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Abstract

In this paper we provide a new fast and stable algebraic so-
lution to the problem of L2 triangulation from three views.
We use Lagrange multipliers to formulate the search for
the minima of the L2 objective function subject to equal-
ity constraints. Interestingly, we show that by relaxing the
triangulation such that we do not require a single point in
3D, we get, after a linear correction, a solver that is faster,
more stable and practically as accurate as the state-of-the-
art L2-optimal algebraic solvers [24, 7, 8, 9]. In our for-
mulation, we obtain a system of eight polynomial equations
in eight unknowns, which we solve using the Gröbner ba-
sis method. We get less (31) solutions than was the number
(47-66) of solutions obtained in [24, 7, 8, 9] and our solver
is more robust than [8, 9] w.r.t. critical configurations . We
evaluate the precision and speed of our solver on both syn-
thetic and real datasets. 1

1. Introduction
The triangulation [13] is one of the fundamental problems in
computer vision and it is an important part of all structure-
from-motion systems [23, 21]. The problem can be formu-
lated as follows:

Problem 1 Given a set of n, n ≥ 2, camera projection
matrices {Pi}ni=1, Pi ∈ R3×4 and a set of image points
{ui}ni=1, ui = [ui, vi, 1]

⊤, find a point X in space, X =

[X,Y, Z, 1]
⊤, such that

αiui = PiX, i = 1, . . . , n, αi ∈ R, (1)

i.e., such that the points ui are the projections of the point
X using the projection matrices Pi.

This problem requires to find the intersection of n known
rays in space, and it is known as the triangulation in n views.

1This work has been supported by EC project FP7-SME-2011-285839
De-Montes and TA02011275 project ATOM.

Figure 1. Illustrations of the 3-view triangulation problem.

For noise free image points {ui}ni=1, the triangulation prob-
lem is trivial. The 3D point X can be determined using the
linear least square algorithm [14].

In the presence of noise, n rays from the camera centers
through the image points ui do not intersect in 3D, i.e. there
doesn’t exist a 3D point X that exactly satisfies (1) for all
ui . Therefore, for noisy data, the triangulation problem
becomes the problem of finding “the best intersection point
X”, see Figure 1.

Assuming independent Gaussian noise on the image
measurements, the optimal, maximum likelihood solution
to the triangulation problem is the solution that minimizes
the L2-norm of the reprojection error [13]. This leads to the
following constrained optimization problem:

Problem 2 Given a set of n, n ≥ 2, camera projection
matrices {Pi}ni=1, Pi ∈ R3×4 and a set of image points
{ui}ni=1, ui = [ui, vi, 1]

⊤,

minimize f(û) =
n∑

i=1

d(ui, ûi)
2, (2)

subject to αiûi = PiX, i = 1, . . . , n, (3)

where û = (û1, . . . , ûn), ûi = [ûi, v̂i, 1]
⊤
, i = 1, . . . , n

are corrected image points, d(· , · ) is the Euclidean metric,
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αi ∈ R are some constants, and X is the searched 3D point
with homogeneous coordinates X = [X,Y, Z, 1]

⊤.

2. Previous solutions
Many different methods for solving the triangulation prob-
lem have been proposed. In general, they differ in the
function they minimize (L2-norm [13, 7, 9, 8, 20, 19, 4],
L∞-norm [12, 22]), in the number of views they can han-
dle (2 [13, 16, 19], 3 [24, 7, 9, 8], n ≥ 2 [3, 20, 12, 4]),
and in the method they use for the optimization (algebraic
method [13, 7, 9, 8, 24], quadratic iterative method [19],
branch-and-bound method [3, 20], QCQP method [4]).

One of the simplest solutions to the triangulation prob-
lem is the linear least square method [14]. This method is
fast and can be applied to n views, however, it is not optimal
and sometimes can yield very poor results.

