
Elastic Image Registration

using Parametric

Deformation Models

Jan Kybic
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Abstract

The main topic of this thesis is elastic image registration for biomedical applications. We
start with an overview and classification of existing registration techniques. We revisit
the landmark interpolation which appears in the landmark-based registration techniques
and add some generalizations.

We develop a general elastic image registration algorithm. It uses a grid of uniform
B-splines to describe the deformation. It also uses B-splines for image interpolation. Mul-
tiresolution in both image and deformation model spaces yields robustness and speed.
First we describe a version of this algorithm targeted at finding unidirectional deforma-
tion in EPI magnetic resonance images. Then we present the enhanced and generalized
version of this algorithm which is significantly faster and capable of treating multidimen-
sional deformations. We apply this algorithm to the registration of SPECT data and to
the motion estimation in ultrasound image sequences.

A semi-automatic version of the registration algorithm is capable of accepting expert
hints in the form of soft landmark constraints. Much fewer landmarks are needed and
the results are far superior compared to pure landmark registration.

In the second part of this thesis, we deal with the problem of generalized sampling and
variational reconstruction. We explain how to reconstruct an object starting from several
measurements using arbitrary linear operators. This comprises the case of traditional as
well as generalized sampling. Among all possible reconstructions, we choose the one
minimizing an a priori given quadratic variational criterion. We give an overview of the
method and present several examples of applications. We also provide the mathematical
details of the theory and discuss the choice of the variational criterion to be used.
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Résumé

Le sujet principal de cette thèse est la mise en correspondance élastique pour des
applications biomédicales. Nous commençons par résumer et classer les méthodes
existantes de mise en correspondance. Nous revisitons les techniques d’interpolation
utilisées pour la mise en correspondance basée sur des repères.

Nous avons développé un algorithme général de mise en correspondance élastique. La
déformation est décrite à l’aide de B-splines posés sur une grille uniforme. Nous utilisons
les B-splines également pour interpoler les images. L’apport de la multirésolution —
pour l’image et pour le modèle de déformation — rend l’algorithme rapide et robuste.

Premièrement, nous présentons une version de l’algorithme destinée à la correction des
déformations unidirectionnelles dans les images fonctionnelles de résonance magnétique.
Deuxièmement, nous décrivons une version améliorée et généralisée de cet algorithme,
capable de traiter des déformations multidimensionnelles. Nous appliquons cet
algorithme aux problèmes de la création d’un atlas des images SPECT et de l’estimation
de mouvement dans les séquences ultrasoniques.

Un extension de l’algorithme permet d’utiliser les repères choisises par un expert
comme des indications pour améliorer la qualité de la mise en correspondence dans les
cas difficiles.

Dans la deuxième partie de la thèse, nous traitons le problème de l’échantillonnage
généralisé et de la reconstructions variationnelle. Nous expliquons comment reconstruire
un objet à partir de plusieurs mesures linéaires. Parmi toutes les reconstructions, nous
choisissons celle qui minimise un critère quadratique variationel. Nous présentons une
vue d’ensemble de cette méthode ainsi que plusieurs exemples. Nous discutons le choix
du critère à employer.
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Chapter 1

Introduction

1.1 Image registration

Suppose we have two images which we shall call reference and test. These images depict
the same or similar object but they are not identical. The task of the image registration
is to find homologous (corresponding) points in both images.

For us, the output of the image registration is a correspondence function g such that
xt = g(xr). The function g takes a coordinate xr of any point in the reference image
and returns a coordinate xt of a corresponding point in the test image.

We will call a registration elastic, if the family of correspondence functions g is suf-
ficiently general, capable of expressing (almost arbitrary) nonlinear relations.1 A regis-
tration which is not elastic might consider for example only linear functions g.

1.1.1 Examples of image registration

As an example consider the two portraits in Figure 1.1, where corresponding points such
as eyes, the chin, or the tip of the nose can be easily identified. A more complicated
example is presented in Figure 1.2. Here some zones from the left image do not have
any corresponding region in the right image. This illustrates some vagueness of the
registration problem which we will have to address. Finally, Figure 1.3 shows an example
from the biomedical domain presenting another difficulty: Note that although the images
represent exactly the same object, the aspect of some of its parts is radically different in
both.

1Elasticity in a stricter sense is sometimes associated with a reference state that the object returns
to once all loads are removed. There is no such notion for our correspondence function.
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Figure 1.1: Michael Unser (left), my thesis director, and Philippe Thévenaz (right), the
first assistant.

1.1.2 Image warping

Image warping or image deformation is in some sense the inverse of image registration,
as illustrated in Figure 1.4. The image registration takes the test and reference images
and yields a correspondence (deformation) function. Conversely, the image warping
takes the test image and a correspondence function and outputs a warped image which
is a deformed version of the test image. If all has worked correctly, then the warped
test image should be aligned with the reference image. Conversely, applying an image
registration on an original of an image and its warped version recovers the deformation
used.

Given an image f(x) and a deformation function g, the image warping yields a warped
image fw(x) = f

(
g(x)

)
.

1.2 Applications of image registration

Applications of image registration emerged in the domain of motion analysis. The task
is to find changes between two subsequent frames in a video sequence. We assume
that these changes can be completely explained by movements of the objects in the
scene or movements of the observer. The extracted motion field can be exploited in
numerous ways. We can use it directly to measure the trajectories, distances, speeds,
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Figure 1.2: James Bond (left), his friend Lupe (right).
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Figure 1.3: Corresponding magnetic resonance brain slices from EPI (left) and anatom-
ical (right) modalities. Landmarks (white crosses) have been manually placed at corre-
sponding locations.

?
unknown deformation g(x)

Figure 1.4: Given an image and a deformation function, a deformed image is created by
warping. Inversely, given two images, the corresponding deformation function is found
by image registration.
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and accelerations.

In video compression, the movement information enables us to take advantage of the
temporal redundancy in the video sequence. This information can be also used for object
tracking or image stabilization.

Separating the image field into several regions according to their speeds leads to
segmentation algorithms. If the scene is static and the inter-frame changes are caused
mainly by the camera movement, the motion field can be used to identify the camera
(observer) movement. Knowing the camera trajectory provides the depth information
necessary for the 3D reconstruction of the scene.

When several cameras with known relative positions are available, registering the cor-
responding frames from sequences by different cameras yields directly the 3D trajectories
of the objects in the scene. A special case is reconstructing depth from stereo images.

1.2.1 Biomedical applications

In the biomedical domain, there is a frequent need for comparing images for analysis
and diagnostic purposes. However, for an efficient comparison, the images first need to
be aligned. This is accomplished by registering the images and warping them using the
correspondence function found.

Intra-subject analysis compares images of the same subject taken at different times
in order to detect or quantify the changes that might have taken place in-between ac-
quisitions. Inter-subject analysis considers corresponding images from different subjects.
Aligning and combining images from many subjects permits to create an atlas, an an-
notated reference image of a given modality. Images from individual subjects can then
be compared with the atlas for identification and to detect abnormalities. Registering
the individual image with the atlas helps us to reuse the segmentation and annotation
performed on the atlas. The correspondence function can be used to quantitatively
characterize the shape and size of the features in individual images.

Inter-modality registration is used to align images of the same subject taken at ap-
proximately the same time but with different imaging modalities. These images provide
complementary information which can be combined together to get a more complete
picture of the subject anatomy and physiology.

Furthermore, registration helps to compensate for geometrical distortions inherent to
some imaging methods, as well as for unwanted motion during the acquisition.

1.3 Contributions of this thesis

Chapter 2 presents an overview and classification of existing registration techniques.

The first contribution of this thesis is a development of a general elastic image regis-
tration algorithm. It uses a control grid of uniform B-splines to describe the deformation.
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It also uses B-splines for image interpolation. Multiresolution in both image and defor-
mation model spaces yields robustness and speed. One version of this algorithm targeted
on finding unidirectional deformation in EPI magnetic resonance images is described in
Chapter 4. An enhanced and generalized version of this algorithm which is significantly
faster and capable of treating multidimensional deformations is presented in Chapter 5
together with applications in PET and ultrasound image registration.

The second contribution of this thesis is the application of variational techniques
to the problem of generalized sampling and reconstruction. In Chapter 3, we describe
the landmark interpolation problem which appears in the landmark-based registration
techniques. We will see that landmark interpolation can be seen as a special case of
a more general class of reconstruction problems. Chapter 6 contains tutorial introduction
to the variational approach for solving these problems together with several examples of
applications. In Chapter 7, we treat the mathematical details of the theory and discuss
the choice of the variational criterion to be used.
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Chapter 2

A Review of Registration

Techniques

In this chapter we intend to categorize the multitude of existing registration algorithms.
We classify them by the choice of feature space, warp space (search space), similarity
metrics (cost function), and search strategy they use, similarly as in [1]. Most of the
algorithms can be cast into this framework. Let us explain the four attributes by creating
the following general picture of a registration algorithm:

• In the first step, some intermediate data is extracted from the two images being
registered. This data lives in a feature space.

• The algorithms’ representation of the correspondence between the two images is
taken from a search space. This is the space in which the algorithm looks for
a solution. A point from this space that is returned is the solution of the registration
problem.

• To find the solution in the warp space, the algorithm needs a way to measure the
quality of the correspondence for different points in the warp space. This measure
is provided by a similarity metric.

• Finally, the search strategy governs the movements of the algorithm in the search
space in his quest for the optimum.

Figures 2.1 and 2.2 shows the classification according to the first two criteria in a tree
form.
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2.1 Feature space

According to the feature space employed, we can identify three classes of registration
algorithms: pixel-based, transform-based, and feature-based.

2.1.1 Pixel-based registration

Pixel-based algorithms work directly with the (totality of) pixel values of the images
being registered. Preprocessing is often used to suppress the adverse effects of noise and
differences in acquisition [2], or to increase or uniformize pixel resolution [3].

It is possible to work directly with the pixel values on the discrete coordinate grid.
However, to get a subpixel resolution, the problem is often cast into the continuous
framework. The images are considered as functions of real arguments: the image coor-
dinates. The correspondence between the discrete and continuous versions of the image
is established using interpolation. The crudest method is the nearest-neighbor, and the
most often used one is linear (resp. bi- or trilinear) interpolation. Among the high-end
methods, spline interpolation [4–6] provides the best tradeoff between accuracy and the
computational cost [7, 8].

Occasionally, the image model occupies more dimensions than the original data. Ex-
ample include representing 2D image as a surface in a 3D space, either directly [9], or
using level sets [10]. The main advantage of this approach is a more global vision of the
algorithm, which increases its robustness.

2.1.2 Transform-based registration

Transform-based algorithms exploit properties of the Fourier, wavelet, Hadamard, and
other transforms, making use of the fact that certain deformations manifest themselves
more clearly in the transform domain. These methods are used mainly in connection
with linear deformation fields. Nevertheless, there are examples of methods that estimate
locally linear optical flow using Gabor filters [11, 12] and B-spline wavelets [13]. Typical
characteristics of the transforms employed are linearity and independence on the actual
image contents.

2.1.3 Feature-based registration

Feature-based algorithms work on a set of characteristic features extracted from the
images. The dimensionality of the features is usually drastically smaller than the dimen-
sionality of the original image data. The extraction process is highly non-linear, mostly
using thresholding.

Landmark -based methods [14–17] use a relatively small and sparse set of landmarks;
these are important points which can be (manually or automatically) identified in both
images. Extrinsic markers refer to specifically designed artificial features attached to
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the object (or subject, in medical imaging) before acquisition to serve as landmarks.
Unfortunately, extrinsic markers are difficult to deploy. In medical imaging they are not
patient-friendly either. If extrinsic markers are not available, we have to content ourselves
with features intrinsic to the images. In that case, however, the automatic landmark
identification suffers from lack of robustness. The manual landmark identification is often
tedious, time-consuming, imprecise, and unreproducible.

If the images cannot be characterized using points, it might be more appropriate to
use curves such as edges [18], or volume boundaries [19]. Likewise, in the case of 3D
data, surfaces can be used instead of working with the complete volumes.

Popular features are also templates, small sub-images of important regions [20], which
can be used directly, or which can form a higher level feature map [21].

2.2 Search space

One of the important factors to categorize registration algorithms is the search space used.
We also call it a warp space, because it contains warping functions. Warping functions are
candidate solutions of the registration problem. From the analogy between warping and
deformation, the deformation (warping) functions play also the role of correspondence
functions.

Because we work with finite memory computers, every warping function from
the search space is described by a finite set of real parameters (from a set of permis-
sible values) by means of a warping model. We classify the warping models according
to the number of parameters and the spatial extent of the area influenced by a single
parameter.

2.2.1 Local models

At one end of the scale, we have non-parametric, local methods. The deformation func-
tion sought after is basically unconstrained, or belongs to a very large and unrestrictive
functional space, e.g., the Sobolev space W 2

2 (of functions that are twice differentiable).
We seek the values of this deformation at a very fine grid, usually coinciding with pixel
locations. These methods are formulated either as variational, defining a scalar criterion
to minimize, or (more generally) using partial differential equations (PDE). The contin-
uously defined deformation function minimizes a given criterion, or solves a given PDE.
The essence of these methods is thus entirely in the criterion (resp., PDE). The PDE
come from the optical flow approach (gradient methods) [22], viscous fluid model [23–
25], elastic deformations with physical analogs [3, 26] or without it [27].

Sometimes the deformation function is also modeled indirectly. For example, it can
be modeled using a potential field [28]. This reduces the dimensionality of the problem,
at the expense of reduced generality of the deformation.

Discretization allows for integer only displacements at pixel points [29].
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2.2.2 Global models

At the other end, we have parametric, global methods that describe the correspondence
function using a global model with a relatively small number of parameters [30]. The
model mostly consists of expressing the warping function in a linear [31], global poly-
nomial [32] or harmonic basis [33, 34]. For these methods, the deformation model
corresponding to a specific warp space is as important as the criterion being minimized.

2.2.3 Semi-local model

In between the two extremes are semi-local models, using a moderate number of pa-
rameters with local influence. A grid of control points is placed over the image. Their
spacing corresponds loosely to knot or landmark density. By changing the spacing, we
can approach either of the limit cases or choose a compromise offering the best tradeoff.

Such models were used in the context of motion estimation [35] and are instrumental
for the approach described in Chapters 4 and 5 of this thesis. B-spline models were
independently used in [36].

2.2.4 Image dependent models

It is sometimes useful to adapt the warping model to the images considered. Quadtree-
based deformation model [37] is refined only where it is needed.

In feature based methods, the basis functions of the warping model can be placed
where the features are. The deformation field is interpolated in regions where no in-
formation is available. Typical example are radial basis functions such as thin plate
splines [14, 15, 38]. See also Chapter 3 for more details.

2.3 Similarity metrics

2.3.1 Data term

The quality of registration is described by a cost function. This function has a predomi-
nant term measuring the quality of the matching which we shall call the data term.

For feature-based methods it is a mean distance between the corresponding features
in the source and target images after warping. Note that the case of interpolation with
landmarks can be considered as a limit case, when a maximum weight is given to this
distance, constraining it to be zero. If the pairing between source and target features is
not known, the iterative closest point algorithm [39] can be used to determine it.

For pixel-based methods, the data term is a similarity measure between the two im-
ages after warping. Correlation, especially local normalized correlation, is an important
cost function [3, 40] because of its probabilistic interpretation. It is rather costly to
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evaluate and sensitive to noise. Instead, the similarity between images is most often ex-
pressed using their difference in l1 or l2 norms. For images from different modalities, the
mutual information criterion [41–43] seems to be superior [44], at the expense of more
computation. For local criteria, such as local normalized correlation, local variance, or
local mutual information, the neighborhood size must be properly chosen.

The above mentioned criteria will use image interpolation to calculate the warped
version of the test image. See also Section 2.1.1.

In template-based methods, the template can be compared with a specific region in
the target image using any of the similarity measures suitable for pixel-based methods.

For transform-based methods, the least-squares measure in the transformed domain
is usually used.

2.3.2 Regularization

In most applications, it appears to be necessary to add an additional term to the criterion.
We shall call it the regularization term. We mainly do it in order to make the problem
well-posed. Regularization terms are also used to express our a priori knowledge, or
eventually to stabilize the algorithm. In the variational setting, the regularization term
can define the warping space. For instance, in the case of landmark interpolation, min-
imization of the norm of the Laplacian ‖∆g‖ is often used in practice [14, 15]. This
leads to a thin-plate spline solution [45]. Minimizing other similar measures leads to
generalized splines [46] determined either directly or using PDEs.

Other regularizers are constructed by applying a non-linear term on the norm of the
derivative operator, mainly to preserve discontinuities. Regularizers based on threshold-
ing in wavelet domain are also used.

Implicit regularization for iterative methods works by alternatively driving the inter-
mediate solution towards the data, and applying a smoothing operator.

2.4 Search strategy

2.4.1 Direct solution

In some cases, notably if the cost function is quadratic, the solution can be found in one
step [33]. This is equivalent to neglecting the higher order terms in the Taylor expansion
of the criterion [47]. For example, the transform methods using directional filters are
often engineered in this way.

2.4.2 Exhaustive search

If the search space is finite, exhaustive search can be used. For example when small
templates are extracted from the reference image, their positions in the target image are
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found by trying all possible shifts [29, 48].

2.4.3 Dynamic programming

For integer 1D problems, dynamic programming is applicable [49] with complexity pro-
portional to the number of decisions to take (size of the image) and the number of possible
outcomes (shifts).

2.4.4 Partial differential equations

In this approach, a system of partial differential equation describing an evolution in
time of the deformation field is formed, such that its final value corresponds to the de-
sired solution. The PDE parameters can vary with time, to enforce robustness at first
and relaxing the constraints towards the end, to allow for precise registration. Various
numerical methods can be used to solve the PDEs, the principal ones being finite differ-
ence relaxation method [50], finite elements method (FEM) [51, 52], hierarchical finite
element bases [53], multigrid methods [54], and wavelets [55, 56].

2.4.5 Multidimensional optimization methods

Many non-linear registration methods lead to a non-linear optimization problem. Various
optimization methods are used, depending on the size and structure of the problem. The
most popular choices include the Powell method, gradient descent, conjugated gradients,
and variations of the Newton method, such as the Marquardt-Levenberg algorithm [50,
57].

Some minimization algorithms can be described using different paradigms, such as
‘demons’ [58].

2.4.6 Multiresolution

Multiresolution [3, 31] on the feature space (usually image size) helps to speed up the
process and to increase its robustness by approaching the solution by gradual refinement.
One first solves a reduced problem using a small amount of data, then uses the solution
as an initial guess for a problem at a finer level. This is repeated until the finest (original)
level is reached.

Multiresolution on the search space works similarly, adding degrees of freedom to the
warping model at each step. One starts with a simple model which leads to a simple and
easy to solve problem, and then gradually adds a manageable amount of complexity at
each step, until the desired model is reached. The model can be augmented qualitatively,
such as going from translation-only to general affine transform, or quantitatively, for
example by decreasing the control node spacing in semi-local models.
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Related to multiresolution are multigrid optimization methods, where occasional
backward transitions from finer to coarser levels are used besides the coarse-to-fine re-
finement used in the multiresolution.

2.5 Other attributes

The dimensionality refers to the number of dimensions of the images being registered.
The warping function normally works in the space of the same dimensionality, trans-
forming one coordinate vector into another. However, degenerate warping functions can
be expressed in a space of lower dimensionality.

Interactive algorithms need human supervision and interaction. They often perform
well, taking advantage of the human expert, but are unsuitable for treating high volumes
of data.

2.6 Complementary surveys

We conclude the chapter by providing additional general sources of information on regis-
tration algorithms. The survey by Brown [1] is rather general, while Warfield et al. [59]
concentrate on nonlinear registration for brain warping applications. Bayesian inter-
pretation of elastic matching are reviewed by Gee [60], also in the context of human
neuroanatomy. The last two survey articles we mention deal specifically with medical
imaging applications of image registration. An article by Van den Elsen et al. [61]
contains very comprehensive and detailed classification of available methods. Finally,
Lester and Arridge [62] emphasise the hierarchical concepts of the algorithms.
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Chapter 3

Landmark Registration:

From Thin-Plate Splines

to Fractals

In this chapter we briefly present the landmark registration problem and discuss its
motivation. We suggest the variational formulation and hint at its solution. The topic of
variational reconstruction in general is treated in more breadth and mathematical rigour
in Chapters 6 and 7. Here, in contrast, we put the emphasis on simplicity and clarity,
favoring intuitive understanding of the technique.

