation and Block-Coordinate Descent in LPs 8 / 14

Considered Constraint Propagation Rule

Rule: Choose a subset of (in)equalities, infer which hold with equality.

Apply to the previously shown system:

$$Ax = b \tag{7a}$$

$$x_j \ge 0$$
 $\forall j \in J$ (7b)

$$x_j = 0$$
 $\forall j \in [n] - J$ (7c)

- 1 Initialize J := J(y).
- **2** Choose a subset $B \in \mathcal{B}$, find all $j \in J$ such that

$$A^i x = b_i$$
 $\forall i \in B \subseteq [m]$ (8a)
 $x_j \ge 0$ $\forall j \in J$ (8b)

$$x_j = 0 \qquad \forall j \in [n] - J \qquad (8c)$$

implies $x_j = 0$. (A^i is the *i*-th row of A)

Solution Remove such indices from J.

• Go to 2 until J does not change or (8) is infeasible for some $B \in \mathcal{B}$.

Constraint Propagation

$A^i x = b_i$ $x_j \ge 0$	$\forall i \in B$	(8a)
	$\forall j \in J$	(8b)
$x_j = 0$	$\forall j \in [n] - J$	(8c)

Definition (propagator $P_B: 2^{[n]} \to 2^{[n]} \cup \{\bot\}$): Let $B \subseteq [m], J \subseteq [n]$.

$$\mathcal{P}_B(J) = egin{cases} ot & ext{ if (8) is infeasible} \ J - \{j \in J \mid (8) ext{ implies } x_j = 0\} & ext{ otherwise} \end{cases}$$

Definition: For $B \subseteq [m]$, a set $J \subseteq [n]$ is *B*-consistent if (8) is feasible and for every $j \in J$ system (8) does not imply $x_j = 0$.

Proposition: If J, J' are *B*-consistent, $J \cup J'$ is *B*-consistent.

- \rightarrow join-semilattice structure
- \rightarrow set $\{J \subseteq [n] \mid J \text{ is } B\text{-consistent}\} \cup \{\bot\}$ is a complete lattice
- \rightarrow P_B is the (dual) closure operator associated with the complete lattice

T. Dlask, T. Werner (FEE CTU in Prague)

Constraint Propagation and Block-Coordinate Descent in LPs 10 / 14

Constraint Propagation

Propagation algorithm is defined by $\mathcal{B} \subseteq 2^{[m]}$ and is given $J \subseteq [n]$:

- Find $B \in \mathcal{B}$ with $P_B(J) \neq J$, update $J := P_B(J)$.
- **2** Repeat 1 until no such $B \in \mathcal{B}$ exists or $J = \bot$

8 Return J

Definition: For $\mathcal{B} \subseteq 2^{[m]}$, *J* is \mathcal{B} -consistent if it is *B*-consistent $\forall B \in \mathcal{B}$.

Properties:

- Result of the algorithm does not depend on choices of $B \in \mathcal{B}$ \rightarrow denote the result as $P_{\mathcal{B}}(J)$
- *P*_B is connected to the complete lattice {*J* | *J* is B-consistent} ∪ {⊥}
 → *P*_B is the maximal B-consistent subset of *J* (if *J* has such a subset)
- If $P_{\mathcal{B}}(J) = \bot$:
 - \rightarrow original system is infeasible (but *not* vice versa)
 - \rightarrow it is possible to construct certificate of infeasibility \bar{y}

Relation Between BCD and Constraint Propagation

Theorem: Let y be a feasible point for dual (1), then:

- y is an LM of dual (1) w.r.t. \mathcal{B} if and only if $P_B(J(y)) \neq \bot \ \forall B \in \mathcal{B}$
- y is an ILM of dual (1) w.r.t. \mathcal{B} if and only if J(y) is \mathcal{B} -consistent, i.e., $P_{\mathcal{B}}(J(y)) = J(y)$
- y is a pre-ILM of dual (1) w.r.t. \mathcal{B} if and only if $P_{\mathcal{B}}(J(y)) \neq \bot$.

Corollary: The following are equivalent:

- For all dual-feasible y, if complementary slackness (5) is infeasible, then $P_{\mathcal{B}}(J(y)) = \bot$ (refutation-completeness).
- Any (pre-)ILM y of the dual (1) w.r.t. $\mathcal B$ is a global minimum.

These results can be generalized to any linear program in any form.

12 / 14

BCD and Constraint Propagation in Existing Algorithms

For basic LP relaxation of Weighted CSP:

- $\bullet~{\rm VAC^1}$ / ${\rm AugDAG^{4,5}}$ algorithm correspond to the primal-dual approach with the specified propagation rule
- Max-sum diffusion⁶ satisfies³ relative interior rule \rightarrow fixed points are ILMs (i.e., points y where J(y) is \mathcal{B} -consistent)
- Fixed points of MPLP⁷ and MPLP++⁸ are³ pre-ILMs (P_B(J(y)) ≠ ⊥ means node-edge agreement, i.e., non-empty arc consistency closure)

⁴Koval and Schlesinger: Two-dimensional Programming in Image Analysis Problems ⁵Werner: A Linear Programming Approach to Max-sum Problem: A Review

⁶Kovalevsky and Koval: A diffusion algorithm for decreasing energy of max-sum labeling problem

³Werner et al.: Relative interior rule in block-coordinate descent

⁷Globerson and Jaakkola: Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations

⁸Tourani et al.: MPLP++: Fast, parallel dual block-coordinate ascent for dense graphical models

T. Dlask, T. Werner (FEE CTU in Prague)

¹Cooper et al.: Soft arc consistency revisited

LP relaxation of SAT (Boolean satisfiability problem):

- $P_{\mathcal{B}}$ performs unit propagation⁹
- Fixed points of BCD (with relative interior rule) on the dual (implicitly) define variables set to true/false via J(y)

⁹Dlask: Unit Propagation by Means of Coordinate-Wise Minimization