Usually, the solution from the linear least square
method [14] or from some method that minimizes L∞-norm
of the reprojection error [12, 22] is used as an initializa-
tion of a non-linear refinement method such as Levenberg-
Marquardt [25]. Such a method is known as Bundle Ad-
justment and can be used not only to optimize the position
of the 3D point but also to optimize the camera parame-
ters. The main drawback of the Bundle Adjustment method
is that it requires a good initial estimate of the 3D point
and even for reasonable initialization it may fall into a local
minima which can be very far from the global one.

Hartley and Sturm showed [13] that the L2-optimal solu-
tion to the triangulation problem for two views, i.e. to Prob-
lem 2 for n = 2, can be found by solving a polynomial of
degree six. This solution is quite simple for two views, but
it can’t be easily extended to more views.

Several fast iterative methods [16, 19] to the L2-optimal
two-view triangulation problem have been proposed re-
cently. While the solution [16] doesn’t satisfy the epipo-
lar constraint [14] and may fall in a local minima, the solu-
tion [19] usually converges to the global optimum satisfying
the epipolar constraint in two steps.

Recently, several solutions to the L2-optimal n-view tri-
angulation problem have been proposed [3, 20, 4]. The so-
lution [20] uses the branch-and-bound technique and guar-
antees the global optimum, however it may sometimes take
long time to get the optimum. On the other hand, the solu-
tion [4] uses semidefinite programming relaxations to for-
mulate the L2-optimal n-view triangulation problem as a
quadratically constrained quadratic program and solve it in
a polynomial time. However, this solution doesn’t guaran-
tee the globally optimal solution.

The most relevant alternatives to our solution are the
algebraic solutions [24, 7, 8, 9] which formulate the L2-
optimal triangulation problem in three views as a system of
polynomial equations. By computing all roots of this sys-
tem they find stationary points of the L2 objective function

from which they extract the global minimum.
All solutions [24, 7, 8, 9] use the same formulation of

the L2-optimal three-view triangulation problem and the
Gröbner basis method for solving the final system of poly-
nomial equations. They differ in the method that they use
for improving the numerical stability of the final Gröbner
basis solver.

After placing the three image points ui at the origin in
their respective image coordinate systems, the L2-objective
function (2) can be replaced by the following cost function

φ(X) =
(P11X)2 + (P21X)2

(P31X)2
+

(P12X)2 + (P22X)2

(P32X)2

+
(P13X)2 + (P23X)2

(P33X)2
, (4)

which has to be minimized over X and in which Pij denotes
the ith row of the jth projection matrix Pj .

Finding all stationary points of φ(X) (4), i.e. all so-
lutions of ∇φ(X) = 0, leads to all local extrema from
which the global optimum can be extracted. The function
φ(X) (4) is a rational function in three unknowns. There-
fore, ∇φ(X) = 0 leads to three rational equations in three
unknowns, coordinates of X. Multiplying the partial deriva-
tives by the denominators then produces three sixth degree
polynomial equations in three unknown coordinates of X.

The problem of this system of three polynomial equa-
tions in three unknowns is that the multiplication by the de-
nominators introduces new stationary points, points where
X,Y or Z are equal to zero. These “parasitic” solutions
need to be eliminated by computing the saturation of the
ideal [10]. In this case the saturation leads to quite a compli-
cated system of nine fifth and sixth degree equations. Solu-
tion to this system using the standard Gröbner basis method
is numerically unstable and therefore in [24] a 128 bit pre-
cision arithmetic was used to get a stable solver, which was,
however, very slow (about 30s per point) and therefore im-
practical. The final solver resulted in 47 solutions.

In [7] authors solved the problem with the numerical in-
stability of [24] by computing the zeros of a relaxed ideal,
i.e. a smaller ideal with a larger solution set. This relaxation
leads to quite stable solver which, however, requires to find
eigenvalues of a 154× 154 matrix and results in 154 candi-
date solutions. Therefore this solver is again impractical.