The first part of this chapter has been conceived as a tutorial on thin-plate spline
interpolation and the related method of radial basis functions (RBF) because these are
often described superficially in the engineering literature, and perhaps too abstractly in
the mathematical literature. In the second part, we discuss extensions of the classical
landmark registration method of Bookstein [14] to non-integer orders of the criteria and
present a Bayesian interpretation in terms of fractal priors. We also take the opportunity
to make the link between radial basis functions and splines very explicit (see also [63]).

3.1 Landmark registration

Landmark registration [14–16] is a two step feature-based registration technique. (See
Chapter 2 for details on registration algorithm classification.) In the first step, a set of
landmark pairs is identified. We get two sequences of points, x1, . . . ,xN , and z1, . . . , zN ,
such that an object at coordinates xi in the reference image corresponds to the object
at coordinates zi in the test image.

Here we assume that the landmarks have been already determined. For an example,
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see Figure 1.3 in Chapter 1. In most cases, this is done manually. Some authors have
proposed to detect the landmarks automatically [16, 64], but this approach has not been
pursued here. Instead, if a completely automatic method is needed, we switch to a more
robust intensity-based aalgorithm, described in Chapters 4 and 5.

Once the landmarks have been determined, we need to interpolate the correspondence
function values between the landmark points. This is because, as we have mentioned in
Chapter 1, the aim of image registration is to get the correspondence function everywhere,
not just at a few points. Interpolating the correspondence function is the second crucial
step of landmark registration and the main focus of this chapter [65, 66].

3.1.1 Motivation of this study

There are several reasons to study landmark registration. The first of them is the compar-
ative testing of other registration methods. It is usually possible to set up a completely
automatic test procedure where the results of the algorithm under test are compared
with a known ground truth. We will see examples of such tests in Chapter 4. Neverthe-
less, these tests fail to capture the real conditions in which the algorithm will work. On
the other hand, using landmark registration with manually selected landmarks permits
us to compare the performance of the automatic algorithm with a reference (landmark
registration) on real images and under realistic working conditions.

Second, landmark interpolation merits a study in its own right. Choosing an inter-
polation method or an interpolation function is difficult because the implications of this
choice are not immediately apparent. On the other hand, in the variational formula-
tion, the user is asked instead to choose a criterion of optimality, which is usually more
tangible and often related to the physics (or other specificities) of the problem.

Third, the variational formulation of landmark interpolation will allow us to make an
interesting link with splines [67]. This gives additional justification for the choice of B-
splines as basis functions for our automatic registration method described in Chapters 4
and 5.

3.2 Interpolation versus approximation

We can distinguish two classes of constraints in landmark interpolation: hard constraints
which need to be fulfilled exactly and soft constraints which are meant to be fulfilled only
approximatively, allowing for the tradeoff with the smoothness of the solution.

3.2.1 Hard constraints

The obvious choice is to enforce the interpolating constraints. The task is to find
a continuously-defined correspondence function g. At the landmark position xi, the
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correspondence function must coincide with the landmark in the test image; i.e.,

g(xi) =

[
gx(xi)
gy(xi)

]
= zi for all i ∈ {1, . . . , N} (3.1)

3.2.2 Soft constraints

Alternatively, if the landmark positions are noisy or not accurately known, we can replace
the interpolation condition (3.1) by an approximation inequality. We will only require
that the correspondence function g passes close enough to the landmarks. For example,
we might impose the inequality:

N∑

i=1

‖g(xi)− zi‖2 ≤ ε (3.2)

where ε is an a priori given error bound. Clearly, when ε tends to zero, the approximation
problem (3.2) becomes equivalent to the interpolation defined by (3.1).

Although here we will mostly deal with the interpolation case, we will learn later (see
Chapters 6 and 7) that most of the properties are directly applicable to the approximation
case too, and the formula of the solution is also very similar.

3.2.3 Desirable properties

We agree that landmarks are points in space, as opposed to just coordinate values. Sim-
ilarly, the correspondence function g is more than a mathematical function: it describes
correspondence of real points. It is an object in space, anchored to the landmarks. Con-
sequently, it seems reasonable to require that the interpolated function g be invariant
with respect to the choice of the coordinate system. In other words, the correspondence
between points in the two images should remain the same, regardless of how we measure
the position of these points.

A key requirement is that the interpolation problem should always have a solution,
if possible a unique one.

Another property worth having is the reproduction of identity [68]. If the under-
lying true correspondence function is identity, the interpolation should yield identity
correspondence function with a minimum of landmarks. In addition, we might want the
reproduction property for other simple transformations, such as shifts or scalings; more
generally, affine transformations.

We want the reconstructed correspondence function to be close to the (unknown)
true underlying correspondence function. We want the reconstruction error to decrease
rapidly with the number of landmarks. This way we can adapt the landmark density to
insure that the error is below any a priori given tolerance threshold. These are called
good approximation properties [69].
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Finally, we want the interpolation procedure to accommodate easily non-exact fits,
useful when the landmark positions are only known approximately. In this approxima-
tion setting, the reconstructed correspondence function will pass close to the landmarks,
making a compromise between the closeness of the fit and the overall smoothness.

3.3 Thin-plate splines

The use of thin-plate spline technique for landmark interpolation is attributed to Book-
stein [14]. Here we present the method from the variational point of view, as a prepa-
ration for the extensions presented in Section 3.4.

3.3.1 Variational formulation

Instead of imposing an empirical interpolation formula, the essence of the variational
formulation consists of choosing a variational criterion J(g) and then finding among all
possible functions satisfying (3.1) the one that minimizes J [70, 71].

It is customary to interpret J as strain energy and to take a physical model of a thin
steel plate to calculate this energy [17]. When the scalar field g is interpreted as a small
vertical displacement, the deformation (strain) energy is given by

J(g) =

∫ (
∂2g

∂x2

)2

+ 2

(
∂2g

∂x∂y

)2

+

(
∂2g

∂y2

)2

dxdy (3.3)

Under specific conditions on the solution space (cf. Chapter 7) we can use integration
by parts to come up with an equivalent criterion

J(g) =

∫ (
∇2g

)2
dxdy (3.4)

where ∇2 denotes the Laplacian. For simplicity, we will neglect the difference be-
tween (3.3) and (3.4) here.

The Laplacian energy (3.4) is a member of a more general family of scale and rotation
invariant cost functions which satisfy the requirements of Section 3.2.3 (see also Chap-
ter 7). Another more pragmatic justification comes from the fact that it is the simplest
criterion that does not penalize affine transforms.

The criterion for the vector form g is taken simply as the sum of the strain energies
of the x and y components:

J(g) = J(gx) + J(gy) (3.5)

Clearly, the constraints (3.1) can be broken into two independent sets, one for gx and one
for gy. Therefore, the task of minimizing (3.5) under the complete constraints (3.1) is
equivalent to minimizing separately for gx and gy. Consequently, to get an understanding
of the underlying interpolation method, we can concentrate on the scalar case here.
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3.3.2 Interpolation formula

As we will see in Chapter 6, the correspondence function g(x, y) minimizing (3.3) under
interpolation constraints

g(xi, yi) = zi (3.6)

is given by

g(x, y) =

N∑

i=1

λi%(‖x− xi‖) + a0x+ a1y + a2

with ‖x− xi‖ =
√

(x − xi)2 + (y − yi)2 = r

(3.7)

where %(r) is a radial basis function

%(r) = r2 log r (3.8)

It is called radial because it only depends on the Euclidean distance r to its associated
data point [72].

The generating function %(x, y) solves the associated Euler-Lagrange (or fundamental)
equation

∇4
x,y %(

√
x2 + y2) = δ(x, y) (3.9)

where ∇4 is a two times iterated Laplacian and δ(x, y) is the Dirac distribution. The
linear polynomial a0x+a1y+a2 is called a kernel term and it appears because it does not
contribute to the criterion. The unknown parameters λi and a0, a1, a2 are determined
from the interpolation constraints (3.6) and from orthogonality conditions

N∑

i=1

λi = 0
N∑

i=1

λixi = 0
N∑

i=1

λiyi = 0 (3.10)

The method just described is called thin-plate spline interpolation.

Let us briefly return to the approximation case, minimizing the criterion J under
the scalar variant of the inequality (3.2). Here also, the unknowns can be determined
from a set of linear equations composed of the orthogonality conditions (3.10) and the
following regularized version of the interpolation constraints (3.6)

g(xi, yi) + γ−1λi = zi (3.11)

where γ is a constant depending on ε in (3.2).
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3.3.3 Solution justified

Let us hint at the proof that (3.7) is really a solution. We will study the effect of how the
criterion J(g) is affected by adding to g a small perturbation ψ. For simplicity, we use the
Laplacian form (3.4) of the criterion. The perturbation is chosen so that ψ(xi, yi) = 0,
in order not to disturb the interpolation conditions. Furthermore, we choose ψ to vanish
identically at infinity and to be sufficiently differentiable; in other words, ψ is going to
be a test function. If g is really a minimum, then the variation

J̃ = J(g + ψ)− J(g) (3.12)

must be zero to a first order of approximation. The change is given by

J̃ = 2

∫
∇2g∇2ψ dxdy = 2

N∑

i=1

λi

∫
∇2%(r)∇2ψ dxdy (3.13)

Note that we have left our the polynomial part of the solution because it does not con-
tribute to the criterion. Using the identity

∫
∇2f ∇2ψ dx =

∫
∇4f ψ dx, equation (3.9),

and the translational invariance of ∇, we rewrite the integral as

∫
∇4%(r)ψ dxdy =

∫
δ(x− xi, y − yi)ψ dxdy = ψ(xi, yi) = 0 (3.14)

We conclude that the integral and therefore the first order change J̃ are both zero.
Consequently, the formulas (3.7) and (3.8) give the solution to the minimization problem.

3.4 Fractional splines

Although the thin-plate splines have been known to work well, in many applications we
might benefit from a wider choice of interpolation functions, while keeping the general
spirit and the invariance properties (affine geometrical transformations including scaling)
we are interested in. The straightforward way to do it is to consider minimizing differ-
ent criteria, namely fractional derivatives (in 1D) and fractional Laplacian (in multiple
dimensions).

3.4.1 Fractional derivatives

The Laplacian in the space domain is defined by

∇2f =
∂2f

∂x2
+
∂2f

∂y2
(3.15)
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In the Fourier domain, this corresponds to

∇̂2f = ω2
xf̂ + ω2

yf̂ = ‖ω‖2f̂ (3.16)

Similarly, a twice-iterated Laplacian will (through the convolution property f̂ ∗ g = f̂ ĝ)
correspond to

∇̂4f = ‖ω‖4f̂ (3.17)

A natural extension of (3.16) is to consider other exponents of ‖ω‖, which leads to the
fractional Laplacian

∇̂αf = ‖ω‖αf̂ (3.18)

The same reasoning in the univariate case leads to the concept of fractional deriva-
tives, studied by Liouville [73]. The basic form of fractional derivative corresponds to
a multiplication by (jω)α in the Fourier domain

∂̂αf

∂x
= (jω)αf̂ (3.19)

There is also a symmetric version, in the spirit of (3.18), where multiplication by (jω)α

is replaced by multiplication by |jω|α, see [74].

Note that the behavior of fractional derivatives for nonintegral orders α is significantly
different from clasical derivatives. In particular, they are no longer local operators [74].

3.4.2 The fractional criterion

In line with the definition (3.18), it is possible to generalize the Laplacian based crite-
rion (3.4) to fractional orders as follows.

J(g) =

∫
‖∇αg(x)‖2dx ∝

∫
‖ω‖2α|ĝ(ω)|2dω (3.20)

Note that this extended criterion remains scale and translation invariant. To appreciate
better the meaning of (3.20), we look at the corresponding expression for the univariate
case

J(g) =

∫ (
∂αg

∂x

)2

dx ∝
∫
|ω|2α |ĝ(ω)|2 dω (3.21)

We see that the criterion measures the amplitude of the α-th derivative of g.
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3.4.3 Fractional Brownian motion

There is an interesting relationship between fractional Brownian motion and the frac-
tional derivatives just described.

Brownian motion is a stochastic process B(t). Its particular characteristic is that its
increment B(t+ τ) −B(t) is stationary Gaussian noise with variance

E
[(
B(t+ τ)−B(t)

)2] ∝ |τ | (3.22)

which corresponds to an average power spectrum proportional to |ω|−2.
Fractional Brownian motion [75] is a generalization to a family of processes BH(t)

described by a single parameter 0 < H < 1. The covariance structure of BH(t) is

E [BH(t)BH(s)] ∝ |t|2H + |s|2H − |t− s|2H (3.23)

Consequently, its increment is also stationary and has a variance

E
[(
BH(t+ τ)−BH(t)

)2] ∝ |τ |2H (3.24)

with an average spectrum proportional to |ω|−2H−1.
Consider applying the derivative (3.19) to the process BH described by (3.23). The

covariance function of the resulting process ∂α

∂tαBH(t), which is stationary, becomes

E

[
∂α

∂tα
BH(t)

∂α

∂sα
BH(s)

]
= − ∂α

∂tα
∂α

∂sα
|t− s|2H = ρ(t− s) (3.25)

In the Fourier domain, we get

ρ̂(ω) ∝ |jω|2α
|ω|2H+1

(3.26)

In particular, taking a fractional derivative of order α = H + 1
2 of a fractional Brownian

motion process BH gives ρ̂(ω) = 1, and thus effectively yields an uncorrelated Gaussian
white noise.

3.4.4 Bayesian interpretation

When x is a random vector with Gaussian probability density function (p.d.f.) px ∝
e−xT

C
−1x, then maximizing its log-likelihood function (log px ∝ −xTC−1x) under some

constraints is equivalent to finding the most likely solution to our problem given the a
priori knowledge that x is normally distributed. Equivalently, we can factorize C−1 =
QTQ which gives an alternative expression for the log-likelihood, log px ∝ −‖Qx‖. The
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technique is called whitening, because the new vector Qx is white, that is to say that its
components are uncorrelated (independent).

Similarly, if we assume that g(x) is fractal Brownian motion-like process, then we can
apply to it the whitening filter ∂α

∂xα , as we have shown in the previous section. Therefore,
the criterion (3.21) can be interpreted as a Bayesian fractal prior. Some comments on
Bayesian priors in the non-fractal case can be found in Poggio [76]. We assume that
the underlying true function is close to the fractional Brownian motion model and find
the solution to our interpolation problem combining this knowledge with the information
given by the constraints.

Completely analogous reasoning justifies the choice of the criterion (3.20) in the bi-
variate case.

Note that even though we have started from fractional Brownian motion to derive the
criterion, the orders α higher than the limit of 1.5 corresponding to the fractal Brownian
motion are still completely meaningful as parameters for our deformation model. (For
α < 0.5 the resulting interpolation is point-wise unstable and has singularities.) The α
translates into the assumed smoothness of the deformation and the best way of measuring
it. The higher the α, the smoother the deformation.

3.4.5 Fractional landmark interpolation

The Euler-Lagrange equation corresponding to (3.20) is ∇2α% = δ. The solution for
non-special α (read: non-integer) is of the form

g =

N∑

i=1

λi%(‖x− xi‖︸ ︷︷ ︸
r

) (3.27)

where

%(r) = r2α−2 (3.28)

The polynomial kernel term does not appear due to the restrictions of the Fourier domain
definition of the criterion (3.20).

The choice of α has obviously an influence on the interpolation results. Here, we
present an example of this effect for the landmark (bivariate) case. We refer the reader
to Chapter 6 for some additional examples in the univariate case.

Figure 3.1 demonstrates how the deformation results change with α. We have chosen
two images from a four-chamber ultrasound sequence of a heart1 and declared one of
them reference and the other a test. We have manually identified six pairs of conforming

1Acknowledgements: Images and landmark placement are the courtesy of Maŕıa J. Ledesma, Uni-
versidad Politécnica de Madrid, and Laboratory of Echocardiography, Hospital General Universitario
Gregorio Marañón, Madrid, Spain.
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points in both images. We have also put stable landmarks in the corners of the image.
Then we warped the test image onto the reference image varying the parameter α. Note
that only non-integer values of α were used, for which the formula (3.27) remains valid;
integer values need a special treatment.

How do we choose the best α? As we have seen in the previous section, the statistically
optimal α can be determined directly, when the characteristics of the stochastic process
generating the deformation are known. However, this is never the case in practice.
Therefore, αmust be found experimentally. We observe that small α yields more localized
and abrupt changes in the deformation field, while higher α gives rise to smoother and
more global changes.

When a sufficient number of test images and landmarks are available, a suitable α
for a given application can be determined by the leave-one-out technique: One or several
landmarks are not taken into consideration when calculating the correspondence function.
Their real position is then compared to their position predicted by the interpolation.
Finally, the α yielding the smallest average error is selected. In the present case, we
found the values of α = 1.5 ∼ 2.5 to be the most suitable.

3.5 Localization

We have seen that the basis function given by our interpolation formulas are typically
polynomially growing towards infinity. We will now show how to replace them by an
equivalent set of compactly supported or fastly decaying basis functions. The process is
called localization.

The motivation of localization is threefold. First, a function expressed with compactly
supported or fastly decaying basis functions is computationally less expensive to evaluate.
Second, due to the smaller amplitude range of the basis functions the evaluation is more
precise. Third, thanks to smaller overlap between basis functions, the coefficients are less
interdependent and the corresponding linear system of equations is better conditioned.
Localization corresponds to a change of basis and in this particular context it is a powerful
preconditioning method.

3.5.1 Localizing |x|3

Consider the task of univariate scalar interpolation minimizing the norm of the second
derivative (

∫
(f ′′)2dx) with uniform sampling. The Euler-Lagrange equation is

∂4

∂x4
%(x) = δ (3.29)
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Reference Test

alpha=0.5 alpha=0.9

alpha=1.3 alpha=2.5

Figure 3.1: The reference (top left) and test (top right) images. The test image warped
by landmark warping for α = 0.5 (middle left), α = 0.9 (middle right), α = 1.3 (bottom
left), and α = 2.5 (bottom right). The landmark positions are marked with white squares
and were identical in all cases.
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One of its solutions corresponds to %(x) = |x|3 which yields the interpolation formula

f(x) =
∑

i

λi|x− i|3 + a0 + a1x (3.30)

with infinitely growing basis functions %. We see that between each two integers, f(x)
is a cubic polynomial. It is also evident that its second derivative f ′′ is continuous
everywhere. Therefore, by definition, f(x) is a cubic spline. We know that a cubic spline
can be expressed as a linear combination of compactly supported B-splines β3 [77]. How
do we go from the basis functions % to basis functions β3? By localization.

We note that β3 can be expressed as the following linear combination of the shifted
basis functions %:

β3(x) =
∆4

4!
|x− k|3 =

[
1 −4 6 −4 1

]

12
∗ |x− k|3 (3.31)

where ∆4 is the four times iterated finite difference operator. The original and localized
basis functions are shown in Figure 3.2. An interesting observation is that the localizing

operator ∆4 is a discretized version of the continuous operator ∂4

∂x4 from (3.29). This
is no coincidence as, by virtue of the discretization, the low-frequency parts of the two
operators behave in the same way:

�
{
∂4

∂x4

}
= ω4 (3.32)

�
{

∆4

4!

}
=

(
1− ejω

)4

4! e2jω
∼
ω→0

ω4 (3.33)

Therefore, the result of the localization (3.31) is in some sense a low-frequency version
of the Dirac in (3.29).

In the case of non-uniform sampling, the identical basis functions % are put on the
non-uniform sampling points:

f(x) =
∑

i

λi|x− xi|3 + a0 + a1x (3.34)

The corresponding new set of basis functions can also be localized using the fourth divided
difference operator [77] instead of the finite difference operator. The divided difference
operator is the discrete equivalent (discretization) of the fourth derivative on the non-
uniform grid. It provides the highest order coefficient of the fourth-order polynomial
passing through given five points.

3.5.2 Localizing general variational problem solution

Further development of this idea shows that when solving the interpolation problem
minimizing a norm ‖Lf‖ of some operator L, the corresponding fundamental solution
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Figure 3.2: The original |x|3 basis functions (top) and their localized version, cubic
B-splines β3 (bottom)
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Figure 3.3: The original |x|1/π basis functions (top) and their localized version, fractional
symmetric B-splines β∗1/π (bottom)

(Green function) % satisfies the Euler-Lagrange equation LT L % = δ. Then the discretized
version of the same operator LT L can be used to localize the basis functions %.

Of course, the discretization is straightforward only when the sampling points are
distributed on a uniform grid. On a nonuniform grid, each basis function has to be
localized separately.

For example, interpolation in the univariate scalar case minimizing the norm of a frac-
tal derivative (3.21) leads to basis functions |x − x|2α−1 which can be localized by frac-
tional symmetric finite difference operator ∆2α

∗ to yield rapidly decaying fractional B-
splines β∗2α−1 [74], see Figure 3.3.

Along similar lines, in the bivariate case, the radial basis function r2 log r can be
localized by the discretized version of the twice iterated Laplacian ∇4. The result of

{
hhT

}
j,k
∗ ϕ(x− j, y − k) with ϕ(x, y) =

x2 + y2

2
log(x2 + y2) (3.35)
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and where h is the four-times iterated finite difference operator

h = ∆4 =
[
1 −4 6 −4 1

]
(3.36)

is shown in Figure 3.4.
Note that other localizations are indeed possible, depending on the precise definition

of localization.

3.6 Conclusions

We have presented the landmark registration technique with focus on the second step,
the problem of landmark interpolation. This problem can be formulated very concisely
in the variational setting. We choose the variational criterion to impose useful properties
on the interpolation process, such as rotational, translational, and scale invariance. Most
notably, when the criterion is quadratic, the solution is expressed as a linear combination
of translated generating (Green) functions. The coefficients of this linear combination
are determined from a linear system of equations.

The a priori non-local generating functions can be localized for more efficient and
more stable calculation. In some cases this localization leads to B-splines which gives an
additional justification for using splines to solve this kind of problems.
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Figure 3.4: The r2 log r basis function (top) and its localized version (bottom).
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Chapter 4

Unwarping of Unidirectionally

Distorted

EPI Images

This chapter is based on our article [78].

4.1 Abstract

Echo-planar imaging (EPI) is a fast nuclear magnetic resonance imaging method. Unfor-
tunately, local magnetic field inhomogeneities induced mainly by the subject’s presence
cause significant geometrical distortion, predominantly along the phase-encoding direc-
tion, which must be undone to allow for meaningful further processing. So far, this aspect
has been too often neglected.

In this paper, we suggest a new approach using an algorithm specifically developed
for the automatic registration of distorted EPI images with corresponding anatomically
correct MRI images. We model the deformation field with splines, which gives us a lot
of flexibility while comprising the affine transform as a special case. The registration
criterion is least-squares. Interestingly, the complexity of its evaluation does not depend
on the resolution of the control grid. The spline model gives us good accuracy thanks
to its high approximation order. The short support of splines leads to a fast algorithm.
A multiresolution approach yields robustness and additional speed-up.

The algorithm was tested on real as well as synthetic data, and the results were
compared with a manual method. A wavelet-based Sobolev-type random deformation
generator was developed for testing purposes. A blind test indicates that the proposed
automatic method is faster, more reliable, and more precise than the manual one.
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4.2 Introduction

4.2.1 EPI features

Echo planar imaging (EPI) [79] is a fast magnetic resonance imaging (MRI) technique
permitting an acquisition of a two-dimensional slice using a single excitation, which leads
to very short scan times. It is used mainly for functional imaging (fMRI), the in vivo
non-invasive study of the temporal, spatial and behavioral dependencies of brain activa-
tions. The basis of fMRI lies in the fact that deoxyhemoglobin (the hemoglobin without a
bound oxygen molecule) is paramagnetic. Neural activation in the cerebral cortex leads
to an increase of blood flow, hence to a decrease of deoxyhemoglobin concentration.1

This results in a measurable alteration of the magnetic field and in a consequent in-
crease of signal intensity in the appropriately weighted MRI images (blood oxygen-level
dependent, BOLD). It is therefore difficult to compensate for the unwanted magnetic
field inhomogeneities induced mainly by the spatially varying magnetic susceptibility of
the subject [80]. In contrast to conventional MRI, where the number of excitations per
slice is equal to the number of scan lines, in EPI the magnetic field gradients have to
encode two coordinates simultaneously in one excitation. As one of the gradients (the
so-called phase-encoding gradient) is several orders of magnitude weaker than the other,
the inhomogeneous magnetic field will manifest itself mainly as a geometrical distortion
of the 2D slice image along the direction of this gradient. This effect is clearly visible
in Figure 4.1. Since the stronger gradient is less affected, the distortion is essentially
unidirectional. Letting g be the unknown warping (deformation) function, we have

fo(g(x, y), y) ' fu(x, y) (4.1)

where fo is the observed EPI image and fu is the hypothetical ideal undistorted EPI
image. We can consider each slice separately, as the shift in the z axis due to patient’s
movement is insignificant because his head is attached. Should there be such a displace-
ment, it can by readily corrected by existing algorithms [31].

4.2.2 The reasons to unwarp

The amplitude of the deformation g can be as large as 3–5 mm [81] (confirmed by
our own observations), which typically amounts to several pixels. In some cases, as
in Figure 4.1, specifically intended to illustrate EPI distortion, the deformation can be
even more pronounced. Moreover, g can vary significantly from slice to slice and from
acquisition to acquisition. For localization applications like stereotactic surgery, this

1This effect prevails over the increase of oxygen consumption.
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Figure 4.1: Demonstration of EPI distortion. Selected EPI brain slices taken with two
different phase-encoding gradient orientations: anterior-posterior for the upper row and
left-right for the bottom row. The vertical, resp. horizontal deformation of the upper,
resp. bottom row images is clearly visible.
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inaccuracy is much larger than the required limit of 1 mm and therefore EPI cannot
currently be used to this end. It also severely hinders the performance of the statistical
processing of sets of fMRI images used to obtain activation information. Since the task-
induced signal changes represent typically only 5–10% of the mean signal intensity in
fMRI [79, 82], they will not stand out clearly unless the perturbations caused by the
deformation g are undone.

4.2.3 Existing distortion correction techniques

One approach consists in changing the acquisition procedure [80, 81, 83]. However, this
is often not practical due to technical or organizational limitations, for example lack of
support or approval. Furthermore, while the alternative acquisition sequences reduce the
distortion, the distortion is never removed completely, and the methods usually sacrifice
either sensitivity or acquisition speed.

The second group of methods uses a two-step procedure [81, 84]. First, a field map
or a deformation map is obtained, e.g., from an image of a phantom. In the second step,
this information is used to compensate for the deformation on real images. The major
drawback of these methods is that it is impractical to build a phantom that would exactly
duplicate the biological system being imaged [81], which limits the compensation only
to field distortions other than those caused by the individual subject. Moreover, these
other distortions are most likely already compensated for by the scanner manufacturer
or operator.2

4.2.4 Unwarping by registration

We propose a third approach which, to the best of our knowledge, has never been applied
to this particular problem. It consists of registering the distorted EPI image with a cor-
responding geometrically correct anatomical MRI image. In this way, we can recover
the deformation g from a single EPI slice obtained by an unaltered, standard procedure.
The registration can be performed manually [15], but this is tedious, time consuming,
and prone to errors. An automatic procedure is advantageous, because it is faster, more
precise, and does not require an expert.

Our goal in this Chapter is to present an automatic registration algorithm we have
developed specifically for this problem; i.e., identifying a non-linear unidirectional two-
dimensional warping. More precisely, given the observed EPI slice f o and the corre-
sponding undistorted anatomical MRI reference slice f r, the task is to find a warping
g so that the warped test image f o(g(x, y), y) matches as well as possible (in a sense
defined later) the reference image f r.

2This procedure is called shimming and is generally repeated before each series of acquisitions.
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4.3 Proposed algorithm

We categorize registration algorithms according to the warp space used. In general,
a deformation function gV from a warp space V is described by a finite set of parameters
ck by means of a warping model.

At one end of the scale we have non-parametric, local methods. These methods are
formulated either as variational, defining a scalar criterion to minimize, or (more gen-
erally) using PDEs. The continuously defined correspondence function that minimizes
a given criterion (resp. that solves a given PDE) is sought for in a very large and un-
restrictive function space, e.g., the Sobolev space W 2

2 . The essence of these methods
is entirely in the criterion (resp. PDE). The PDE come from the optical flow approach
(gradient methods) [22], viscous fluid model [23–25], elastic deformations with physi-
cal analogs [3, 26] or without [27]. Some elastic deformations can also be modeled as
potential fields [28].

At the other end, we have parametric, global methods that describe the correspon-
dence function using a global model with a relatively small number of parameters [30].
The model mostly consists of expressing the warping function in a linear [31], global
polynomial [32, 85], or harmonic basis [33]. For these methods, the deformation model
corresponding to a specific warp space is as important as the criterion being minimized.

In this article, we consider mainly intensity-based registration methods, which directly
take into account the voxel values, c.f. [86]. Other methods are based on matching
surfaces [86–88], curves [89], or interpolating landmarks using radial basis functions,
especially thin-plate splines [14, 38, 42, 86].

4.3.1 Semi-local model

The model proposed in this article is situated between the above-mentioned local and
global methods, combining the advantages of both.

We parametrize the warp space by a scale parameter h and denote it Vh. The scale
parameter corresponds loosely to the density of knots or landmarks. By changing h,
we can approach either of the two limit cases or choose a compromise offering the best
tradeoff. Big h yields a global model which has just a few parameters. Such a model is
rather constrained, which is approximatively equivalent to strong explicit regularization.
On the other hand, a small h gives a local model with many parameters, which generally
leads to more complicated optimization. In exchange, a small h generally permits one to
approximate any given g in Vh well, because the space Vh is big. (Arbitrarily small preci-
sion can be achieved as h→ 0.) This roughly corresponds to weak explicit regularization.
Thus, the scale parameter can partly assume the role of an explicit regularization factor,
unlike in local methods where the regularization is a part of the criterion.

In the next section, we give our motivation for the algorithm and for our particular
choice of the warp model—uniform cubic splines represented by a linear combination of
cubic B-splines [4, 5].

49



4.3.2 Univariate case

For the sake of explanation, let us begin with the one-dimensional case; i.e., with the
task of recovering an univariate warping function g : R → R. An example of such
a function could be the affine map g(x) = αx + β. Such linear dependence is rather
frequently encountered in practice; for example, it arises when the acquisition techniques
use different coordinate systems or when there is a movement between acquisitions.

The univariate equivalent of our matching problem becomes f o(g(x)) ' f r(x). The
landmark method would consist of (either manually or automatically) identifying a set

of landmark pairs {(xrl , xol )}
L
l=1, so that a feature found at location xrl in the reference

image can be found (or associated with) a location xol in the observed test image. For
interpolation, this gives a set of L constraints for g: g(xrl ) = xol . To get a well-posed
problem, we shall require g to minimize some criterion J . We do not want J to penalize
linear dependencies, i.e., we want J to be zero for linear g. We want the resulting
g = arg min J to be linear with respect to the landmark coordinates {xol } and invariant
with respect to a linear (affine) transformation of {xrl }, which means that if we take
a linear combination of two sets of landmark coordinates, then the resulting g should be
the same linear combination of the solutions corresponding to the two sets of landmarks.
In other words, we want a solution that is invariant to the choice of a particular coordinate
system, or to the choice of units. The simplest criterion satisfying these requirements
is J =

∫
|g′′(x)|2dx, which is compatible with the elasticity theory, as it corresponds to

‘strain’ or ‘bending’ energy [14].
Besides interpolation, other approximation schemes can be applied, the most popular

being least-squares fitting. It consists of minimizing an extended criterion J ′ = J +
γ
∑

l (g(x
r
l )− xol )

2
. This has the advantage of accommodating uncertainty (noise) in

landmark positions.
For both interpolation and least-squares fitting, as well as for any other criterion of

the general form J ′ = J+
∑
l L(g(xrl ), x

o
l ) (with arbitrary function L), the function g that

minimizes the criterion can be shown to be a cubic spline [90, 91]; i.e., a piecewise cubic
function that is twice continuously differentiable, with knots (the boundaries between
polynomial pieces) at points {xrl }. In Appendix 4.6.1, we show that the solution can
be expressed as a linear combination of radial basis functions |x − xl|3. However, these
functions are not convenient to work with because of their instability and global support.
Fortunately, it is possible to localize the |x − xl|3 functions using divided differences,
which yields a base made of cubic B-splines with local support that generates the same
space [74].

The automatic landmark method is rather difficult to apply because there is no au-
tomatic landmark detection algorithm available that would be sufficiently robust and
precise, especially for our class of medical images which typically exhibit only a few dis-
tinct features. Moreover, it is difficult to automatically find common features in both
anatomical MRI and EPI modalities. For this reason, instead of trying to work with
landmarks, we introduce a data criterion E (defined in section 4.3.4) taking into account
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the entire image and measuring the discrepancy between the warped version of the ob-
served image fo(g(x)) and the reference image f r(x). Then, we seek a deformation g
such that the two images are as similar as possible, i.e., when E is minimized.

For the reasons mentioned above, we choose to search the warping g also in the cubic
spline space, like in the landmark case. However, there are now no explicit landmarks
available to put the knots on. We also do not know, how much useful information each
part of the image can provide. Therefore, we will distribute the knots uniformly over
the image. It follows that the function g will be a uniform cubic spline, which can be
uniquely represented as a linear combination of uniformly-spaced cubic B-splines [4, 5]:

g(x) =
∑

k∈K

ck β3(x/h− k) (4.2)

where K is the set of the indices of the spline functions, the support of which intersects
with the image; h is the knot spacing (the B-splines will be centered at points kh for
k ∈ K ⊆ Z). Working with uniform splines is also significantly faster with respect
to non-uniform splines. See Appendix 4.6.2 for a definition of a cubic B-spline. Note
that, in order to get a complete control over g, it is useful to put some spline knots
‘outside’ the image. For cubic splines, we need to put one such exterior knot at each
side. Consequently, for an image size N and knot spacing h, we have N/h+ 2 knots.

We have thus transformed the registration task into a non-linear finite-dimensional
optimization problem: Find a set of coefficients c minimizing some criterion E.

4.3.3 Splines—a perfect fit

Let us now show several important properties of the spline model.

(a) Good approximation properties—The error of a cubic spline approximation decreases
asymptotically as h4 (measured by any Lp or lp norm, p ∈ {1, 2, . . . ,∞}). Quantita-
tive analyses indicate that splines perform well in comparison with other wavelet-like
basis functions [92].

(b) Speed—Cubic splines have a short compact support of length 4. They are symmetric
and piecewise cubic. To evaluate β3(x) at one particular point, only 5 arithmetic
operations (additions or multiplications) and 3 comparisons are needed. In multiple
dimensions, where we will use tensor products of cubic splines as basis functions
(see Section 4.3.5), the computational complexity stays low thanks to separability.
The number of operations needed to evaluate g also does not depend on the total
number of basis functions (and thus the number of parameters ck).

(c) Plausibility—The spline model corresponds to a wide range of physical situations
where the restoring force can be approximated as being linearly dependent on the
displacement. In such situations, the generated deformation is physically plausible.
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It is also a good approximation for cases when a better model is not known, such
as the deformation of EPI images, even though it is not of mechanical origins.

(d) Simplicity — The model is linear in the parameters ck and polynomial with respect
to the position x. It is thus possible to truncate the Taylor expansion such that it
is exact in some neighborhood of x with a typical diameter of h/2.

(e) Scalability—Thanks to the q-scale relation β3(x/q) =
∑

k ζ(k)β3(x − k), where
q ∈ N, we have the embedding Vhq ⊆ Vh; i.e., the transition from a coarse space Vhq
to a finer space Vh is exact [93].

4.3.4 Data criterion

A reasonable and most often ( [31]) used way to measure the discrepancy between two
images is the sum of squared differences (SSD) criterion

E =
∑

i∈I

(fo(g(i))− f r(i))2 (4.3)

where the sum is over all pixels in the image. Note that minimizing this criterion is
equivalent to calculating the maximum likelihood estimate of the unknown parameters
assuming that the difference is an i.i.d. Gaussian noise, and that the true test image
is indeed a geometrically distorted version of the reference one. Moreover, the SSD
criterion is also algorithmically advantageous because it is easy to evaluate (including
its derivatives) and because it depends smoothly on the parameters. Interpolation (cf.
Section 4.3.7) is needed to evaluate this criterion, as it calls for values of f o on generally
non-integer coordinates.

4.3.5 Bivariate case

The transition to the bivariate case is straightforward. The criterion becomes

E =
∑

i∈I

(fo(g(i))− f r(i))
2

(4.4)

where we have taken the convenient notation

g(i) = g(i, j) =

[
g(i, j)
j

]
(4.5)
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and where the warping function is now described by a two-dimensional array of coeffi-
cients

g(x) = g(x, y) =
∑

k∈K

ck β3(x/h− k) =

=
∑

(kx,ky)∈K

ckx,ky
β3(x/hx − kx)β3(y/hy − ky)

(4.6)

Tensor products of splines were also used in [94].

4.3.6 Optimization algorithm

The criterion is minimized with respect to the coefficients ck using a regularized version
of the Newton method [31, 50], inspired by the Marquardt-Levenberg algorithm. This
algorithm smoothly varies between the gradient-descent and the Newton approach, which
gives it robustness and quadratic convergence near the optimum.

The algorithm uses first two derivatives of the criterion E with respect to ck; i.e., ∇cE
and ∇2

c E. Thanks to the spline representation (4.2), the derivatives can be calculated
exactly and at a small cost. As the number of components each pixel contributes to
remains constant, the cost of evaluating E, ∇cE and ∇2

c E does not depend on the number
of coefficients ck (or, equivalently, the spacings hx, hy) used to describe the deformation.
See Appendix 4.6.3 for explicit formulas.

At each step we update the vector of all coefficients c to c + ∆c by taking

−
(
∇2
c E(c) + λI

)
∆c = ∇cE(c) (4.7)

where the regularization factor λ is divided by a constant λf if the previous step resulted
in a decrease in E, otherwise it is multiplied by the same amount.3 We iterate as long
as the relative and absolute change of E stay above a priori given thresholds.

When the number of coefficients exceeds a certain limit, the Hessian matrix ∇2
c E gets

too big for the linear equation set (4.7) to be efficiently solvable and this algorithm ceases
to be practicable. Note that the theoretical computational complexity of solving (4.7)
increases as h−6. The asymptotical memory requirements grow as h−4. While iterative
linear equation solvers generally speed up the solution of (4.7), it is at the cost of a loss
in precision, and the overall gain in our case is insignificant.

When the size of the Hessian matrix exceeds our computational capacities, we re-
place the Marquardt-Levenberg optimizer by a conjugate gradient method [50], which
converges quadratically too without explicitly calculating and storing the Hessian matrix.
Even though the conjugate gradient method needs more iterations for smaller problems,
it outperforms Marquard-Levenberg for bigger ones.

3We use λf = 10.
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4.3.7 Image interpolation model

To calculate the derivatives, as well as to evaluate the criterion (4.4), an image interpola-
tion model is needed to get a continuous form cf(x) from a discrete image f o(i). Because
of their good approximation properties, simple analytic form and effective algorithms
available, we use cubic B-splines here as well

cf(x, j) =
∑

i

bij β3(x− i)

where cf(i, j) = fo(i, j), ∀ (i, j) ∈ I (4.8)

The coefficients bij can be obtained prior to registration by an efficient filtering al-
gorithm [5], which incurs negligible overhead. For the filtering, we are using mirror
boundary conditions on the image; in this way we have the same number of coefficients
bij as there are pixels in the original image.

4.3.8 Multiresolution

The robustness and efficiency of the algorithm can be significantly improved by a mul-
tiresolution approach: The task at hand is first solved at a coarse scale. Then, the results
are propagated to the next finer level and used as a starting guess for solving the task at
that level. This procedure is iterated until the finest level is reached.

In our algorithm, multiresolution is used twice. First, we build an image pyramid :
a set of gradually reduced versions of the original image [95]. This pyramid is compatible
with our image representation (4.8) and is optimal in the l2-sense (i.e., in the sense of the
criterion (4.4)), which ensures that the approximation made by substituting the lower
resolution image is the best possible. Based on an image of size Nx × Ny, we create
a sequence of images with sizes MI = {(N1

x , N
1
y ), (N2

x , N
2
y ), . . . , (N

mI
x , NmI

y )}, where

NmI
x = Nx, N

mI
y = Ny, and where N j

x =
⌊
N j+1
x /2

⌋
, N j

y =
⌊
N j+1
y /2

⌋
. The optimum

starting size (N1
x , N

1
y ) depends on the image. We chose 16 < min(N 1

x , N
1
y ) ≤ 32, which

works well in most cases.

Second, we use multiresolution also for the warping function. We start with a de-
formation g described with very few parameters ck, and with a large distance h be-
tween knots. After the optimization of ck is complete, we halve the distance between
knots. This approximately corresponds to doubling the number of knots in each di-
rection, i.e., quadrupling the number of coefficients ck. Because of the two-scale spline
relation, we can exactly represent the warping function from the old, coarse space, in
the new, finer space. More precisely, the sequence of knot spacings is going to be
MW = {(h1

x, h
1
y), (h

2
x, h

2
y), . . . , (h

mW
x , hmW

y )}, where h1
x = Nx, h

1
y = Ny; the final ele-

ment (hmW
x , hmW

y ) corresponds to the user-chosen target grid size. The sequence obeys

hj+1
x = hjx/2, hj+1

y = hjy/2. The process starts with g being identity.
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Figure 4.2: The multiresolution strategy starts with a small version of the image (hor-
izontal axis) and a small warping control grid (vertical axis). After several steps, and
by augmenting resolution alternatively in the two domains, we reach the original image
resolution and the desired size of the control grid.