In [8] and [9] authors used special techniques for im-
proving numerical stability of Gröbner basis solvers based
on basis selection of relaxed ideals and on SVD and QR
decomposition. Using these techniques they obtained more
practical and numerically stable solutions to the L2-optimal
3-view triangulation problem than the previous algebraic
solutions [24, 7]. These solvers return from 50 to 66 solu-
tions and require to perform QR [9] or SVD [8] decomposi-
tion of a 225× 209 matrix and eigenvalue computations of



a matrix with as many rows as solutions of the system. The
QR-based solver [9] runs about 6ms and the SVD-based
solver [8] about 11ms. The main drawback of these solvers
is that they were crated mostly manually after careful study-
ing of the structure of the input polynomials and they re-
quire special manipulations with these polynomials.

In this paper we propose a new algebraic solution to
the problem of L2 triangulation from three views. In
contrast to the previous algebraic solutions [24, 7, 8, 9],
which use the cost function (4), we use Lagrange mul-
tipliers to formulate the search for the global minima of
the L2-objective function (2) subject to a relaxed equality
epipolar constraints [14]. We use only two epipolar con-
straints to obtain a system of eight polynomial equations
in eight unknowns. This system leads to 31 solutions and
can be solved using the standard Gröbner basis method [10]
and the automatic generator of Gröbner basis solvers [17].
The resulting solver is faster, numerically more stable and
has less critical configurations than the state-of-the-art L2-
optimal algebraic solvers [24, 7, 8, 9]. Moreover, the new
solver doesn’t require special manipulations with polyno-
mials such as ideal saturation, basis selection or relaxations
used in [7, 8, 9].

3. Problem formulation
Next we describe our formulation of the L2 three-view tri-
angulation problem.

Problem 3 Given two essential matrices E12 and E23, be-
tween the first and the second view, and between the second
and the third view, and given three corresponding image
points ui = [ui, vi, 1]

⊤
, i = 1, . . . , 3

minimize f(û) =
3∑

i=1

d(ui, ûi)
2, (5)

subject to û⊤
1 E12û2 = 0, (6)

û⊤
2 E23û3 = 0, (7)

where û = (û1, û2, û3), ûi = [ûi, v̂i, 1]
⊤
, i = 1, . . . , 3

are corrected image points and d(· , · ) is the Euclidean met-
ric.

Constraints (6) and (7) are relaxations of (3) for n = 3.
We only enforce ray û1 to intersect ray û2 and ray û2 to
intersect ray û3. Therefore, rays û1 and û3 do not have to
intersect in general. It is interesting to see that this relax-
ation still gives faster, more stable and practically as accu-
rate solution as the L2-optimal methods [24, 7, 8, 9], which
requires all three rays to intersect.

When including the third constraint, i.e. û⊤
1 E13û3 = 0,

the solver generator [17] produced a more complicated
solver with 94 solutions, which required to compute eigen-
values of 94 × 94 matrix and is therefore much slower and
impractical.

Problem 3 is the problem of finding the minima of a
function subject to equality constraints. Such a problem can
be solved by introducing Lagrange multipliers λ1 and λ2

and forming the Lagrange function L(û1, û2, û3, λ1, λ2):

L =
3∑

i=1

d(ui, ûi)
2 + λ1û

⊤
1 E12û2 + λ2û

⊤
2 E23û3. (8)

It can be shown that if f(û⋆
1, û

⋆
2, û

⋆
3) is a minimum for the

original constrained Problem 3, then there exist λ⋆
1 and λ⋆

2

such that (û⋆
1, û

⋆
2, û

⋆
3, λ

⋆
1, λ

⋆
2) is a stationary point for the

Lagrange function L (8), i.e. a point where all partial deriva-
tives of L are zero.

In this case the Lagrange function
L(û1, û2, û3, λ1, λ2) (8) is the function of eight un-
knowns: six coordinates of image points ûi, i = 1, . . . , 3
and two Lagrange multipliers λ1, λ2. Therefore, to find all
stationary points of L (8) we need to solve the following
system of eight quadratic polynomial equations in eight
unknowns

û⊤
1 E12û2 = 0, (9)

û⊤
2 E23û3 = 0, (10)

2 S(û1 − u1) + λ1S E12û2 = 0, (11)
2 S(û2 − u2) + λ1S E

⊤
12û1 + λ2S E23û3 = 0, (12)

2 S(û3 − u3) + λ2S E
⊤
23û2 = 0, (13)

where S is the 2 × 3 matrix which returns first two coordi-
nates of a three dimensional vector, i.e. the matrix

S =

[
1 0 0
0 1 0

]
. (14)

Note that the equations (11)-(13) are vector equations ob-
tained from partial derivatives of L (8) w.r.t. the coordinates
of image points ûi.

After solving eight equations (9)-(13), we obtain all can-
didates (û1, û2, û3) for the global minima of the function
f(û1, û2, û3) (5) subject to (6) and (7). In this case, equa-
tions (9)-(13) have 31 solutions. Finding the minimum
of (5) from 31 values is then a trivial problem.

Once the image points û⋆
1, û

⋆
2, û

⋆
3 are computed, we use

these points in the linear least square method [13] to obtain
the 3D point X⋆.

Next, we describe a solver which efficiently solves equa-
tions (9)-(13). This solver is based on the Gröbner basis
method for solving systems of polynomial equations.

4. Efficient Gröbner basis solver
Our goal is to find all solutions of the system (9)-(13) of
eight quadratic polynomial equations in eight unknowns.
There exist several general algebraic methods [10] which
can be used for this purpose and that are implemented, e.g.,



in Maple. However, to solve our problem we do not need
to use general algorithms which can solve any system of
polynomial equations, and hence are usually inefficient.

In our case, we always have a system of eight quadratic
equations in eight unknowns of the form (9)-(13). For each
instance of the three-view triangulation problem these eight
equations differ only in coefficients which arise from input
image points u1,u2 and u3, and from essential matrices E12
and E23.

For such a problem we can design a specific solver that
solves only systems of polynomial equations of “our par-
ticular form”, and that is faster than a general solver and
therefore suitable for our application. Recently, the Gröbner
basis method [10] was successfully used to create such
efficient specific solvers to several computer vision prob-
lems [5, 6, 8, 9, 17, 18, 24]. There exists the automatic gen-
erator of such efficient specific Gröbner basis solvers [17].
More about the general Gröbner basis method can be found
in [10] and about applications of this method for creating ef-
ficient specific solvers especially for computer vision prob-
lems can be found in [5, 6, 8, 9, 17, 18].

We used the automatic generator [17] to create an effi-
cient specific Gröbner basis solver for systems of polyno-
mial equations of the form (9)-(13).

From the generator we obtained an elimination template
which encodes how to multiply the eight input polynomi-
als (9)-(13) by the monomials and then how to eliminate the
polynomials using the Gauss-Jordan (G-J) elimination pro-
cess to obtain all polynomials necessary for constructing the
“multiplication matrix”, whose eigenvalues and eigenvec-
tors give us the desired solutions. We used the automatic
generator [17] to create the multiplication matrix Mû2 for
multiplication by the first coordinate of the second corrected
image point û2.

To get the elimination template, the generator first gen-
erated all monomial multiples of the initial eight polyno-
mial equations up to the total degree of six. This resulted in
1320 polynomials in 1287 monomials. Then the generator
removed all unnecessary polynomials and monomials, i.e.,
polynomials and monomials that do not affect the resulting
multiplication matrix. This resulted in a 274×305 matrix Q

representing the polynomials necessary for constructing the
multiplication matrix Mû2 , i.e., the elimination template.