The global strategy that combines the two multiresolutions is depicted in Fig-
ure 4.2. Symbolically, to construct the double multiresolution M we first extend the
shorter of MI , MW to the length m = max(mI ,mW ) by repeating the last ele-
ment. Then, M consists of pairs of elements from MI , MW in alternate progression:
M = {(M1

I ,M1
W ), (M1

I ,M2
W ), (M2

I ,M2
W ), (M2

I ,M3
W ), . . . , (Mm

I ,Mm
W )}.

The consequence of using multiresolution is that the algorithm works best for im-
ages and deformations that follow the multiresolution model; i.e., when a low resolution
version is a good approximation of the finer resolution version.

4.3.9 Invertibility

We implicitly assumed that the deformation g is recoverable and recoverability requires
invertibility. In case the EPI artifacts cause the signal from adjacent pixels to blend
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due to the fold-over effect, the invertibility condition might not be satisfied and the
deformation is not recoverable. However, this does not happen in practice. To ensure
the stability of the registration, it is necessary to enforce the invertibility also on the trial
solutions during the optimization process, i.e., to perform constrained optimization. If
we assume that the deformation conserves orientation, the sufficient condition ensuring
local invertibility is the positivity of the Jacobian, det(∇xg) > 0, everywhere. In our
case, the invertibility condition reduces to ∀ (x, y) ∈ S; ∂g/∂x > 0, where S is the image
domain.

Although an iterative algorithm can be found verifying this condition exactly, it is
not practical to apply it for performance reasons. Instead of checking that ∂g/∂x > 0 on
a continuous domain, we sample this condition on pixel coordinates. At this scale, the
two conditions are essentially equivalent.

There is little hope of finding an algorithm capable of solving a constrained opti-
mization problem of our complexity (highly non-linear criterion, hundreds of parameters
and tens of thousands of constraints) in a reasonable time. We have therefore chosen to
convert the constrained search into an unconstrained one using an exponential penalty
cost function. A set of constraints

0 < up =
∂g

∂x

∣∣∣∣
(x,y)=p

(4.9)

is replaced by a penalty function Ep

Ep = γ
∑

p

e−αup (4.10)

Consequently, we will minimize the combined criterion

Ec = E +Ep (4.11)

The choice of the constants α and γ is a tradeoff between speed and precision. As
α increases, the penalty function gets steeper, which improves precision in the vicinity
of the constraints. At the same time, the criterion becomes highly non-linear, which
slows down the optimization. We set α and γ so that Ep ≈ E on the boundary of the
permissible space and Ep ≈ 10−5E for the initial configuration, when g is an identity.

4.3.10 Preprocessing

To apply the SSD criterion, we need to make the test and reference images more similar,
so that their difference after warping is as close as possible to white noise. We choose
therefore to apply a preprocessing step that consists of high-pass filtering and histogram
equalization. The effect can be seen in Figure 4.3.
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The preprocessing makes it unnecessary to add a special parameter accounting for
differences in intensity profiles of the two images. It also helps to compensate for the
intensity distortion due to in-plane dephasing, which is also caused by the magnetic field
inhomogeneity. The dephasing cannot be compensated completely, as it is impossible to
differentiate between effects of dephasing and warping on a single pixel.

4.4 Experiments

4.4.1 General comments

We tested the performance of our algorithm on several hundreds of images. In addition,
we compare to the automatic method the results of the registration of thirty image
pairs by three different people, including one experienced practitioner. For the manual
registration, we use the standard thin-plate spline method [14, 15, 45].

Unless stated otherwise, the tests are performed on 128×128 pixel spin-echo anatom-
ical MRI images of the brain, on a SUN Ultra workstation, and the published numbers
are arithmetical means of the results of experiments made on all of the 30 horizontal
slices of a brain volume. A typical pair consisting of corresponding anatomical and EPI
images is shown in the upper row of Figure 4.3.

4.4.2 Error measurement

As a main measure to compare different solutions to the registration problem, we use the
warping index defined in [31] as $ = 1

‖R‖

∑
i∈R |g(i)− g∗(i)|, where g∗ is the reference

solution (ideally, the true deformation), and R ⊆ I is the region of interest (in our case,
the interior of the brain). This corresponds to the mean per-pixel precision of the result.

We shall also use the sum of squared differences (SSD), as defined by (4.3). It mea-
sures the similarity of the reference and warped test images as perceived by the algorithm,
and corresponds to the quantity minimized.

4.4.3 Sources of error

There are several reasons why we cannot expect a perfect registration (indicated by
$ = 0).

1. Different images—Despite the assumptions made when deriving our criterion, the
images we are asked to register are not geometrically deformed versions of each
other. To this we must add the effects of discretization, quantization, and noise.
Any of them may result in spurious minima of the criterion E, misleading the algo-
rithm. This problem can be alleviated by preprocessing, or by choosing a different
criterion, but it can never be completely removed. The situation is more favorable
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Figure 4.3: An anatomical MRI image (top left) and a corresponding EPI image (top
right). Both images represent a horizontal slice through the middle of a human brain.
The bottom line shows the same images after preprocessing.
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when a small number of parameters is sought, for the random effects tend to cancel
out.

2. Local minima—The algorithm with its local vision cannot distinguish between lo-
cal and global minima of the criterion and can therefore get trapped in a local
minimum. Multiresolution improves significantly this aspect, but it does not solve
it entirely. Again, the situation is much more favorable for a small number of
parameters.

3. Warp space—The true warping does not necessarily belong to the warp space Vh.
We define $min as the minimum achievable registration error, which is equal to
the distance between the true warping and the closest point in the warp space
V . We call this closest point (which is the best possible approximation of g in V )
a projection PV g. In the L2 or l2 sense, it is equal to

∑
k µkϕk , where the coefficients

µk verify 〈g, ϕl〉 =
∑
k µk〈ϕk, ϕl〉, and where we have denoted the basis functions

by ϕk in order to simplify the notation. For other norms, iterative procedure must
be used. In a controlled experimental environment, we can thus calculate $min

exactly and compare it with the results of our algorithm.

4. Lack of details—The precision is limited by the local resolution of the images.
When two corresponding sharp edges occur in both images, sub-pixel registration
precision is often attainable. On the other hand, in homogeneous, texture-less
regions, there is little hope of recovering any information whatsoever.

5. Criterion surface complexity—Depending on the images being registered, the de-
pendence of the criterion on the parameters can be non-linear, non-convex, and
generally very complicated. In such a situation, the convergence is extremely slow.
If the time is limited, we must stop the algorithm before any significant improve-
ment has been realized.

6. Numerical precision—Insufficient numerical precision can hinder the performance
of the optimizer. We have encountered this problem only rarely, when iterative
methods were used to solve the normal equation set (4.7).

We have tried to design the experiments to separate the effect of the above-mentioned
factors whenever possible; however, this will rarely be the case in a real-life situation.

4.4.4 Deformation generator

To test our algorithm, we have implemented a wavelet-based deformation generator. We
want to generate a random Sobolev-type deformation—a deformation lying in a pre-
scribed Sobolev space W r

2 . The parameter r refers to the regularity. It is equal to the
number of derivatives in the L2-sense and it is also strongly related to point-wise differ-
entiability. The higher the r, the more regular are the functions from W r

2 . Wavelets are
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known to be good bases for functions lying in Sobolev spaces and the decay of wavelet
coefficients across scales is directly related to a Sobolev-type regularity. Let θj,k denote
the coefficients of a wavelet expansion4

g(x)− gI(x) =
∑

j,k

θj,k 2j/2ψ(2jx− k) (4.12)

where gI is an identity transform and ψ is an orthogonal wavelet. Then the displacement
g − gI belongs to a Sobolev space W r

2 if and only if

∑

j,k

22jr |θj,k|2 <∞ (4.13)

provided that the regularity of ψ is greater than r [69]. It follows that, for (4.13) to
hold, the necessary condition is

∃ C ∈ R; ∀ j, k; |θj,k|2 < C ξj with ξ = 2−2r (4.14)

Practically, we generate our deformations using zero-mean, normally distributed co-
efficients with variance

E
{
θ2j,k
}

= σ2
0 ξ

j (4.15)

where σ2
0 governs the total energy of the deformation. Such a deformation will be de-

noted WH(σ0, r), where the relation between r and ξ is given by (4.14). Note that the
generated displacements are white noise for r = 0, and become progressively smoother as
r increases. The regularity of the deformation converges to that of the generating wavelet
ψ for r → ∞. For moderate to large r, we get a hierarchical warping: a deformation
comprising displacements at several scale levels with gradually decreasing amplitudes,
from important large-level deformation towards progressively smaller finer-level details.
The algorithm should work well for such deformations which are compatible with the
multiresolution strategy.

Finally, the deformation can be projected onto Vh if needed, in which case we de-
note it WH(σ0, r, h). Typically, we use Battle-Lemarié wavelets of order 4, σ0 = 5 and
r = 0.5 ∼ 1.6, depending of what aspect of the algorithm we want to highlight. For
some experiments, we have also added an affine component. Examples of generated
deformations are shown in Figure 4.4.

4.4.5 Ideal case

We begin our series of experiments with an ideal case: the test (f o) and reference (f r)
images are identical except for a known transformation, no noise is present. We use

4For brevity, we shall deal here with the unidimensional case only.
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Figure 4.4: Examples of deformation presented as contour plots. The top row ones were
generated with WH(10, 1.6), the bottom ones with WH (10, 0.6).
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Figure 4.5: The quality of the registration as a function of the warp spline degree and
the knot spacing. The initial values ranges (prior to the registration) were E = 150 and
$ = 3.5. Each point shown is an average of thirty experiments using the anatomical
image from Figure 4.3.

a random Sobolev deformation WH(5, 1.6, 8) as defined in the previous section. We show
how the criterion E and the warping index$ decrease with the knot spacing h. Moreover,
we want to demonstrate the advantage of using cubic splines to represent the warping,
as opposed to linear and quadratic ones5 (Linear splines are sometimes used for motion
estimation [35, 53].)

Figure 4.5 displays E and $ as a function of the degree n of the splines used to
represent the deformation g, and the knot spacing h. It clearly shows the benefit of using
a high degree n in high-precision applications. The minimum achievable error $min (cf.
Section 4.3.3b) is shown by a dotted line for the cubic case and marked optimal.

4.4.6 Image interpolation order

As many other registration algorithm use only linear interpolation on the image, we want
to show in this experiment that higher-order image interpolation is advantageous from
the point of view of both precision and speed.

Table 4.1 demonstrates the dependency of the registration accuracy and speed on the
degree ni of the splines used for image interpolation. As a deformation, we have chosen
WH(5, 0.5, 64). The stopping criterion was identical in all cases.

Besides providing a less accurate approximation, linear splines are penalized by not

5For splines of even degrees, there is an additional shift term of 1/2 in (4.2), e.g., β2(x/h− k + 1/2),
which minimizes the number of knots needed. Other changes are straightforward.
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Table 4.1: The quality of the registration as a function of the image interpolation spline
degree. The warping function was interpolated by cubic splines.

h 32 16
ni before 1 2 3 1 2 3

E 113.4 2.53 1.84 1.50 1.12 1.00 0.58
$ 2.93 0.130 0.111 0.098 0.074 0.067 0.057

time [s] 1010 766 69 1983 1500 103

providing a meaningful second derivative estimate of the image, which forces us to use
the slower conjugated gradient algorithm in place of the Marquardt-Levenberg optimizer.

The table shows that, although all results are accurate to a fraction of a pixel, the
convergence speed varied a lot. This proves that the benefit from better approximation
properties of higher-order splines with respect to linear, or even quadratic ones, indeed
overweights the increase in computational complexity per iteration. This is consistent
with other findings in the literature [31]. Being able to better estimate the image
derivatives ∇x

cf , one is able to better estimate the criterion derivatives ∇cE and ∇2
c E.

This permits the optimization algorithm to acquire a more precise local model of E(c),
which in turn leads to more efficient optimization steps and faster convergence. The
ability to precisely represent an image from a few samples is crucial at coarse levels of
the image pyramid. The iterations there are relatively inexpensive compared to finer
levels because we process much less data; it is therefore beneficial to get as close as
possible to the optimum. In this manner we provide a good starting estimate for the
next finer level, where each iteration costs at least 4 times more, and thus saving the
overall effort.

4.4.7 Noisy case

Figure 4.6 demonstrates the dependence of the registration accuracy on the signal-to-
noise ratio. For this series of experiments, the test images were obtained from a known
transformation of a reference image with a various level of white Gaussian noise added.
Here, an in-space deformationWH(5, 1.16, 32) was used. We observe that the degradation
of the algorithm’s performance is graceful for SNR > 10 dB.

4.4.8 Out-of-space deformation

This experiment illustrates the behavior of the algorithm as the deformation progressively
moves out of the warp space. Specifically, we have used WH(5, 0.5, 32) + αW ′

H (5, 0.5)
with 0 ≤ α ≤ 1, where the first term corresponds to the in-space part of the deformation
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Figure 4.6: The quality of the registration as a function of the SNR in dB. h = 32,
$before = 3.34. The error bars mark one standard deviation.

and W ′
H is the displacement associated with WH , i.e., WH − gI . Figure 4.7 compares the

attained and theoretically attainable warping index and the corresponding SSD.

It can be seen that, the experimentally recovered deformation is almost as close to
the true one as theoretically possible, with the exception of α = 0; i.e., a deformation
lying exactly in the warp space. On the other hand, we obtain mostly a smaller SSD than
what corresponds to the projection. This demonstrates that the relationship between the
criterion we optimize (E) and the true error we make ($) is far from straightforward:
the minimum of the difference (E) does not correspond exactly to the true solution as
measured by $. We will see this sort of behavior in Section 4.4.10, too.

4.4.9 Multiresolution strategy

In Table 4.2, we compare three multiresolution strategies: the strategy actually used,
a strategy without multiresolution in the image size, and a strategy without multires-
olution in the warping grid size. The results show that both multiresolutions improve
accuracy as well as speed of the algorithm because they reduce the amount of data to be
treated and provide a smoothed version of the problem.

Multiresolution in the warp grid size significantly improves accuracy because it avoids
that the algorithm is trapped in a local minimum. The multiresolution in the image size
reduces the amount of data to be treated and consequently also the execution time,
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Figure 4.7: Warping index (left) and SSD (right) for an out-of-space deformation. The
mean initial values (prior to the registration) ranged between E = 146, $ = 2.8 for α = 0
and E = 181, $ = 3.47 for α = 1. Error bars show one standard deviation.

mainly for coarse control grids.
The joint strategy combines the advantages of both multiresolutions and yields the

best results.

4.4.10 Artificial EPI images

By filtering and performing histogram modification of the anatomical MRI images, we
obtain images that are visually equivalent to the corresponding EPI images (compare
Figures 4.8 and 4.3) and we use them as test images. We warp the anatomical images
with a known deformation WH(5, 0.9) and use them as reference images.

The reference/test image pairs are registered automatically as well as manually using
the landmark method by 3 people, including one experienced practitioner. The results
are presented in Table 4.3. For the manual case, the best results obtained (in the sense
of $ among all the attempts of all the participants) are shown. The column marked ideal
shows the minimum attainable warping index $min, given the fact that the target defor-
mation does not belong to the space searched by the algorithm. The results demonstrate
that the automatic method is vastly superior to the manual one.

4.4.11 Real EPI images

Figure 4.9 shows a typical pair of corresponding anatomical and EPI images with su-
perimposed contours of the anatomical image before and after manual and automatic
registration. It illustrates that the automatic procedure leads to subjectively compara-
ble or better results than the manual one.
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Table 4.2: Different multiresolution strategies. Image size is denoted by N , grid spacing
by h. From top to bottom: joint, image size only, and warp grid size only multiresolutions.

Warping index before registration $ = 9.3.

h 128 64 64 32 32 16
N 32 32 64 64 128 128
$ 0.43 0.40 0.15 0.15 0.0038 0.0029 total

time 2.2 2.0 29.0 1.2 20.0 23.2 78

h 16 16 16
N 32 64 128
$ 1.40 0.86 0.69 total

time 14.0 27.1 129.8 171

h 128 64 32 16
N 128 128 128 128
$ 0.145 0.0043 0.0038 0.0031 total

time 164.9 101.6 24.6 34.4 326

Figure 4.8: Artificial EPI image
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Figure 4.9: Anatomical (top-left) and EPI (top-right) images before registration, with
superimposed contours from the anatomical images. EPI image after automatic (bottom-
left) and manual (bottom-right) registration.
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Table 4.3: Manual versus automatic registration. $ is the warping index, E is the
mean-square difference.

before manual automatic ideal true

$ 2.60 1.01 0.44 0.19 0
E 246 178 161 163 162

time ∼ 5 min ∼ 30 s

4.5 Conclusions

We have suggested a new approach for undoing non-linear unidirectional deformations in
EPI images. We proceed by registering them with corresponding geometrically correct
anatomical MRI images. We have developed a fully automatic image registration algo-
rithm specialized for this task. Our technique increases the geometrical precision of EPI
images and thus improves the quality of information obtainable from these images. This
will allow the use of EPI images in many clinical and diagnostic applications where they
could not have been used previously, as well as to increase their usefulness in existing
applications.

As an additional benefit, our method can be extended to compensate for other causes
of geometrical distortion of EPI images besides imperfect magnetic field, such as heart
beat and respiration. (In this case, we would look for bidirectional warping.)

The novelty of our registration algorithm stems from a high-order spline model for the
warping. It has good approximation properties and lends itself well to a multiresolution
approach, while permitting an efficient implementation. We have also taken advantage
of a spline model for the image being warped, leading to a second dimension of the
multiresolution strategy, and yielding additional computational savings. Finally, we have
replaced the customary regularization criterion by a scale parameter of the search space.

We have also presented many experiments to demonstrate the performance of our
algorithm.6 We plan to carry out more clinical experiences to prove conclusively the
potential of our method in a real-world setting.

4.6 Acknowledgment

We thank the anonymous reviewers for bringing to our attention a recent conference
report [36], which describes a similar approach to ours and that was published after
this manuscript had been submitted, at about the same time as our own conference
report [2].

6An online demonstration of our algorithm is available on our WEB page ‘http://bigwww.epfl.ch/’.

68



Appendix

4.6.1 Optimality of the Cubic Spline Model

The landmark fitting from Section 4.3.2 is mathematically equivalent to the smoothing
spline problem frequently encountered in statistics [96]. We present here an informal
derivation of the variational property of cubic splines. We use an original Fourier-based
technique which is instructive and concise.

Consider the following approximation problem: Given a set {(xi, yi) ∈ R2} and a func-
tion L : R2 → R, find a function g : R → R minimizing the functional criterion

J ′(g) = J(g) +
∑

i

L(g(xi), yi) with J(g) =

∫
|g′′(x)|2dx (4.16)

It is not difficult to show that the solution of this problem belongs to the same class
as a solution of the interpolation problem, that would consist of finding g minimizing J(g)
under the constraints g(xi) = zi, equivalent to landmark interpolation from Section 4.3.2.
We will therefore concentrate on the interpolation case here.

Using the Lagrange multiplier method, we construct an augmented criterion

Jλ =

∫
|g′′(x)|2dx− 24

∑

i

λi (g(xi)− zi) (4.17)

We then express Jλ in terms of ĝ(ω), the Fourier transform of g

Jλ =
1

2π

∫
ω4|ĝ(w)|2dω − 24

∑

i

λi

(
1

2π

∫
ĝ(ω) e−jωxidω − zi

)
(4.18)

where we have used ĝ(ω) = ĝ(−ω). To find an optimal ĝ(ω), we differentiate Jλ with
respect to ĝ(ω) and we impose the first order change to be zero:

∆Jλ = 2 Re

(
1

2π

∫
∆ĝ

(
ĝ ω4− −12

∑

i

λie
−jωxi

)
dω

)
= 0 for all ∆ĝ(ω) (4.19)

This gives

ĝ =
∑

i

λi
12 e−jωxi

ω4
(4.20)

By interpreting e−jωxi as a phase shift, we get

g(x) =
∑

i

λi %(x− xi) (4.21)
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where % is the inverse Fourier transform of 12/ω4, which gives a general form of all solu-
tions to our interpolation or approximation problems as

g(x) =
∑

i

λi|x− xi|3 (4.22)

The basis function |x|3 is twice continuously differentiable and piecewise cubic. Hence,
g is a cubic spline. In order to be complete, this solution needs to be augmented by
a linear term generating the null space of J . For a rigorous treatment and generalization
to multiple dimensions, we refer to [45].