The final online solver of the eight equation (9)-(13) per-
forms only one G-J elimination or QR decomposition of
a single matrix Q, which is constructed from the elimina-
tion template built by the automatic generator in the offline
stage. This matrix contains coefficients which arise from
specific measurements, i.e., image points u1,u2 and u3, and
from the essential matrices E12 and E23. After G-J elimina-
tion of matrix Q, multiplication matrix Mû2 can be created
from its rows. It is known [10] that eigenvalues of Mû2

give
the solutions to û2 The solutions to the remaining seven un-

knowns can be found from the eigenvectors of Mû2 [10].
The computation of eigenvalues and eigenvectors of a

multiplication matrix is a way of obtaining solutions. It
is used in almost all Gröbner basis solvers to computer
vision problems [5, 18] including the 3-view triangula-
tion [7, 9, 8, 24] and that is also implemented in the au-
tomatic generator [17].

Recently, it was shown [6] that it is often better to replace
the time-consuming eigenvalue computation with a compu-
tation of roots of the characteristic polynomial of a multi-
plication matrix. In [6] a method based on Danilevskii al-
gorithm [11] for computing characteristic polynomials and
on Sturm sequences [15] for computing roots of a single-
variable polynomial was used to significantly speed-up sev-
eral important minimal computer vision problems.

We have decided to use this method instead of computing
eigenvalues and eigenvectors of the multiplication matrix
Mû2 . Therefore, in our solver we first compute the charac-
teristic polynomial of Mû2 using Danilevskii [11] algorithm
and then we compute the roots of this polynomial using ef-
ficient Sturm-sequences [15]. Moreover, we can work with
normalized image coordinates and therefore we can calcu-
late the roots of the characteristic polynomial only on a fea-
sible interval. Using Danilevskii algorithm [11] and effi-
cient Sturm-sequences [15] we have obtained around 50%
speedup over eigenvalue computations.

5. Experiments
In this section we evaluate the precision and speed of the
proposed solver on both synthetic and real datasets and
compare it with the state-of-the-art algebraic three-view
triangulation solvers based on QR decomposition [9] and
based on SVD [8]. For real experiments we have used
only the QR-based solver [9] since it is the fastest algebraic
solver to the L2-optimal three-view triangulation problem
and with slightly better stability and accuracy than the
SVD-based solver [8]. In some experiments we have com-
pared our solver also with the standard linear least square
method [14].

5.1. Synthetic data

We have studied the performance of the proposed solver
on synthetically generated ground-truth 3D scenes. These
scenes were generated using 3D points randomly distributed
in cube [−10, 10]

3. Each 3D point was projected by three
cameras with random or specific feasible orientation and
position depending on the testing configuration. Finally,
Gaussian noise with standard deviation σ was added to the
image points assuming a 1000× 1000 pixel image.

In the first experiment we have studied the behavior of
the presented solver on noise free data to check its numer-
ical stability and compared the results with the numerical
stability of the QR-based solver [9] and the SVD-based
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Figure 2. Log10 of the Euclidean distance of the estimated 3D
point X⋆ and the ground-truth 3D point X (left) and log10 of the
reprojection error assuming 1000px × 1000px image (right) for
noise free synthetic scene.

solver [8]. In this experiment 10000 points randomly placed
in a 3D cube [−10, 10]

3 were projected by 10000 ran-
dom triplets of cameras with feasible position and orien-
tation. The projected image points ui were used to find
the 3D point X⋆ using the presented solver, the QR-based
solver [9] and the SVD-based solver [8].

Figure 2 (left) shows the log10 of the error in 3D place-
ment, i.e. log10 of the Euclidean distance of the estimated
3D point X⋆ and the ground-truth 3D point X. Figure 2
(right) shows the log10 of the reprojection error from the
same experiment, i.e. log10 of the Euclidean distance of
the estimated image points û⋆

i and the ground-truth image
points ui assuming 1000px×1000px image. It can be seen
that all tested solvers, the new proposed solver (red), the
QR-based solver [9] (green) and the SVD-based solver [8]
(blue) give very stable results but the stability and the accu-
racy of our new solver are slightly better.