4.6.2 B-Splines

A B-spline βr of degree r is recursively defined as

βr = βr−1 ∗ β0 for r > 0

β0(x) =

{
1 if x ∈ (− 1

2 ,
1
2 )

0 otherwise

B-splines as defined above have a compact support (−r/2 − 1/2, r/2 + 1/2), are
symmetric, and are (r − 1)-times continuously differentiable. Specifically,

β3(x) =





2/3− (1− |x|/2)x2 if 0 < |x| ≤ 1

(2− |x|)3/6 if 1 < |x| < 2

0 otherwise

(4.23)

4.6.3 Explicit Derivatives

Given E by (4.4),(4.6), and (4.8), let us express the components of ∇cE and ∇2
c E.

∂E

∂ck
= 2

∑

i∈I

ei
∂ei
∂ck

where ei = cf(g(i))− f r(i) (4.24)

∂ei
∂ck

=
∂ cf

∂x

∣∣∣∣
x=g(i)

· ∂g
∂ck

∣∣∣∣
x=i

= (4.25)

= β3 (i/h− k)
∑

q

bqjβ
′
3(g(i)− q) (4.26)

(4.27)
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where i = (i, j), and the summation across q only needs to be performed within the
support of β′3 of length 4. The second derivatives are

∂2E

∂ck∂cl
= 2

∑

i∈I

(
∂ei
∂ck

∂ei
∂cl

+ ei
∂2ei
∂ck∂cl

)
(4.28)

∂2ei
∂ck∂cl

=
∂2 cf

∂2x

∣∣∣∣
x=g(i)

∂g

∂ck

∂g

∂cl
+
∂cf

∂x

∂2g

∂ck∂cl︸ ︷︷ ︸
0

(4.29)

∂2ei
∂ck∂cl

= β3 (i/h− k)β3 (i/h− l)
∑

q

bqjβ
′′
3 (g(i)− q) (4.30)

which is easy to calculate because many terms can be reused from the calculation of the
first derivatives.
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Chapter 5

Fast Multidimensional Elastic

Image Registration

5.1 Abstract

We present an algorithm for fast elastic multidimensional intensity-based image regis-
tration. It is fully automatic in its default mode of operation. In the case of hard
real-world problems, it is capable of accepting expert hints in the form of soft landmark
constraints. Much fewer landmarks are needed and the results are far superior compared
to pure landmark registration.

Particular attention has been paid to the factors influencing the speed of this algo-
rithm. The B-spline deformation model is shown to be computationally more efficient
than other alternatives. We also present the concept of subspace optimization. As par-
ticular case, we consider representing the deformation in a sparse wavelet basis.

We demonstrate the evolution of the registration process for the task of registering
2D slices of anatomical MRI images of the brain warped with a known deformation. We
present an application of the algorithm for registering ECD SPECT images for realign-
ment of corresponding Xenon inhalation SPECT images. Another application involves
analysing heart motion from a sequence of 2D ultrasound images.

5.2 Proposed algorithm

The algorithm presented here is a combination of ideas from preceding chapters. First, it
is a generalization of the unidirectional registration algorithm from Chapter 4 to multiple
dimensions. The deformation model has not only been generalized but also re-engineered
for faster execution. The optimization algorithm has been changed to yield faster conver-
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gence in the initial part of the optimization. Second, we recognize that for some difficult
problems the fully automatic registration may fail. This is to say that it converges to
a solution that minimizes the criterion but which does not correspond to the true cor-
respondence of the underlying physical objects shown in the images. Hence, using the
idea of landmarks from Chapter 3, we ask an expert to identify a small number of corre-
sponding points in both images. We introduce virtual springs connecting the identified
points and add a corresponding term (spring potential energy) to the data part of the
criterion. This steers the algorithm towards the correct solution which would not have
been found otherwise.

5.2.1 Organization of this Chapter

In the remainder of this section, we describe the concept of registration by minimization,
the B-spline image model, the structure of the deformation model, and the difference
measure. In Section 5.3 we justify our choice of B-splines as basis functions for the
deformation model. We present the optimization method in Section 5.4, where we also
describe the multiresolution strategy. Section 5.5 is devoted to the semi-automatic mode
incorporating landmark information into the global criterion. We deal with implementa-
tion issues in Section 5.6 and present experiments and applications in Section 5.7.

5.2.2 Registration as minimization

The input images are given as two N -dimensional discrete signals fr(i) and ft(i) where
i ∈ I ⊂ ZN and I is an N dimensional discrete interval representing the set of all pixel
coordinates in the image. We will call them reference and test images, respectively. We
suppose that the test image is a geometrically deformed version of the reference image,
and vice versa. This is to say that the points with the same coordinates in the reference
image fr(x) and in the warped test image fw(x) = f ct

(
g(x)

)
should correspond. Here

f ct is a continuous version of the test image and g(x) is the deformation function to
be identified. The two images fr, fw will not be identical because of noise and also
because the assumption that there is a geometrical mapping between the two images is
not necessarily correct. Therefore, we define the solution to our registration problem as
the result of the following minimization:

g = argmin
g∈G

E
(
fr, ft(g(x)

)
(5.1)

where G is the space of all admissible deformation functions g and E the criterion being
minimized. Graphically, the flowchart of our algorithm is shown in Figure 5.1.
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deformation

optimization

test image

reference image

deformed image

difference

criterion E

deformation function g(x)

Figure 5.1: The flowchart of the registration algorithm. A warping function g is sought
minimizing a difference between a reference image and a deformed version of the test
image.
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5.2.3 Image model

We suppose that the discrete test image is a sampled version of a continuously-defined
image f ct (x). That is to say

ft(i) = f ct (i) for all i ∈ I ⊂ ZN (5.2)

We need to specify an image model to reconstruct the continuous images. In accordance
with Chapter 4, we choose to interpolate the image using uniform B-splines:

f ct (x) =
∑

i∈Ib⊂ZN

biβni
(x− i) (5.3)

where βn is a tensor product of centered B-splines of degree n:

βn (x) =

N∏

k=1

βn(xk) (5.4)

with x = [x1, . . . , xn]. In this way, we are representing by B-spline coefficients bi the
image initially given by its samples ft(i).

5.2.4 Deformation model structure

So far, we have considered the deformation function g to be an arbitrary admissible
function RN → RN . We will restrict it now to a family of functions described by a finite
number of parameters c. This transforms a variational problem (5.1) into a much easier
finite-dimensional minimization problem. Moreover, the restriction of the family G of all
possible functions g can already guarantee some useful properties, such as the regularity
(smoothness) of the solution.

For the moment, we describe the deformation by a general linear model

g(x) = x +
∑

j∈J

cjϕj(x) (5.5)

where J is a set of parameter indexes and ϕj are the corresponding basis functions.
Adding x in the above equation makes the set of zero parameters correspond to identity,
which seems to be a reasonable behaviour. The choice of the functions ϕj will be discussed
in Section 5.2.4.

5.2.5 Difference measure

Various measures E can be used to evaluate differences between the warped test image fw
and the reference image ft. The fundamental requirement is that E should be minimal
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when the images are aligned. This is generally impossible to guarantee unless the images
are the same or known. Nevertheless, if we consider the images to be realizations of the
same stochastical process with known properties, we can often find a criterion which is
minimal in a well-defined statistical sense when the images are aligned. For example, if
we suppose that fr is a deformed (warped) version of ft with i.i.d. (independent and
identically distributed) Gaussian noise added to each pixel, then the criterion giving the
optimal solution g in the ML (maximum likelihood) sense is the SSD (sum of squared
differences) criterion

E =
1

‖I‖
∑

i∈I

e2i =
1

‖I‖
∑

i∈I

(
fw(i)− fr(i)

)2
(5.6)

where the summation is taken over all pixels in the reference image. We have used this
criterion for all our applications because it is fast to evaluate and yields smooth criterion
surface which lends itself well to optimization. It proved to be robust enough, especially
if preprocessing was used to equalize the image values (see Chapter 4 for an example).

In principle, there is no difficulty in extending our method for more sophisticated
pixel-based similarity measures, such as information-based measures [97], especially
mutual information [41], or weighted `p norms.

5.3 Choosing the deformation basis

The purpose of this section is to motivate our choice of (cubic) B-splines (Chapter 4) as
the most adequate basis functions ϕj to represent the deformation in model (5.5). The
alternative possibilities that come to mind are polynomials [32], harmonic functions [33,
34], radial basis functions (Chapter 3), and wavelets [55, 56, 98].

It is highly desirable to have as few basis functions as possible to contribute at
each particular point, while keeping the approximation quality, of course. First, short
basis functions have small overlap. This reduces the interdependency between the coef-
ficients (parameters) and consequently makes the minimization problem easier to solve.
Small overlap also makes the Hessian more sparse and therefore potentially faster to
invert.

Second, the size of the support of the basis functions directly influences the speed
of the calculation. To evaluate a function at Npix points costs O(NpixNsupp) opera-
tions, where Nsupp is the number of functions contributing to a single point.1 The cost
of evaluating the gradient of the criterion with respect to the coefficients is higher but
asymptotically equivalent. The cost of evaluating the Hessian is O(NpixN

2
supp) opera-

tions. (See also Section 5.6.1.)

1We assume that the cost of evaluating the basis function itself is constant since those can be precal-
culated.
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(a) (c)

(b) (d)

Figure 5.2: The basis functions involved in evaluating of the value of a 1D function at
one point (denoted by a vertical line): radial basis functions (a), harmonic functions (b),
B-splines (c), wavelets (d).

We depict the various candidate generating functions and their support in Figure 5.2.
Except for the Fourier basis, we choose basis functions of the same degree (cubic), gen-
erating the same space. We see clearly that the least number of contributing functions
(4) is in the B-spline case. This effect turns out to be even more dramatic in higher
dimensions.

The reasoning above rules out the polynomials and radial basis functions because no
fast algorithm is known for their evaluation and the brute-force evaluation is slow due to
their long support. We decided against the harmonic (Fourier) basis functions because
of their lack of localization (the fact that any two of them overlap). Note that this is
the case even though the Fourier base is orthogonal in the classical (L2) sense; here we
weight the scalar product with arbitrary image dependent weights. (See Section 5.6.1 for
a formula.) Another argument against the Fourier basis is that it cannot express linear
functions (affine deformations). The only two remaining candidate basis are therefore
B-splines and wavelets.
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5.3.1 Splines versus wavelets

To make a fair comparison between B-spline and wavelet bases, we consider compactly
supported cubic B-spline wavelets [99] spanning the same space as cubic B-splines.

First, let us analyze the task of evaluating the deformation at a single point. There
are four participating B-splines alltogether while there are four participating B-spline
wavelet at each level. Given that the complexity of one generating function evaluation
is comparable (both are piecewise polynomial), B-splines win.

Second, to evaluating the deformation at a regular grid, we can use an iterative
filterbank algorithm (such as Mallat’s FWT [69]) in both cases. The number of iterations
needed is the same, but the filters are longer in the wavelet case. Therefore, the B-spline
representation is better again.

The complexity of evaluation of the gradient of the criterion corresponds to the com-
plexity of the evaluation of the deformation because the same type of formula is involved
(see Section 5.6.1) plus a constant cost independent on the deformation model.

In multiple dimensions, the differences are even more striking. This comparison can
be refined but the overall conclusion remains the same: B-spline basis is much more
computationally efficient than the equivalent wavelet basis.

5.3.2 B-spline deformation model

The B-spline deformation model is obtained by substituting a scaled version of the B-
spline in (5.5)

g(x) = x +
∑

j∈Ic⊂ZN

cjβnm
(x/h− j + d) (5.7)

where nm is the degree of splines used, h is the knot spacing and d the knot offset. This
corresponds to placing the knots on a regular grid over the image. Similar to the image
case, βnm

here represents an N -dimensional tensor product of B-splines (see (5.4)). The
principal difference from our previous work (Chapter 4) is that here we require the node
spacing h to be integer. This restricts the generality of the model somewhat and also
limits the liberty of scale changes we need for the multiresolution approach. However,
the big advantage is that the B-spline values involved in the interpolation (5.7) repeat
with period h when evaluating for integer values of x. Therefore, the values of g are
a discrete convolution of the h-upsampled coefficient values c with the values of a B-
spline evaluated with a sampling step 1/h. Moreover, the convolution can be performed
in a separable manner.

To evaluate g at one point we would normally need to evaluate a B-spline for N(nm+
1) different values and calculate a linear combination of the (nm+1)N resulting products.
However, as h is now integer, we can precalculate the B-spline values in advance. Thanks
to the separability, we can evaluate g with the cost of only N(nm + 1) multiplications
per pixel, and this irrespective of the grid size.
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The B-spline model has good approximation properties and is fast to evaluate. It is
also physically plausible and scalable in the sense that a coarse level deformation can be
represented exactly at finer levels (see also Section 5.6.4).

A remarkable feature of the B-spline model (5.7) is that the complexity of evaluating
the deformation, and the gradient and the Hessian of the criterion, does not depend on
the sampling step h, or equivalently, on the number of parameters. This can be seen
from the fact that one pixel in the image always contributes to a fixed number of gradient
(or Hessian) components.

5.3.3 Subspace optimization

One of the potential advantages of a wavelet deformation model is the ability to selectively
add finer basis functions in specific regions. In this way the deformation model can be
made more flexible where enough data is available while remaining constrained elsewhere.
To achieve the same effect, we propose to work with a B-spline representation at the finest
level. The deformation is described using B-spline coefficients c that we constrain to live
in some subspace, parametrized by a different set of coefficients d. We have a linear
relationship between the two sets of coefficients:

c = Wd (5.8)

(Note that c, d are here considered as 1D vectors of all parameters.) The matrix W is just
a symbol, it should not actually be stored explicitely, because full matrix multiplication
would destroy the efficiency we are after.

The gradient with respect to d is

∇dE = WT∇cE (5.9)

The advantage of our approach is computational efficiency. Note that if W is a wavelet
transform, its transpose WT can be calculated by reverting the dataflow in the filterbank
algorithm, using the same filters. After calculating the gradient using (5.26), we only
need to perform WT on the gradient ∇cE which is much smaller than the image.

The relation (5.8) is very general and comprises much more than just wavelets. All
cases of optimization in linear subspaces can be cast into this framework. In principle,
we could use tools like principal component analysis (PCA) to analyze most likely defor-
mation modes and search only among them [100]. We may also use (5.8) to remedy for
what may be perceived as a limitation of our spline model: the uniformity of the grid.
With the subspace approach, we can selectively coarsen the deformation model, while
keeping the low-level uniform control grid for computation. In many cases, this will be
the most efficient way to approach the task.
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5.4 Optimization strategy

5.4.1 Optimization algorithms

Given our deformation model (5.5), the minimization (5.1) becomes

c = arg min
c
Ec (5.10)

where Ec is the complete criterion (see e.g., (5.33)) to be optimized and c are the pa-
rameters describing the deformation function (5.7). This is a classical finite-dimensional
non-linear optimization problem for which numerous algorithms exist [50]. We have
almost exclusively considered local iterative algorithms, which is well justified thanks to
the smoothness of our criterion. (One example of an algorithm which is not local is the
genetic algorithm.)

All these algorithms can be cast in a common framework. They start with an initial
estimate c(0). Then a sequence of steps is repeated until convergence. At each step we
take the actual estimate c(i) and calculate a proposed update ∆c(i). We then evaluate
the criterion at the new proposed point, Ec(c

(i) + ∆c(i)), and test if the criterion value
has improved. If the step is successful, that is, if Ec(c

(i) + ∆c(i)) < E(c(i)), then the
proposed point is accepted, c(i+1) = c(i) + ∆c(i). Otherwise, new, more conservative
update ∆c(i) is calculated, and the test is repeated.

We tested the following four algorithms:

Gradient descent with feedback step size adjustment

The simplest of this class of algorithms is gradient descent (GD). Its update rule is

∆c(i) = −µ∇cEc(c
(i)) (5.11)

where µ is the step size which needs to be adjusted. We used a simple automatic adjust-
ment method. After a successful step, µ is multiplied by µf , otherwise it is divided by
µ′f . We start with µ = 1 and use µf = 10, µ′f = 15.

Gradient descent with quadratic step size estimation

The single most critical point of the preceding algorithm is the determination of the step
size µ. We have devised a formula yielding an estimation of the optimal step size which
performs better than the crude adjustment method described above. We approximate
the criterion around c(i) as

E(c(i) + x) = E(c(i)) + xT∇cEc(c
(i)) + α‖x‖2 (5.12)
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The minimum of this model along c(i+1) = c(i) − µ∇cEc(c
(i)) (see (5.11)) is achieved for

the step size

µ∗ =
1

2

‖c(i) − c(i−1)‖2

E(c(i−1))−E(c(i)) +
〈
c(i) − c(i−1),∇cEc(c(i))

〉 (5.13)

As a fallback strategy, if µ∗ does not yield an improvement over E(c(i)), we use the
previous step size divided by µ′f , as above.

Conjugated gradient

The conjugated gradient algorithm chooses its descent directions to be mutually conjugate
so that moving along one does not spoil the result of previous optimizations. Its update
rule is

∆c(i) = −µ
(〈

∇cEc(c
(i))−∇cEc(c

(i−1)),∇cEc(c
(i))
〉

‖∇cEc(c(i−1))‖2
∇cEc(c

(i−1))

+∇cEc(c
(i))

)
(5.14)

To work well, the µ has to be chosen optimally. Therefore, at each step, we need to
run another internal one-dimensional minimization routine which finds the optimal step
length µ in the direction given by the above formula. We implemented the internal
minimization using Brent’s algorithm [50], essentially using parabolic interpolation and
golden-ratio search.

Marquardt-Levenberg

The most effective algorithm in the sense of the number of iterations was a regularized
Newton method inspired by the Marquardt-Levenberg algorithm (ML), as in Chapter 4.
The update rule is

∆c(i) = −
(
∇2
c Ec(c

(i)) + λI
)−1∇cEc(c

(i)) (5.15)

where the regularization factor λ can steer the algorithm between pure Newton method
(for small λ) and pure gradient descent (for big λ). The λ starts at 1 and is adjusted
automatically, divided by λf = 10 after a successful step and multiplied by λ′f = 15 after
a failed step. It might not always be economical, feasible, or even desirable, to calculate
the true and complete Hessian matrix ∇2

c Ec. The algorithm will converge, albeit perhaps
more slowly, even if we use just an approximation of it. See also Section 5.6.1.
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5.4.2 Choosing the best optimizer

Ultimately, we want the optimizer which yields the optimal c within desired precision in
the least amount of time. The choice is dependent on the particular problem, namely
on the smoothness of the criterion surface and the computational complexity of the
evaluation of the criterion, its gradient and Hessian. Finally, it depends also on the
desired precision of the result.

We performed a series of experiments to determine which of the four optimizers and
their variants works best for our task. We quickly ruled out the conjugated gradient
algorithm. As many evaluations are needed for its internal minimization to converge,
the conjugated gradient algorithm is only advantageous if the evaluation of Ec is at
least 10 ∼ 100 faster than the evaluation of the gradient ∇Ec. This is not the case, so
consequently, the unidimensional line searches are wasteful in the terms of the number of
iterations. We also quickly determined that quadratic step size estimation for gradient
descent minimization was almost always better than the feedback adjustment.

Among Marquardt-Levenberg (ML) algorithms, we found the performance to be su-
perior when using the full Hessian. All approximations of the Hessian included a perfor-
mance penalty which was normally not compensated by the reduced computation cost.

This leaves us with two alternatives: the gradient descent with optimal step-size esti-
mation or the Marquardt-Levenberg (ML) like algorithm. This choice is rather delicate.
As we pointed out in Chapter 4, the ML algorithm is converging quadratically near the
optimum. This advantage can be offset by the additional expense of evaluating the Hes-
sian matrix and its inverse. Nevertheless, when a small number of parameters is sought
for, the criterion is smooth, and high precision is needed, the ML algorithm is the fastest.
This is demonstrated in Figure 5.3.

However, in some cases these assumptions are not fulfilled. Often the deformation is
described by several hundreds of parameters and the calculation of the Hessian matrix
takes of the order of magnitude more time than the calculation of the gradient. See
Table 5.1 for a typical relationship between the computation times.

The complexity of Hessian matrix inversion (the solution of the equation (5.15) for
∆c(i)) grows with the cube of the number of parameters and becomes dominant for large
number of parameters (several hundreds). We also realize that the intrinsic resolution of
the images registered is limited and that there is no use trying to find the deformation
function with higher accuracy. Thus, we need an algorithm which performs well in
the first part of the optimization process, far from the optimum. Here the Hessian
information is not precise enough to improve the convergence and experiments show
that the ML and gradient descent algorithms perform about equally in the terms of the
number of iterations. For an example, see Figure 5.4. As the time needed for one iteration
of the gradient descent is much smaller with respect to one ML iteration, we decided
that the gradient descent (GD) algorithm (with the quadratic step size estimation) was
the most suitable for our applications, mostly because of its speed. One additional
pleasant property of the GD algorithm in our context is its tendency to leave uninfluential
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Figure 5.3: Comparison of gradient descent, conjugated gradient, and Marquardt-
Levenberg optimization algorithm performances when registering SPECT images. The
graphs give the value of the finest-level SSD criterion of all successful (i.e., criterion-
decreasing) iterations as a function of the number of criterion evaluations and execution
time. The peaks are caused by transitions between resolution levels.

Table 5.1: Relative times to evaluate the criterion E, its gradient ∇E, and Hessian ∇2E,
for a volume of 64× 64× 17 voxels approximated by cubic splines, as a function of the
spline degree nm used to model the deformation and the size of the parameter grid nc.
(The time to evaluate E is currently around 1 s.)

nm 2 3 3
nc 3× 6× 6× 6 3× 6× 6× 6 3× 4× 4× 4

E 1.0 1.4 1.4
E, ∇E 2.3 2.9 2.9

E, ∇E, ∇2E 10.9 48.7 48.8
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Figure 5.4: The evolution of the SSD criterion during the first 18 iterations when reg-
istering Lena image artificially deformed with 2 × 4 × 4 cubic B-spline coefficients and
maximum displacement of about 30 pixels, without multiresolution. The optimizers used
were: Marquardt-Levenberg with full Hessian (MLH), Marquardt-Levenberg with only
the diagonal of the Hessian taken into account (MLdH), and gradient descent (Gdes).
The deformation was recovered in all cases with accuracy between 0.1 and 0.01 pixels.

coefficients intact, unlike the ML algorithm which in its quest for the most gain in each
step often changes the uninfluential coefficients excessively. This leads to unplausible
solutions. Therefore, less regularization is often needed for the GD algorithm.

However, the choice of the algorithm might need to be revised if a different class of
problems is to be solved.

5.4.3 Multiresolution

As in Chapter 4, we use multiresolution for both image model and the deformation model.
We start with the coarsest resolution versions of both and alternatively refine the image
and the deformation model every time convergence is reached, until the finest level. The
second possibility consists in refining both the image and the deformation model at the
same time. This saves some transition costs but the inter-level changes are bigger and
the overall performance is therefore usually worse.

The coarse versions of images are generated using reduction. Conversely, coarse
level solutions are extrapolated to finer levels using expansion. See Section 5.6.4 for
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implementation details.

5.5 Semi-automatic registration

We realize that although the multiresolution leads to a very robust registration algorithm,
there are still cases when it is mislead by an apparent similarity of features which do not
correspond physically. Therefore, we developed an extension of the algorithm which can
use expert hints to be put on track towards the right solution. The hints come in the
form of a set of landmarks. The landmarks are manually identified pairs of corresponding
points in the two images (see also Chapter 3).

As an example, we tried to register two ultrasound images from different parts of the
cardiac cycle. (See Section 5.8.2 for details.) The unsupervised registration correctly
registered some of the structures but missed others, see Figure 5.5, top. We asked an
expert to identify several landmarks in both images (Figure 5.5, middle part). Using this
minute hint, the semi-automatic algorithm could recover a plausible deformation, even
though the landmark information alone (using thin-plate splines) would not have been
enough (Figure 5.5, bottom). The warped version of the test image (on the right in the
middle row of Figure 5.5) and the deformation function is shown in Figure 5.6

5.5.1 Virtual springs

The landmark information is incorporated in the automatic process using the concept of
virtual strings, tying each pair of corresponding points together. We augment the data
part of the criterion E with a term Es, corresponding to the potential energy of the
springs, and minimize the sum of the two Ec = E +Es. The spring term is:

Es =

S∑

i=1

αi ‖g(xi)− zi‖2
(5.16)

where S is the number of springs, αi are weighting factors corresponding to their stiff-
nesses, and xi, resp. zi, are the landmark positions in the reference, resp. test images.
The contribution of Es to the gradient of Ec can be calculated from (5.7):

[
∂Es

∂cj,1
. . . ∂Es

∂cj,N

]T
= 2

S∑

i=1

αi (g(xi)− zi)βnm
(x/h− j + d) (5.17)

The spring factors αi control the influence of the particular landmark pair. We
propose to start with all αi = 1.0 and adjust them experimentally to get the most
satisfactory results. In the example in Figure 5.6, we used α = (1.0, 0.1, 0.1, 0.1), with
the most weight (1.0) given to the rightmost landmark.
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Figure 5.5: The difference between two ultrasound images from different parts of the
cardiac cycle. One is shown in green, the other in red, yellow areas indicate perfect
overlap. The original difference before registration (top left) is only partially corrected
by the unsupervised registration (top right). Misalignment of several structures is clearly
visible. The middle row shows the two images with superimposed landmarks. The
precision of the semi-automatic registration result can be easily appreciated (bottom left)
in comparison with the purely landmark-based thin-plate spline registration (bottom
right).
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Figure 5.6: The deformed test image from Figure 5.5 (left) and the correspondence
function (right) as found by the semi-automatic algorithm.

5.6 Implementation issues

The purpose of this section is to describe some specific aspects of our implementation.
These are mostly independent of the main philosophy of the algorithm but can have
a major impact on its performance.

5.6.1 Explicit derivatives

For the optimization algorithm, we need to calculate the partial derivatives of Ec
from (5.33), as they form the gradient vector ∇cEc(c

(i)) and the Hessian matrix
∇2
c Ec(c

(i)). Starting from equation (5.6), we obtain

∂E

∂cj,m
=

1

‖I‖
∑

i∈Ib

∂ei
∂fw(i)

∂f ct (x)

∂xm

∣∣∣∣
x=g(i)

∂gm(i)

∂cj,m
(5.18)

and the second derivatives

∂2E

∂cj,m∂ck,n
=

1

‖I‖
∑

i∈Ib

(
∂2ei

∂fw(i)2
∂f ct
∂xm

∂f ct
∂xn

+
∂ei

∂fw(i)

∂2f ct
∂xm∂xn

)
∂gm
∂cj,m

∂gn
∂cj,n

(5.19)
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From (5.6) defining the SSD criterion, we get

∂ei
∂fw(i)

= 2
(
fw(i)− fr(i)

)
(5.20)

∂2ei
∂fw(i)2

= 2 (5.21)

The derivative of the deformation function (5.7) is simply

∂gm
∂cj,m

= βnm
(x/h− j) (5.22)

The deformation model is linear and all its second derivatives are therefore zero; that is
the reason for the simplicity of (5.19). The partial derivatives of f ct in (5.18,5.19) can be
calculated from (5.3) as a tensor product

∂f ct
∂xm

=
∑

k∈I

bkβ
′
ni

(xm)
N∏

l=1
l6=m

βni

(
gl(xl)

)
(5.23)

Second-order partial derivatives of f ct are obtained in a similar fashion.

5.6.2 Hessian approximation

Because the evaluation of the Hessian matrix from (5.19) is costly, several modifica-
tions have been devised. The Marquardt-Levenberg approximation assumes that the
term (5.20) is negligibly small or that it sums to zero on the average. This reduces (5.19)
to

∂2E

∂cj,m∂ck,n
=

2

‖I‖
∑

i∈Ib

∂f ct
∂xm

∂f ct
∂xn

∂gm
∂cj,m

∂gn
∂cj,n

(5.24)

Another simplification is to consider only diagonal terms ∂2E/∂c2j,m. Obviously, this
diagonal Hessian approximation only makes sense if the basis functions ϕj do not overlap
too much. This is another argument for the B-spline model. Each such approximation
makes the evaluation faster at the expense of precision which may result in slower conver-
gence. Whether it is advantageous to use some approximation depends on many factors,
including the size and the character of the data.

5.6.3 Gradient calculation as convolution

Here too the use of an integer step size h leads to computational savings. Substitut-
ing (5.22) into (5.18) gives

∂E

∂cj,m
=
∑

i∈Ib

∂ei
∂fw(i)

∂f ct (x)

∂xm

∣∣∣∣
x=g(i)

βnm
(i/h− j) (5.25)
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which can be transformed into a discrete convolution
{

∂E

∂cj,m

}

j

=
∑

i

w(i)b(j · h− i) = (w ∗ b)↓h (5.26)

where we have substituted w for the first two terms in (5.25) and b(q) = βnm
(−q/h).

The convolution kernel b is separable and the convolution (5.26) can be calculated as
a sequence of N unidimensional convolutions

(
(w ∗ b1)↓h1

∗ . . . bn
)
↓hN

. Because of the

downsampling, calculating one output value at step k consists of a scalar product with
a filter bk of effective length (nm+1)hk (the support of a B-spline) and shifting this filter
by hk.

5.6.4 Multiresolution spline representation

To deploy the multiresolution strategy (see Section 5.4.3), we need to specify expansion
and reduction operators. We will use the same approach for both the deformation model
and the image model.

Let us consider here a 1D signal represented in a B-spline space

f(x) =
∑

i

ciβn(x − i) (5.27)

The expansion operator E yields a twice expanded version of f which is also a spline

fe = Ef, fe(x) = f(x/2) =
∑

i

diβn(x− i) (5.28)

with coefficients di given by

d = c↑2 ∗ un (5.29)

where c↑2 denotes upsampled version of c and un is a symmetrical binomial filter defined
in the z-domain as

Un(z) =
(1 + z)n+1

2n
z−(n+1)/2 (5.30)

The twice reduced signal f(2x) cannot be represented as a spline with knots at in-
tegers. We need to resort to approximation and we have chosen the L2 optimality as
described in [101]. The reduction operator R will yield a projection (denoted P1) in the
original spline space with step size 1.

fr = Rf, fr(x) = P1f(2x), fr(x) =
∑

i

eiβn(x− i) (5.31)
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The spline coefficients ei are calculated as

e = (̊h ∗ c)↓2 ∗ b−(2n+1) (5.32)

with prefilter h̊ = b2n+1 ∗un, where b2n+1 is the sequence of sampled values of a B-spline
of degree 2n + 1, bn(i) = βn(i). Finally b−(2n+1) is the inverse filter to b2n+1 and the
convolution can be handled by recursive filtering [4, 5].

BecauseR is a projection complementary to E , we have the projection identityREf =
f . Extension of both operators to multiple dimensions is trivial thanks to separability.

5.6.5 Consequences of finite support

All what we said so far about expansion and reduction holds for infinite signals. To adapt
the method for finite signals, we considered the following requirements: the expansion
must be exact in the continuous sense, the projection identity must hold, reduction
followed by expansion must conserve the length of the signal, and as much information as
feasible should be conserved. These requirements are useful to guarantee the best possible
use of the coarse-grid results at the fine-grid level and are absolutely indispensable for
multigrid minimization.

Traditionally, one represents the signal with exactly one coefficient per sample and
assumes that the signal outside the region of interest follows some known pattern, such as
periodicity, or mirror-on-boundary conditions. We take the mirror-on-boundary condi-
tion as an example, but the same kind of problems appear for other boundary conditions,
too. First, the signal is forced to be symmetric and thus flat at boundaries. Second, the
boundary conditions for both expansion and reduction are only conserved for odd num-
ber of samples, otherwise the mirror position needs to change. Third, varying the length
of the signal by one does not change the length of the reduced version which makes it
impossible to recover the original length by expansion.

Because of these considerations, we decided to dissociate the number of B-spline
coefficients from the length of the interest region. Initially, we extend the signal by
d(n − 1)/2e samples at each extremity which allows us to represent any spline without
constraints. We imagine that the boundaries of our signal are at the first and last of our
coefficient list and we never move them when expanding, although the effective length
(region of interest) might be smaller. In this way, expansion is always exact while it adds
extra knots at each end. Reducing expanded signal recovers exactly the original. When
reducing other signals, we need to extend them to be able to use our efficient filtering
technique. We choose to use the mirror-on-boundary conditions.

5.6.6 Image size change

The only trick when expanding and reducing the images is to adapt the deformation
function accordingly. This is easily accomplished by multiplying the coefficients by 2
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when expanding and 0.5 when reducing. Thanks to our choice of the expansion and
reduction operators, the origin of the image does not change.

5.6.7 Fast spline calculations

It is essential to take full advantage of the properties of splines. First, specialized routines
are used to calculate the values of a B-spline of a specific order using a minimum number
of operations. Second, as we are using tensor products of B-splines as our basis functions,
many operations can be performed in a separable fashion, reducing the complexity of
operations from O(kN ), where N is the number of dimensions and k the size of the
data, to O(kN). This is the case for the prefiltering step required to find the B-spline
coefficients, and also for the interpolation of values of a function given by its B-spline
coefficients. A related general optimization technique called ‘common subexpression
elimination’ calls for precomputing all expressions used more than once and for moving
repeated calculations outside loops. Third, a compact support of B-splines makes many
of the infinite sums in the expressions given earlier reduce to sums over just a small
number of elements.

5.6.8 Stopping criterion

To get a fast optimization algorithm, particular attention has to be paid to the stopping
criterion. This holds for both gradient descent and ML. Classically, the relative and
absolute improvement of the criterion value is compared with a fixed threshold [50]. The
comparison only has sense after the criterion decreased, that is to say, after a successful
step. Consequently, after jumping close to the solution, many iterations are wasted on
decreasing the step size (or increasing the regularization factor), only to confirm the
convergence.

In problems of complicated topology, the converse can happen. After a long series of
unsuccessful steps, the subsequent decrease of the criterion might be small only because
the step size is small. In such cases it is better to stop only after several successful steps,
instead of right after the first one.

For our class of problems, we found it to be advantageous to base the stopping
criterion on the changes ∆c of parameter values. We stop when the step size falls below
an a priori given threshold. The size of a step that fails gives an indication of the
accuracy of the result. We might assume that the minimum is not much farther than
this step size. The threshold is easy to set as we can relate it directly to the pixel size.
Typically, we would use the threshold of 10−1 ∼ 10−3 pixels.

5.6.9 Masking

A substantial gain in speed comes from considering only important pixels when calcu-
lating the data criterion (5.6) and its derivatives. In a typical image, there are many
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Figure 5.7: Example of a mask selecting 10 % of the pixels with the highest gradient
values for the Lena image.

background pixel that do not contribute significantly to the criterion. It is possible to
determine an a priori mask of significant pixels, for example 10 ∼ 50 % of the total
number of pixels, and to consider only those pixels in subsequent calculations. Inspect-
ing (5.18) reveals that the contributions of individual pixels to the change of the criterion
is directly proportional to the amplitude of the directional derivatives at the respective
points. Therefore, a reasonable strategy is to construct the mask by thresholding the
gradient of the image. An example of such a mask is given in Figure 5.7. We recalculate
the mask to each level; this is analogous to using a smoothed version of the gradient.
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5.6.10 Invertibility and regularization

In some applications, it is useful to add an extra regularization term Er to the difference
measure E, and to look for a minimum of the combined criterion

Ec = E + γEr (5.33)

The factor Er is used to make the solution well-posed, or to privilege likely solutions
based on our a priori knowledge.

First we consider a penalty term designed to enforce the invertibility of the deforma-
tion, generalizing the concept from Chapter 4. Its motivation comes from the fact that if
the Jacobian det(∇xg) is positive everywhere, then the deformation g is locally invertible.
Evaluating this constraint at pixel coordinates and converting the strict constraints into
soft ones using a barrier function yields the following penalty term

Ep =
∑

i∈I

e−αdet(∇xg(i)) (5.34)

Experience shows, that for typical data, this term is never important at the solution point
(to which the optimization converges). It mostly becomes useful at the beginning of the
optimization process when the trial points vary a lot, especially with some optimizers.
In such cases, the penalty term forces the algorithm to stay in the region of invertible
deformations.

Depending on the particular task and the expected properties of the solution, various
regularization terms can be used. We investigated for example stabilizer penalizing non-
linear deformations

Et =

∫ N∑

k,l,m=1

(
∂2gk

∂xl∂xm

)2

dx (5.35)

and a very simple norm measuring the distance of g from identity through the coefficients
c

Ed =
∑

j

‖cj‖2 (5.36)

When the corresponding weight γ is small, the regularization mainly smoothes the
deformation function in places where little information is present in the images. As it
gets bigger, the regularization gradually overrides the data term and the deformation
tends towards a smooth function in the sense of the particular regularization.

An alternative to regularization is the virtual spring mechanism described in Sec-
tion 5.5, which we found to be preferable for our applications.
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5.7 Experiments

This section presents a series of experiments in controlled environment to help in assessing
the accuracy, speed, and robustness of our algorithm.

We show the SSD criterion E we minimize, and also a warping index

$ =

√
1

‖R‖
∑

i∈R

‖g(i)− g∗(i)‖2 (5.37)

a mean geometric error between the true (g∗) and the recovered (g) deformation. The
mean is only calculated over the part (R) of the image containing useful data (the object);
the corresponding mask R can be seen in Figure 5.8, bottom left.

5.7.1 Registration of MRI brain slices

To get an idea of the working of the algorithm, we show its performance when recovering
an artificially generated deformation of a 2D slice of an anatomical spin-echo MRI volume
of the brain.2 We use here synthetic images (artificially deformed) because the knowl-
edge of the ground truth permits us to better judge the performances of the algorithm.
However, registering real MRI image pairs has many practical applications, including
generating atlases, intersubject or intrasubject comparisons, see also Chapter 1.

The original image of size 256 × 256 pixels is shown in Figure 5.8, top left. We
use a spline grid controling the deformation with one knot for every 32 pixels. We
warp the image with a deformation belonging to the warping space and consisting of
a global vertical shift of 3 pixels, additional vertical shift of 10 pixels in one region of the
image, and a horizontal shift of about 6 pixels in another region. The warped image is
superimposed on the original in Figure 5.8, top right. Then the automatic registration
algorithm is run. We use cubic splines to represent the deformation. The stopping
threshold is set to 0.5 pixels for all levels except the last, where we set it to 0.1 pixels.
The deformation recovered was used to warp again the original image. Its warped version
is shown superimposed on the images warped with the true deformation in Figure 5.8,
bottom right. We note that the deformation was well recovered, there is no perceptible
difference.

The spatial distribution of the resulting geometrical error is shown in Figure 5.10. We
see that the error is concentrated in areas with little detail in the image, the maximum
error there is 1.5 pixels. In other regions, subpixel accuracy is achived; the mean error
(warping index) over all brain is about 0.4 pixels. This is important when interpreting
the warping index; it is a mean over a large region, including some parts with little
texture. In general, high-contrast regions such us edges are resolved much more precisely
than indicated by the value of $, while the agreement in the zones with low-contrast will

2Author’s brain. Images courtesy of Arto Nirkko from Inselspital Hospital, Bern, Switzerland.
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be worse and often only coincidental, since there is little or no information to guide the
algorithm.

The evolution of the optimization can be studied from the graphs in Figure 5.9.
We observe the steady and correlated descent of the observable criterion being optimized
(E) and of the warping index ($), the quantity measuring the quality of the registration.
The steep descent of the criterion in the initial phase of the optimization justifies our
choice of the optimization algorithm, while the slow progress close to the end of the
optimization illustrates the difficulty of the problem. The jumps in the curves are caused
by the transitions between levels of the multiresolution progression and their relative
insignificance manifests the accuracy of the spline model.

The warping index value changes from 4.62 at the beginning of the optimization until
0.39 at the end, while the criterion E descends from 695 at the beginning to 25.1 at
the end. Note that, the final values of both E and $ depend strongly on the preset
stopping threshold, which in turn influences the optimization time. The threshold value
is a subjective compromise between the accuracy and computation time. It is perfectly
possible to stop optimizing only after 7 s and skip the finest resolution level altogether,
if the precision of $ = 0.7 pixels is acceptable. On the other hand, after about 4 more
minutes of iteration, the error $ descends to less than 10−4 pixels. However, in this
author’s opinion, such super subpixel accuracy is almost never achievable on real images,
because of the noise and the unknown characteristics of the acquisition process.