This can be seen also from Table 1, which shows the
number of errors in 3D placement (from 10000 measure-
ments) larger than some level. It is visible that the new
proposed solver gives fewer large errors than the QR-based
solver [9] and the SVD-based solver [8].

3D error > 1 > 10−1 > 10−2 > 10−3 > 10−5

New 4 6 9 18 59
QR 6 7 13 27 141
SVD 25 36 50 93 358

Table 1. The number of errors in 3D placement (from 10000 mea-
surements) larger than a specified 3D error.

Figure 3 shows the histogram of the number of real solu-
tions returned in this first experiment by all examined meth-
ods. Our new solver usually returns from 3 to 7 real candi-
date solutions for the global minima with the mean equal
to 5.43. The mean of the number of real solution from the
QR-based method [9] was 7.14 and from the SVD-based
solver [8] 6.98.

In the next experiment we have studied the behavior of
our new solver for cameras in the “turn-table configura-
tion”, i.e. for cameras with intersecting optical axes. We
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Figure 3. Number of real solutions.
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Figure 4. Log10 of the Euclidean distance of the estimated 3D
point X⋆ and the ground-truth 3D point X (left) and log10 of the
reprojection error assuming 1000px × 1000px image (right) for
noise free synthetic scene and cameras in the “turn-table configu-
ration”.

have again checked the numerical stability of our new solver
for noise free data and compared it with the results of the
QR-based solver [9] and the SVD-based solver [8].

In this experiment 10000 points randomly placed in a 3D
cube [−10, 10]

3 were projected by 10000 triplets of cameras
with intersecting optical axes. The projected image points
ui were used to find the 3D point X⋆ using our new solver,
the QR-based solver [9] and the SVD-based solver [8].

Figure 4 (left) shows the log10 of the error in 3D place-
ment and Figure 4 (right) the log10 of the reprojection error
from this experiment. In this case the QR-based solver [9]
(green) and the SVD-based solver [8] (dashed-blue) failed
in all 10000 measurements and didn’t deliver any result.
This is displayed as a peak on the right hand sides of graphs
in Figure 4. Failures of these two solvers are probably
caused by the fact that in the “turn-table configuration”
the projection matrices contain zeros on places were these
solvers assume non-zero elements. On the other hand, our
new solver (red) returns very stable and accurate results
similar to the results for the general configuration.

Forward and sideways motions are critical configura-
tions for all three considered solvers. However, for motions
which are close to these configurations, i.e. they are not pre-
cisely forward or sideways, all solvers return sufficiently ac-
curate results. This can be seen from the next experiment.

In this experiment 10000 points randomly placed in a 3D
cube [−10, 10]

3 were projected by 10000 triplets of cam-
eras. These cameras were first pointed in the same direction
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Figure 5. Log10 of the Euclidean distance of the estimated 3D
point X⋆ and the ground-truth 3D point X (left) and log10 of the
reprojection error assuming 1000px × 1000px image (right) for
noise free synthetic scene and cameras in close-to sideway mo-
tions, which were “moved” from the pure sideways motion by
right-multiplying projection matrices by rotations with random
axes and the rotation angle 1/100 degrees (top) and 1/500 degrees
(bottom).

(optical axes were intersecting at the infinity) and translated
laterally to simulate the “sideways motion”. Then projec-
tion matrices of these cameras were right-multiplied by dif-
ferent random rotations of a small angle to simulate a close-
to critical configuration. This multiplication by random ro-
tation matrices slightly rotate optical axes of cameras (not to
intersect at the infinity) and simultaneously moves camera
centres (not to lay on a line).