5.7.2 Out-of-space deformation

The true deformation is not guaranteed to lie in the space where we are looking for it
and can therefore never be recovered exactly. This experiment compares the resulting
approximation error with the overall registration error. We generated a random hierar-
chical deformation using the wavelet methodology from Chapter 4. It is a superposition
of deformations belonging to B-spline wavelet spaces with knot spacings from h = 8 to
h = 256 pixels. This way we generate a deformation with a controled smoothness which
is not in the search space. At each level, the expected amplitude of the deformation is
increased by two with respect to the preceding finer level. We deform the MRI image
(the same as in the preceding experiment, see Figure 5.8) with this random deformation
and try to recover the deformation in spaces with knot spacings h = 8 ∼ 256. Figure 5.11
presents the original deformation represented, while Figure 5.12 shows the recovered de-
formations and the residual differences between the reference image and the warped test
images for different values of the knot spacing h.

The resulting warping index is compared with the best achievable one in a given space
in Figure 5.13. We see that although the ideal values are not attained, the difference is
within the range of half a pixel, which is comparable to the essential registration error
of $ = 0.2 for the case when the ‘correct’ space is used.

In real situations, the true deformation space is not known. However, thanks to
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Figure 5.8: The original slice of anatomical MRI brain image (top left), original super-
imposed over the true deformation (top right), the recovered deformation versus the true
deformation (bottom right), and the mask used to calculate the warping index (bottom
left).
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Figure 5.9: The evolution of the optimization process. The left column contains graphs
with respect to the number of iterations, the same quantity is graphed with respect to
time in the right column. The first row shows the SSD criterion E, the second row the
warping index $. The third and fourth row relate the multiresolution aspect of the
optimization, showing the effective number of coefficients (in one dimension) and the
image size, respectively.
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Figure 5.10: The geometrical error after registration (green) with superposed contours
of the original MRI image (red). The maximum (green) intensity corresponds to the
error of 1.5 pixels.
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Figure 5.11: The original randomly generated deformation.

the good approximation properties of splines, we can reasonably expect that by using
a sufficiently small value of h, we can reduce the approximation error to acceptable values.
And the experiment we have just described indicates that the overall registration error
should not be much bigger than the superposition of the approximation error and the
essential registration error.

5.7.3 Choosing the spline degree

The choice of the spline degree for the image and deformation models is a trade-off be-
tween the accuracy and speed. Here too we generated hierarchical random deformations
(see Section 5.7.2) and we recover them in a coarser space (h = 64). We observe that
in this particular case the differences are rather small and it would be justifiable to use
lower degree splines to gain speed. The differences would be more important for smoother
deformations and/or images, which are better approximated by high order splines.

Note that, theoretically, the complexity of calculation should be approximately pro-
portional to the support of the splines, and thus (in 2D) to the square of their order.
However, the observed gain is much smaller. This is due to some fixed costs like pixel
accesses, which are independent of the spline orders, and also due to the fact that the
generally less precise low-order spline models usually require more iterations of the opti-
mizer.
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Figure 5.13: The ideal (best achievable) versus attained warping index when recovering
the randomly generated hierarchical deformation applied on a MRI image, as a function
of the warping space.

Table 5.2: The warping index ($) and elapsed time as a function of the spline degrees
in the image model (ni) and the deformation model (nm).

ni nm $ time
3 1 3.067 20.1
3 2 2.880 26.7
3 3 2.837 48.9
1 3 3.020 23.4
2 3 2.838 43.2
3 3 2.837 48.9
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5.7.4 Starting point

The following experiment evaluates the robustness of the algorithm with respect to the
starting point. We try to recover the deformation from Section 5.7.1 (MRI images)
optimizing only at the finest level. We will linearly vary the starting point of the optimizer
between identity and the true deformation and observe the attained warping index $ for
stopping threshold of 0.01 pixels. Figure 5.14 shows the warping index of the deformation
used as a starting point and of the recovered deformation. We observe that although the
final result does depend on the starting point, it is most likely only the influence of the
stopping criterion. The algorithm therefore proves to be very robust, even without the
help of a multiresolution: it converges in all cases. On the other hand, the elapsed time
and the number of iterations differes significantly, from 2 iterations when starting from
the true solution, to several hundreds when starting from identity.

5.7.5 Statistical distribution of errors

To evaluate the behavior of the algorithm on a larger set of cases, we have generated
a series of random hierarchical deformations (see Section 5.7.2), warped the MRI slice
with them, and applied our registration algorithm to recover the deformation. We use the
stopping threshold of 0.01 pixels and a warping space which contains the deformation.
We then compare the warping index corresponding to the recovered deformation with
the initial warping index, that is, the distance between the true deformation and identity.
In Figure 5.15 we present the histograms of the initial and final warping indexes and the
scatter plot describing the relation between the two. We observe that the algorithm gives
results with accuracy consistently better than 0.1 pixels.

5.8 Further applications

5.8.1 SPECT atlas

We applied our algorithm to the registration of ECD3 and Xenon inhalation SPECT
images [102].4

These image modalities are used to visualize the blood flow in the brain. The Xenon
method is non-invasive, and the resulting images contain very little anatomical infor-
mation. On the other hand, the ECD method requires intravenous injection, and the
resulting images show also anatomical structures in the brain. Both methods yield a 3D
volume of pixels obtained by a tomographic reconstruction procedure.

3TCD (Technetium Ethylene Cysteine Diethylester) is the radiactively marked intravenously injected
agent.

4We described this application in [103]. We are very grateful to Prof. Slosman and Dr. Chicherio
from the University Hospital in Geneva for bringing this problem to our attention and for providing us
with experimental data.
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Figure 5.14: The warping index of the deformation used as a starting point (top) and
of the recovered deformation (bottom). The initial guess (starting point) varies from
identity (α = 0) to the true deformation (α = 1.0).
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and the scatter plot of the two (bottom). The data is based on 142 experiments.
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The position of the subjects’ heads in the scanner differ as well as the head dimensions
and the size of the internal structures of the brains. Therefore, in order to compare and
evaluate the results of Xenon SPECT examination, the compared volumes (from different
subjects) have to be registered.

We have chosen to first register the ECD SPECT images of the two subjects, and to
apply the deformation found to the Xenon SPECT images acquired immediately after
the ECD ones. The Xenon SPECT images cannot be registered directly because they
contain too little anatomical information.

Once this method is perfected and applied to a large body of volunteers, an atlas
of Xenon SPECT images will be created, permitting to use this non-invasive and fast
method for diagnostical comparison of brain activities of a subject with an atlas.

As for the real application, the true correspondence between the two volumes is
not known and it is therefore difficult to evaluate the performance of the registration
algorithm, we have chosen to test it using artificially generated random deformation,
using the methodology we described in Chapter 4.

Figure 5.16 gives an example of the SPECT images and of the difference before and
after registration for artificially generated deformation. You can see that the SPECT
images are rather blurred, which augments the difficulty of the registration task. Note
also that the differences in the registered images are significantly reduced. Figure 5.17
shows the artificially generated deformation and the resulting deformation found by our
algorithm.

We also registered real ECD SPECT images of two different subjects. Because the
amplitudes in the two data sets were very different, we normalized them before performing
the registration. Even better results were achieved using histogram equalization. The
differences before and after registration for a selected slice are shown in Figure 5.18. We
see that on the large scale the images were correctly registered, which is the first step
towards their meaningful comparison.

5.8.2 Ultrasound for heart motion recovery

In this section we present an application of our algorithm to the registration of standard
2D ultrasound sequences of the heart.5

The registration algorithm has been used to register pairs of successive images from
the sequence. The extracted deformation function effectively corresponds to the displace-
ment field and thus also the velocity field of the points in the heart. Additional quantities
can be derived from the velocity field, examples include the accumulated displacement,
and strain. Figure 5.19 shows the accumulated displacement and the velocity field during
the systole.

5The major part of this work was performed by Maŕıa J. Ledesma-Carbayo during Autumn 2000 and
Winter 2001, while she stayed with our group. More details can be found in our conference paper [104].
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Figure 5.16: The slices of an ECD SPECT image are shown on the left. One slice of
the difference between and after registration of EP reconstructed Xenon SPECT images
for artificially generated deformation is shown on the bottom right. The top right image
shows the corresponding slices from the two EP images before registration.
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Figure 5.17: The left image shows a randomly generated deformation which was applied
to an ECD SPECT image in the previous figure. The right image shows the deformation
recovered using our algorithm by registering the deformed SPECT image with the original
one. We observe that for this model case, the deformation is very well recovered.
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Figure 5.19: Left: Accumulated displacement field at the time of maximum contraction
shown with arrows overlaid on the first image of the sequence. Right: Velocity field
during the contraction.

The automatically extracted motion and derived parameters are essential for visu-
alizing, analyzing, and quantifying heart motion and consequently heart function, with
direct applications in diagnostic. So far, similar analysis has been only possible using the
tagged MRI technique which is much more instrument- and patient-intensive.

5.9 Conclusions

We developed a fully automatic elastic registration algorithm. We extended the idea
from Chapter 4 to multidimensional data, and streamlined the algorithm to accelerate
it. We designed a new step-prediction formula for gradient descent algorithm and showed
its efficiency for our application.

We introduced a concept of virtual springs, yielding a semi-automatic registration
method, capable of using expert hints in the form of landmarks to solve particularly
difficult problems where the fully automatic algorithm may be mislead. This is a powerful
combination of the ideas of manual landmark registration of Chapter 3 and the pixel-
based registration using splines from Chapter 4.

We applied the algorithm to an artificially generated problem with anatomical MRI
images to demonstrate its speed and accuracy. Furthermore, we presented two medical
applications in two different medical fields: SPECT imaging and ultrasound cardiology.

Our implementation still includes a lot of generality to ease experiments with different
configurations of the registration problem and the optimization algorithm. We believe
that by producing a specialized program taking advantage of a specific configuration,
the run time can be decreased by an additional factor of 2 to 4. This will enable truly
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interactive implementation of automatic and semi-automatic elastic image registration
with numerous applications in medicine, biology, and any other field where deformed
images need to be compared.
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Chapter 6

Variational Reconstruction:

Tutorial

This chapter is based on our article [105].

6.1 Abstract

We consider the problem of reconstructing a multidimensional vector function f in : Rm →
Rn from irregularly sampled responses of several linear shift-invariant filters. Traditional
approaches reconstruct in an a priori given space; e.g., the space of bandlimited functions.
Instead, we have chosen to search for a reconstruction which is optimal in the sense of
a quadratic plausibility criterion J . We motivate this choice and show that the variational
formulation is applicable to a wide variety of problems.

First, we present the solution of the generalized interpolation problem, that is, when
the reconstructed function is exactly consistent with the measurements. Later, we con-
sider also the approximation problem, which is the continuously-regularized version of
the interpolation problem, not requiring an exact consistence with the measurements.
We show that both problems lead to the same class of solutions. Interestingly, thanks to
the specific form of the solution, the system of equations for the approximation problem
is obtained by straightforward addition of a constant diagonal matrix to the system for
the interpolation case.

We present a brief review of existing reconstruction techniques, formulate a general
framework of the variational approach, show the reconstruction formula and apply it to
several practical examples, including new variational formulation of derivative sampling,
landmark warping, and tomographic reconstruction.
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6.2 Introduction

6.2.1 Perfect reconstruction

Reconstructing a signal from its samples is one of the most fundamental tasks in signal
processing. The classical sampling theorem presented by Shannon [106] states that
a bandlimited function fin (whose frequency spectrum is limited by the Nyquist frequency
ωmax = π/T ) can be perfectly reconstructed from its regularly-spaced (ideal) samples
sj = fin(jT ). Reconstruction is carried out by convolving the samples with a sinc kernel:

fout(x) = fin(x) =
∑

j∈Z

sj sinc(x/T − j)

where sinc(x) =
sin(πx)

πx
(6.1)

In 1977, Papoulis [107] showed that it was also possible to recover fin from the
output of q linear shift-invariant filters sampled at (1/q)-th the Nyquist rate. This has
generalized Shannon’s theory in two important ways. First, it allows for non-ideal sam-
pling, closer to the reality than Shannon’s ideal one. Second, it provides for multichannel
sampling, permitting the reconstruction using several measurement devices. Such a mul-
tichannel, generalized sampling system is shown in Figure 6.1.

Papoulis theory has been further extended to a multidimensional [108] (m > 1) and
vector [109] (n > 1) bandlimited functions f in : Rm → Rn. Interlaced reconstruction
(working at different scales) is also possible in some wavelet spaces [110].

Recent applications of generalized sampling include, among others, deinterlacing [111,
112], and super-resolution [113, 114] reconstruction.

6.2.2 Consistent reconstruction

Unser and Aldroubi [115] generalized this framework by replacing the principle of perfect
reconstruction by a weaker condition of consistency, requiring that the reconstructed
signal fout provides exactly the same measurements as the original signal fin, when run
through the measurement system.

The reconstruction space V in which they search for the function fout can be different
from the input space, provided that the reconstruction is unique. That is, there is only one
function f ∈ V consistent with the measurements. Note that the uniqueness depends on
the reconstruction space V , as well as on the measurement system and sampling points.

Unser and Aldroubi chose the assumption of square-integrable input functions, from
the space L2. They searched the reconstructed function fout in a functional space F =
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∑
j δ(x− xqj)
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Figure 6.1: Generalized sampling. Sampling is modeled by a multiplication with a mul-
tidimensional train of Dirac’s masses. In Papoulis’s framework xij = xj = iqT . Here,
the sampling locations xij can be arbitrary.

V (ϕ), generated by integer translates of a function ϕ

V (ϕ) =

{
f(x) =

∑

k∈Z

ckϕ(x− k); ck ∈ `2
}

(6.2)

Their reconstruction formula is a generalized case of (6.1). The approach was extended
to the multichannel case in [116], providing a generalized version of the Papoulis theory.

6.2.3 Non-uniform sampling

In many applications, the location of measurement points is irregular. This is often
the case when human input is involved, or when some part of the sampled domain
needs more attention. Typical examples include shape reconstruction from incomplete
measurements [117] or interpolating an image deformation from landmarks (important
points in the image), whose location is specified manually or automatically detected [14,
38, 42, 86].

The reconstruction can be done within the class of bandlimited functions [118, 119]
or more general wavelet and spline-like spaces [120].

For an extensive review on sampling, see [121, 122].
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Figure 6.2: When interpolating a function from its values (circles), many solutions are
possible. However, smooth interpolation (solid line) is usually preferable to a rugged one
(dashed line).

6.2.4 Motivation for variational reconstruction

As an illustrative example, let us consider the task of interpolating a unidimensional
function given its values at some sampling points. As illustrated in Figure 6.2, there
is an infinite number of functions passing through the given points. Nevertheless, most
people would probably agree that the smooth approximation curve in Figure 6.2 looks
‘more correct’ than the rugged noisy approximation. Similarly, we can often quantify the
degree of plausibility of a function for a given application. Then, we search for the most
plausible function satisfying our interpolation (consistency) conditions. This is the key
concept of our approach. From now on, we will concentrate on the typical case where we
want the solution to be ‘smooth’. As smoothness can be measured by the amplitude of
the derivatives, maximizing smoothness translates into minimizing the norm of various
differential operators. In Figure 6.2, the smooth curve minimizes the L2-norm of the
second derivative ‖f ′′‖L2

, which is known to yield a cubic spline interpolation [90, 91].

6.2.5 Proposed variational reconstruction

The reconstruction method presented in this paper has been designed to be as general
as possible from several possible viewpoints. It can handle multidimensional and vector
functions. It is applicable for multichannel sampling using filters (non-ideal sampling).
We put no bandlimiting restrictions on the input signal. The reconstruction is stable
and unique for a large class of sampling configurations.

We retain the idea of a consistent reconstruction. However, we will not explicitely
specify the reconstruction space beforehand. Rather, this space will be determined natu-
rally from the problem at hand based on continuous regularization. We introduce a non-
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negative smoothness criterion (penalty function) J(f), which gets smaller as the function
f gets smoother. We then seek a function f minimizing this criterion under the consis-
tency constraints (introduced in Section 6.2.2); e.g., passing through given points. In
other words, we replace the subspace constraint f ∈ V (ϕ) by a variational formulation.
The criterion J(f) provides the regularization needed to overcome the ambiguity of the
reconstruction problem. It may also represent an a priori knowledge in the Bayesian
framework, quantifying our confidence that a particular function f is close to the input
f in [76].

Another advantage of using a variational formulation is that it gives us a unique
solution, except for rare pathological cases. On the other hand, for the subspace methods,
the uniqueness is very difficult to ensure, especially if the distribution of the measurement
points is not known a priori.

6.2.6 Existing work

The work presented in this paper can be seen as an extension of the theory of radial-
basis function approximation [72], especially Duchon’s thin-plate splines [45, 71]. Our
formulation generalizes the method for vector functions, non-ideal (generalized) sampling,
and generating functions that need not be radial. Moreover, we present an accessible and
self-contained description of the approximation techniques yielded by this theory targeted
to the engineering audience.

It is also worth noting that our regularization is completely specified in the continuous
domain, unlike alternative methods that often use discretized version of the regularization
operator.

Some aspects of the different reconstruction methods for sampling are presented in
Table 6.1. Note that even if a method does not explicitely support vector functions, it can
be applied to such functions by considering each component separately. Similarly, uni-
dimensional linear reconstruction methods can be applied to multidimensional functions
by considering the tensor product of the basis functions. Furthermore, a reconstruction
problem with non-uniform sampling locations can be recast as a problem with generalized
sampling operators acting on uniform sampling [120]. Finally, many of the cells marked
‘no’ could have been filled by adapting the techniques developed in other contexts (such
as wavelets). In particular, one may consider non-separable wavelets [123], vector-valued
wavelets [124], or box-splines [125]; however, we are not aware that these extensions
had been explicitely applied to sampling.

6.2.7 Organization of the paper

Deriving the solution of the variational reconstruction problem that we briefly introduced
in Section 6.2.5 is not overly difficult but requires some mathematical precautions and
rigor. Accordingly, to improve the readability of this Chapter, we have chosen to present
here mostly the results, in a directly applicable form. The general description of the
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solution is given in Section 6.3 and several examples of its applications are treated in
Section 6.4.

The more general form of the theory, the tools required, and the mathematical deriva-
tion of the solution per se are presented in Chapter 7.

6.3 General description of the solution

6.3.1 Problem description

Let f in : Rm → Rn be the unknown multidimensional vector function (with n components
in m dimensional space) which we want to reconstruct. We also have a filterbank Hn×q =
[h1 . . .hq ], consisting of q filters hi of size n × 1, which gives us a set of filtered signals

hTi ∗f in. We measure (sample) each of the filtered signals at N arbitrary points xij which
gives a set of qN real samples

sij = hTi ∗ f in(xij) =

∫

Rm

hTi (x) f in(xij − x)dx (6.3)

for i ∈ {1, . . . , q} and j ∈ {1, . . . , N}. This corresponds to the situation depicted in
Figure 6.1. Note that the scheme would also admit a different number of samples Ni for
each channel. However, for the reasons of notational simplicity, we only treat the case
Ni = N here.

Recall the smoothness criterion J(f ) we introduced in Section 6.2.5. We can now
specify it more concretely as the squared norm of a filtered version of the function f with
a filterbank Ln×p = [l1 . . . lp] consisting of p filters lk, each represented by a vector of
distributions of size n× 1.

J(f ) = ‖LT ∗ f‖2
L2

=

p∑

k=1

‖lTk ∗ f‖2
L2

(6.4)

This permits us to define the reconstruction space F as a space of functions for which
both the criterion J(f) and the outputs of the measurement filters (hTi ∗ f) are finite:

F = {f : Rm → Rn; J(f) <∞ and

∀ i ∈ {1, . . . , q}, j ∈ {1, . . . , N};
∣∣hTi ∗ f(xij)

∣∣ <∞
}

(6.5)

We want to find a reconstruction operator to give us a function f out from the recon-
struction space F , given the samples sij in (6.3).

The consistency condition requires that the reconstructed signal f out provides exactly
the same measurements as the original signal f in when run through our measurement
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system:

(
hTi ∗ f in

)
(xij) = sij =

(
hTi ∗ fout

)
(xij)

∀ i ∈ {1, . . . , q}, j ∈ {1, . . . , N} (6.6)

Let us call Fc the set of all functions of F consistent with the measurements

Fc =
{
f ∈ F ; ∀ i, j; sij = hTi ∗ f(xij)

}
(6.7)

Finally, we can define our interpolation problem. We say that f out ∈ Fc is a solution to
a generalized interpolation problem GIP(L,H,X, s) iff it minimizes J , that is iff for all func-
tions f ∈ Fc we have J(f ) ≥ J(fout). We will write fout ∈ GIP(L,H,X, s),where Xm×qN =
[x1,1 x1,2 . . .xq,N ] is a matrix of all sampling locations, and s = [s1,1 s1,2 . . . sq,N ]T is
a vector of size qN × 1 containing all measurements .