Figure 5 shows the log10 of the error in 3D place-
ment (left) and the log10 of the reprojection error (right) for
close-to sideway motions, which were “moved” from the
pure sideway motion by right-multiplying projection matri-
ces by rotations with random axes and the rotation angle
1/100 degrees (top) and 1/500 degrees (bottom).

It can be seen that even for configurations very close
to the critical pure sideways motion our new solver gives
reasonable results and slightly outperforms the QR-based
solver [9]. The QR-based solver returns a higher number of
larger errors, i.e. it has more failures than our new solver,
Table 2. The median values of the errors in 3D placement
and the reprojection errors for both these solvers and side-
way motions “moved” by random rotations of given angles
are in Tables 3 and 4. In this experiment the SVD-based
solver [8] failed in most from 10000 measurements.

The final synthetic experiment shows the behavior of the
new solver in the presence of noise in image measurements.

In this experiment we created 3D scenes as in the first ex-
periment with camera triplets with random feasible position
and orientation. In this case the Gaussian noise with stan-
dard deviation σ = 1

3px, corresponding to 1px noise, was

3D error > 10 > 100 > 10−1

New 98 264 649
QR 276 481 829

Table 2. The number of errors in 3D placement (from 10000 mea-
surements) larger than a specified 3D error for close-to sideways
motions “moved” from the pure sideway motion by random rota-
tions of 1/100 degrees.

3D error
rotation 1/10 deg 1/100 deg 1/500 deg 1/1000 deg

New 7.23−8 8.53−5 9.81−3 5.83−2

QR 1.48−6 1.69−4 1.06−2 6.51−2

Table 3. The median of the errors in 3D placement (from 10000
measurements) for close-to sideways motions moved from the
pure sideway motion by multiplying by random rotations of dif-
ferent given angles.

Reprojection error
rotation 1/10 deg 1/100 deg 1/500 deg 1/1000 deg

New 1.57−6 1.82−3 2.56−1 1.62

QR 4.09−5 3.54−3 1.74−1 0.98

Table 4. The median of the reprojection errors (from 10000 mea-
surements) for close-to sideway motions moved from the pure
sideway motion by multiplying by random rotations of different
given angles.
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Figure 6. Log10 of the Euclidean distance of the estimated 3D
point X⋆ and the ground-truth 3D point X (left) and log10 of the
reprojection error assuming 1000px × 1000px image (right) for
Gaussian noise 1px.

added to projected image points assuming a 1000 × 1000
pixel image. It can be seen from Figure 6 that all consid-
ered solvers return very similar and good results and our
new solver returns practically as accurate 3D points as the
L2-optimal QR-based and SVD-based solvers, see Figure 6
(left). In this case we have used for comparison also the LS
solver (cyan), which directly takes input measurements ui

and uses least square method [14] to obtain the 3D point.

5.2. Real data

For experiments on real data we selected three popu-
lar datasets: Oxford Dino and Corridor datasets [2] and
Notre Dame dataset [1]. The first one represents a “turn-
table configuration”, the second one a forward motion and



Figure 7. Resulting 3D reconstructions triangulated using our new
algorithm for the Dino dataset (left) and the Corridor dataset
(right).

the last one a general scene.
In every experiment we used camera matrices and tracks

with image measurements to create points in the 3D space.
If camera lens distortion coefficients were available, we first
undistorted the image measurements.

We dropped all tracks smaller than three. For tracks with
length equal to three we used these three cameras to trian-
gulate the 3D point using our new algorithm, the QR L2-
optimal algorithm [9] and the least squares solution [14].
For tracks with length greater than three we considered dif-
ferent strategies:

1. Three cams: We used the first, the middle and the
last point of the track. This is a reasonable choice
for tracked sequences like the Dino or the Corridor
sequence. For the Notre Dame dataset it is equal to
selecting three random points.

2. RANSAC: A triplet of points was randomly selected
and a 3D point was calculated either using the linear
least square solver [14] (further denoted “Ransac ls”)
or our new solver (further in the text “Ransac new”).
We did not consider the QR-based solver [9] due to its
low speed. Then the mean squared reprojection error
w.r.t. to all cameras in the track was calculated. We
repeated this procedure several times and selected the
triplet with the smallest error (denoted triplet). Three
points from the triplet were then used as a source for
other triangulation methods (QR and new).

We also evaluated the least squares solution [14], which
uses all points in the track (LS).

The Dino sequence has 4983 tracks from which 2661
have length greater than two after removing outliers. We re-
moved the tracks which could not be triangulated, i.e. those
triangulated 3D points that did not reproject to at least three
cameras within three pixels reprojection error. It took 6.45
seconds to triangulate these 2661 points using our new algo-
rithm and 35.14 seconds using the QR algorithm [7]. This

Figure 8. Resulting 3D reconstruction triangulated using our new
algorithm for the Notre Dame dataset.

time includes the time needed for extracting essential ma-
trices from given camera matrices, calculation of optimal
image measurements and calculation of the 3D point using
the least squares method. Table 5 summarizes triangulation
results. We can see that the least square solution obtained
using all points from the track (LS) provides a better esti-
mate compared to our new solver and the L2-optimal QR
solver [9] when only the first, the middle and the last point
of the track were considered (Three cams strategy). Our
new solver and also the QR-based solver [9] become bet-
ter when a more reasonable triplet of cameras is selected
(Ransac strategy).

MSE LS triplet QR new
All cams 0.2490 - - -
Three cams - - 0.2638 0.2523
Ransac ls - 0.1716 0.1730 0.1706
Ransac new - 0.1723 0.1723 0.1723

Table 5. Dino sequence reconstruction errors in pixels.

The Oxford corridor sequence contains 737 tracks with
length greater than two after removing outliers. It took 1.57
seconds with our new solver and 9.3 seconds with the QR
algorithm [9] to triangulate these points. The QR algorithm
failed several times due to numerical instability. The mean
squared reprojection errors are presented in Table 6.

MSE LS triplet QR new
All cams 0.1445 - - -
Three cams - - 0.1555 0.1554
Ransac ls - 0.1281 0.1573 0.1316
Ransac new - 0.1279 0.1440 0.1279

Table 6. Corridor sequence reconstruction errors in pixels.

The Notre Dame dataset consists of 715 cameras and
127431 tracks. About 121980 of them are longer than two
and not contaminated by outliers. It took 275.7 seconds to
triangulate these tracks using our new solver. The mean



squared reprojection error of our new solver is 0.337 pixels
and 0.4102 pixels for points triangulated using the linear
least square method [14] using all points in the track.

It is interesting to observe that our sub-optimal solver
produces a more optimal solution with respect to the whole
track, than the L2-optimal QR algorithm [9].

6. Conclusion
We have proposed a new fast and stable algebraic solution to
the problem of L2 triangulation from three views. We have
formulate the search for the minima of the L2-objective
function subject to relaxed equality epipolar constraints as
a system of eight polynomial equations in eight unknowns
using Lagrange multipliers. We have efficiently solved the
system using the Gröbner basis method [10, 17] combined
with the Danilevskii [6, 11] method for computing charac-
teristic polynomials and efficient Sturm-sequences [15] for
finding roots of a single-variable polynomial. Our formu-
lation leads to less (31) solutions than was the number (47-
66) of solutions obtained by the state-of-the-art L2-optimal
solvers [24, 7, 8, 9].

The final solver can be generated using the automatic
generator of Gröbner basis solvers [17] without employ-
ing special techniques for improving numerical stability
used in [7, 8, 9] and its optimized version [6] runs about
1ms. The new relaxed solver is faster, more robust w.r.t.
critical configurations, numerically more stable and prac-
tically as accurate as the state-of-the-art L2-optimal solu-
tions [24, 7, 8, 9], what we have demonstrated in experi-
ments on synthetic and real datasets.
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