6.3.2 Choice of the criterion

The choice of the filterbank L defining the criterion (6.4) is to a large extent restricted
by the required properties of the solution. Already by construction, the solution is
translation-invariant with respect to measurement locations xij and linear with respect
to measurements sij .

On top of it, we want the solution to be scale-invariant. For example, we want the
solution to be independent on whether we measure in meters or inches. This can be
assured if the criterion J is scale pseudo-invariant. We say that J(f ) is pseudo-invariant
with respect to a geometrical transformation gα, where α is a (vector) parameter, iff
there is a function ξ(α) such that1 J(f ◦ gα) = ξ(α)J(f ). In one dimension, derivative
criteria such as

J(f) =

∥∥∥∥
∂Mf

∂xM

∥∥∥∥
2

(6.8)

satisfy the scale pseudo-invariance. Note that a linear combination of derivatives of
different orders does not satisfy the pseudo-invariance. On the other hand, fractional
derivatives are acceptable.

For multidimensional functions (m > 1), we additionally impose the rotation-
invariance of the criterion. The semi-norms introduced by Duchon [45, 71]

J(f) = ‖f‖2
DM

=
∑

|k|=M

M !

k!

∫

Rm

(
∂Mf

∂xk

)2
dx (6.9)

1We define (f ◦ gα)(x) = f
(

gα(x)
)
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Figure 6.3: The dependence of the interpolation results on the order of the semi-normM
used. High order semi-norms tend to produce slowly varying curves with large overshoots
and vice-versa.

where kl ∈ {0, . . . ,M}, k! =
∏
kl!, |k| =

∑M
l=1 kl, and ∂xk = ∂xk11 . . . ∂xkM

M , satisfy the
rotation-invariance. This can be seen from the Fourier form of the semi-norm

‖f‖2
DM

= (2π)m
∫

Rm

‖ω‖2M
∥∥∥f̂(ω)

∥∥∥
2

dω (6.10)

which can be used for well-behaved functions, see Chapter 7 for more details.
Note, that (6.9) defines a semi-norm, not a norm. Consequently, there is a set of

functions, called kernel, for which the value of the semi-norm is zero. For Duchon’s
semi-norms, the kernel consists of polynomials of degree M − 1.

The most often used Duchon’s semi-norms are summarized in Table 6.2. Table 6.3
gives kernels for the same semi-norms.

The choice of the order of the semi-norm influences the smoothness of the interpola-
tion, as shown in Figure 6.3.

For vector functions (n > 1), we choose to add a requirement of rotational invari-
ance in the output (measurement) domain. Consequently, the criterion J(f) treats all
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Table 6.3: Kernels of most often used Duchons’ semi-norms in dimensions m = 1, 2, 3.
M is the order of the semi-norm.

Rm DM kernel of ‖f‖2
DM

for f : Rm → R

R1 D2 a0 + a1x
R1 D3 a0 + a1x+ a2x

2

R2 D2 a0 + a1x+ a2y
R2 D3 a0 + a1x+ a2y + a3x

2 + a4y
2 + a5xy

R3 D2 a0 + a1x+ a2y + a3z

components of f equivalently. This yields criteria of the form

J(f ) =
∑

k

‖fk‖2 (6.11)

where each component fk is measured using Duchon’s semi-norm (6.9).

6.3.3 Fundamental solution

As we will see in the following section, the criterion J and the sampling filterbank H
determine the space containing the solution of the generalized interpolation problem.
The generating (basis) functions ϕ : Rm → Rn of the space are called fundamental
solutions and they satisfy the following distributional relation:

L ∗ LR ∗ [ϕ1 . . .ϕq ]︸ ︷︷ ︸
Φn×q

= H (6.12)

where LR(x) = LT (−x). The easiest way to find the fundamental solutions is to first
identify the set of Green functions [127] ψ corresponding to the filterbank L

L ∗ LR ∗ [ψ1 . . .ψn]︸ ︷︷ ︸
Ψn×n

= δ(x) In×n (6.13)

where I is the identity matrix. Table 6.4 gives the scalar Green functions for the most
often used Duchon’s semi-norms as well as in the general case. Note that it is enough
to consider the scalar case (n = 1), when the convolution L ∗ LR = u is a scalar. In the
vector case (n > 1), we get Ψ = ψIn×n thanks to (6.11).

Having determined the Green functions, the fundamental solutions are obtained by
convolving Green functions with the sampling operators:

[ϕ1 . . .ϕq] = Φn×q = Ψn×n ∗ Hn×q (6.14)
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Rm DM c ψ(x) ĉ ψ̂(ω) remark

R1 D2 r3 |ω|−4

R1 D3 r5 |ω|−4

R2 D2 r2 log r ‖ω‖−4

R2 D3 r4 log r ‖ω‖−6

R3 D2 r ‖ω‖−4

Rm Dα r2α−m log r ‖ω‖−2α if 2α−m is even

Rm Dα r2α−m ‖ω‖−2α otherwise

Table 6.4: Green functions ψ in dimension m, satisfying u ∗ ψ = δ, where u = lT ∗ l
corresponds to Duchon’s semi-norm ‖f‖DM

= ‖lT ∗ f‖. The multiplicative constants c,
ĉ can be determined but are irrelevant for our purposes. The functions are all expressed
using Euclidean distance r = ‖x‖. The last formula is valid also for non-integer α.

6.3.4 Explicit solution

The solution to our generalized interpolation problem in its most useful form is given by
the following theorem, to be proven in Chapter 7.

Theorem 1 (GIP solution) The generalized interpolation problem GIP(L,H,X, s), is
solved by a function

fout(x) =
P−1∑

k=0

akpk

︸ ︷︷ ︸
kernel part

+

q∑

i=1

N∑

j=1

λijϕi(x− xij)

︸ ︷︷ ︸
fundamental part

(6.15)

where ϕi are the fundamental solutions, {pk}P−1
k=0 is the basis of the kernel of the semi-

norm J (e.g., polynomials), and the real coefficients ak and λij are determined in such
a way that f out ∈ F , if and only if the following two conditions are satisfied:

(i) The solution f out is consistent with the constraints:

yij = hTi ∗ fout(xij) for all i, j (6.16)

(ii) The coefficients λij satisfy the ‘orthogonality’ condition
∑

ij

λij
(
hTi ∗ pk

)
(xij) = 0 for all k (6.17)
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The orthogonality condition (ii) ensures that the fundamental part of the solution (6.15)
is orthogonal to any element of the kernel. This way we represent as much as possible of
the solution fout by the kernel term, that is, for zero cost.

Equivalently, conditions (i) and (ii) can be written in a matrix form as
[

A Q
QT 0

]

︸ ︷︷ ︸
B

[
λ

a

]
=

[
s
0

]
(6.18)

where the parameters have been arranged in vectors as λ = [λ1,1 . . . λ1,N λ2,1 . . . λq,N ]T

and a = [a1 . . . aP ]T . The components of the matrix A of size Nq × Nq are given
by
(
A
)
iN+k,jN+l

= hTi ∗ ϕj(xik − xjl) and represent the contribution of the funda-

mental solutions to each measurement. The components of the matrix Q are given by(
Q
)
iN+j,k

= hTi ∗ pk(xij) and represent the kernel part of the solution as well as the

orthogonality conditions.
We see that the solution (6.15) consists of two parts. The first, kernel part, does not

contribute to the criterion, J(f +pk) = J(f), so we can intuitively tell that it is useful to
accommodate in it as much as possible of f out. The second, fundamental part consists
of a linear combination of shifted basis functions ϕj positioned at the sampling points.
Interestingly, the fundamental part is reminiscent of a wavelet (or multi-wavelet) like
expansion for it also involves shifts of some generating functions. One difference is that
here the basis functions ϕi(x − xij) in (6.15) are not necessarily uniformly spaced. An-
other difference is that wavelets are usually well localized while the functions ϕi (related
by convolution (6.14) to the Green functions ψ from Table 6.4) are typically not, they
increase as one moves away from the origin. However, the orthogonality conditions (6.17)
localize the functions LT ∗ ϕi which has the effect of taming the growth of the solution
at infinity. Dropping the scale invariance requirement also leads to basis functions that
grow more slowly [70].

The polynomials of orderM−1 are called the kernel of the semi-norm ‖f‖DM
, because

they yield zero when measured with this semi-norm.
It can be shown that if two functions f 1, f 2 both solve the interpolation problem, then

their difference belongs to the kernel (see also Chapter 7). As the dimensionality of the
kernel is usually much smaller than the number of measurement points, this implies that
the solution to the interpolation problem is unique, except for rare pathological cases.
In particular, we refer to the results on unicity of Miccheli [128] and Powell [72], that
can be adapted to special cases of our formulation.

The value of the criterion (6.4) applied to the solution can be determined easily as

J(fout) =
∑

ij

λijsij (6.19)

Thus, the coefficients λij can be also interpreted as the weights of the corresponding
constraints.
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6.3.5 Generalized approximation problem

In some applications, for example if the measurements are noisy, we do not want the
reconstructed function fout to pass exactly through the measured points. Instead, we
want it to be a compromise between its smoothness (or plausibility), as measured by the
criterion J , and the closeness of the fit to the sampled points, as measured for example
by the sum of the squared differences. To define the generalized approximation problem
(GAP) we introduce a combined criterion Ja. For the standard regularized least-squares
approximation, Ja has the form

Ja(f) = J(f ) + γ
∑

ij

(
hTi ∗ f(xij)− sij

)2

︸ ︷︷ ︸
data term Jd

(6.20)

where J is the regularization criterion defined by (6.4) and sij are the measured points
close to which we want to pass.

We say that fout ∈ F is a solution to the generalized approximation problem
GAP(L,H,X, s, γ), iff for all functions f ∈ F we have Ja(f) ≥ Ja(fout).

Note that this problem is equivalent to the following one: Find f out which minimizes
Ja under the constraint Jd ≤ ε, where ε is an a priori given error bound. The γ
should be chosen such that the error ε corresponds to the expected noise (error) in the
measurements. If the measurement noise is not known, γ can be found for example using
the leave-one-out technique [129].

The problem of solving the GAP is closely related to the interpolation problem pre-
sented, as demonstrated by the following Theorem.

Theorem 2 (GAP solution) The generalized approximation problem
GAP(L,H,X, s, γ) is solved by the function f out defined by (6.15), if and only if
fout belongs to F, and the parameters ai and λij satisfy the matrix equation

[
A + γ−1I Q

QT 0

]

︸ ︷︷ ︸
B

[
λ

a

]
=

[
s
0

]
(6.21)

where the symbols are the same as in (6.18)

Note the fundamental similarity of (6.21) to (6.18) and the convenient form of the
regularization which amounts to simply adding a constant diagonal matrix term to the
equation system. The simplicity of (6.21) comes from the continuous regularization and
from the fact of using the fundamental solutions as the basis of our space.

Our variational formulation of the GAP is similar in spirit to using discrete regu-
larization to deal with the ill-poseness of some inverse problems. Our regularization,
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however, is completely specified in the continuous domain. Also, those discrete regu-
larizations, often used in combination with nontrivial basis functions, such as the finite
element method (FEM), modify the equation set in a much more complicated and less
predictable way: the identity matrix I is replaced by some general matrix which needs to
be determined on a case-by-case basis.

If the data term is not quadratic, but still depends only on the sampled values, the
solution conserves the form (6.15) but the equation set (6.21) becomes generally non-
linear, c.f. Chapter 7.

6.4 Examples

We now present some examples of how the theory can be used.

6.4.1 Reconstruction from irregular samples

Let us consider the problem of finding a function f : R → R, passing through a finite
number of points (xi, yi) and minimizing a criterion J(f) = ‖f‖2

D2
= ‖f ′′‖2 (see Ta-

ble 6.2). From Table 6.4 we see that the fundamental solution corresponding to the
semi-norm J is proportional to |x|3. The kernel corresponding to this semi-norm is the
class of all linear polynomials a0 + a1x; i.e.; the class of functions for which f ′′ = 0
everywhere. The reconstruction is thus

f(x) = a0 + a1x+

N∑

i=1

λi|x− xi|3 (6.22)

which has N + 2 unknown parameters. The consistency conditions f(xi) = yi give us N
linear equations, while the orthogonality requirements

∑
λi = 0 and

∑
λixi = 0 yield

the remaining two. A nice consequence of the orthogonality conditions is to make the
second derivative of f ′′(x) = 6

∑
i λi|x − xi| vanish after the last sampling point which

ensures that J(f) <∞ and thus f ∈ F . Note, that f is a piecewise cubic polynomial with
continuous second derivatives; i.e., it is a cubic spline. This result is known, see [77, 130].
An example of a spline reconstruction (interpolation) is shown in Figure 6.4.

For uniform sampling, the basis functions |x − xi|3 can be localized using digital
filtering (with iterated finite difference filter) to obtain compactly supported uniform
cubic B-splines, which makes an interesting link with existing theory [4, 5]. For non-
uniform sampling, the localization is also possible using divided differences [131] leading
to non-uniform B-splines. In both cases, if we increase the order M of the semi-norm, the
order of the splines will increase, too, and the corresponding interpolation will converge to
the sinc interpolation [132, 133]. This shows the relation with the sampling theorem (6.1).
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Figure 6.4: Interpolation from function values.
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Figure 6.5: Approximation between given points for γ = 10−3.

6.4.2 Smoothing splines

If the measured points from the preceding example are not exact, it is more appropriate
to replace interpolation by approximation (see Section 6.3.5). The reconstruction for-
mula (6.22) remains, while the equation set (6.18) used to determine the parameters ai
and λi is now replaced by the equation set (6.21). An example of a result for the same
sampled points as before is shown in Figure 6.5. The smoothing spline method that we
have just described is a non-parametric regression technique widely used in statistics [96].

6.4.3 Derivative sampling

Let us add derivative constraints y′i = f ′(xi) to the example from Section 6.4.1. The
sampling filters will become H =

[
δ δ′

]
. The first fundamental solution corresponding

to h1 = δ remains ϕ1 = c|x|3. The second one, corresponding to h2 = δ′, is obtained by
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Figure 6.6: Interpolation from function values and derivatives.

convolving ϕ1 with h2 which gives ϕ2 = 3c|x|x. The reconstruction formula is thus

fout(x) = a0 + a1x+

N∑

i=1

λi,1|x− xi|3 + 3λi,2|x− xi|(x− xi) (6.23)

The 2N + 2 unknown parameters can be determined from 2N consistency equa-
tions f(xi) = yi and y′i = f ′(xi) and two orthogonality conditions

∑
λi,1 = 0 and∑

λi,2 + λi,1xi = 0. These orthogonality conditions come from the requirement that∑
i λi,1pk(xi) + λi,2p

′
k(xi) = 0 where p1 = 1, p2 = x is the basis of the kernel. An exam-

ple of reconstruction from derivative sampling is shown in Figure 6.6. A trivial extension
is to sample the derivative values at different points than the function values.

6.4.4 Landmark based warping

The problem of image registration is encountered in many areas of image procesing. The
task is to find correspondences between pixel coordinates in two distinct but similar
images. In other words, we search for a function which gives us for each point in the first
image the coordinates of the corresponding point in the second image.
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(a) (b)

Figure 6.7: Corresponding slices of (a) functional MR and (b) anatomical (proton den-
sity) MR images with landmarks put manually at important points.

Here we choose an example of non-linear registration of pairs of MR images. Possi-
ble application include distortion compensation [78], inter-subject alignment and many
others, see for example [86]. In some cases, it is necessary to use manual methods [15].
These mostly require the expert to specify a set of pairwise corresponding landmarks [14]
(reference points) in both images. Then, an interpolation method is needed to find the
deformation function also between the landmarks, which is exactly the problem stud-
ied in this paper. Supposing we want to find the 2D deformation function minimizing
Duchon’s semi-norm of order two, we see from Table 6.4 that we need to interpolate
using the r2 log r functions, also called thin-plate splines interpolation.

Figure 6.7 shows an example where landmark warping is used to compensate distor-
tion in functional MRI (fMRI) images by registration with anatomically correct (proton
density) MR images. More examples of landmark interpolation using different interpo-
lating functions can be found on our web page http://bigwww.epfl.ch/demo.

6.4.5 Reconstruction consistent with Laplace equation

The problem treated in [134] by numerical integration— which we shall solve explicitly
here—consists of reconstructing a function R3 → R minimizing the norm of the 3D
Laplacian operator J∆(f)2 =

∫
R3 ‖∆f‖2dx. The problem is ill-posed without additional

constraints, because the kernel K∆ is too big, including all functions that satisfy Laplace’s
equation ∆f = 0, such as x2 − y2. It therefore permits an infinity of solutions with zero
cost. To avoid this ambiguity, we will instead minimize a criterion J(f) = ‖f‖D2

, the
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explicit expresssion of which can be found in Table 6.2. This makes sense because when
J < ∞, the two criteria J and J∆ are equivalent. The corresponding fundamental
solution verifying ∆2ϕ = c δ in 3D is ϕ(x) = r (where r = ‖x‖). Since the kernel consists
of linear polynomials, the solution takes the form

fout(x) =
[
a0 a1 a2 a3

] [1
x

]
+

N∑

i=1

λi‖x− xi‖ (6.24)

with the auxiliary conditions
∑
i λi = 0, and

∑
i λixi =

∑
i λiyi =

∑
i λizi = 0 for

j = 1, 2, 3, where xi = [xi yi zi]
T are the coordinates of the i-th measurement point. As

before, the coefficients ai and λi must be determined in such a way that fout passes by
the desired points.

6.4.6 Derivative sampling in 2D

Adding another level of complexity, we are going to extend the derivative sampling from
Section 6.4.3 to two dimensions. The task is to find a function f : R2 → R given its
values f(xi) as well as the values of its first partial derivatives ∇xf(xi) at sampling
points xi = [xi yi]

T . Our analysis filters are therefore:

H =

[
δ

∂δ

∂x

∂δ

∂y

]

For reasons given later, we choose f that minimizes J(f) = ‖f‖D3
. The kernel of this

criterion consists of bivariate polynomials of degree less than or equal to 2 and its Green
function (see Table 6.4) is ψ(x) = c r4 log r. Consequently, the fundamental solutions ϕi
corresponding to the three sampling filters are respectively ψ, and its partial derivatives
with respect to both x and y.

This means that the solution fout, besides the term from the kernel, consists of a linear
combination of shifted fundamental solutions (see (6.15))

fout(x, y) = a0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy +

N∑

i=1

λTi



ψ(x− xi)
∂ψ
∂x (x− xi)
∂ψ
∂y (x− xi)


 (6.25)

where λi = [λi,1 λi,2 λi,3]
T . The expression for f contains 6 + 3N unknowns. We will

calculate them using the interpolation (or consistency) constraints and orthogonality
constraints. To evaluate the interpolation constraints (6.16), we need to calculate partial
derivatives such as

∂fout

∂x
= a1 + 2a3 + a5y +

N∑

i=1

λTi




∂ψ
∂x (x− xi)

∂2ψ
∂x2 (x− xi)

∂2ψ
∂x∂y (x− xi)


 (6.26)
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There are six orthogonality constraints (from (6.17)) corresponding to the six basis func-
tions of the kernel:

1 :
∑

i

λi,1 = 0 xy :
∑

i

xiyiλi,1 + yiλi,2 + xiλi,3 = 0

x :
∑

i

xiλi,1 + λi,2 = 0 y :
∑

i

yiλi,1 + λi,3 = 0

x2 :
∑

i

x2
i λi,1 + 2xiλi,2 = 0 y2 :

∑

i

y2
i λi,1 + 2yiλi,3 = 0

Note that some care is needed in selecting the regularization criterion J . Had we chosen
the classsical criterion ‖f‖D2

, we would have obtained ψ(x) = r2 log r as the fundamental
solution, the second derivative of which is not bounded around zero, thus preventing the
evaluation of (6.25) at grid points. In other words, no function fout that we would have
found by substituting into (6.25) some nontrivial λ, would belong to F (see Theorem 1);
this means that the interpolation problem does not admit a solution in F .

As an example, we have approximated a 2D Gaussian using thin-plate splines, r4 log r
functions without and with the derivative information. The results are shown in Fig-
ure 6.8. Not surprisingly, the method using the derivatives we have just described gives
the best results.

The problem just described can be easily extended for finding vector functions f :
R2 → R2 by taking J(f ) = J(fx) + J(fy), where (fx, fy) = f are the components of f .
As the components are treated separately, the solution can be calculated independently
for each of them. One possible application might be a semi-automatic landmark image
warping with derivative constraints.

6.4.7 Tomographic reconstruction

A nice example of a classic inverse problem that also falls into our framework is to-
mographic reconstruction [135, 136]. It consists of reconstructing a cross section of an
object from its transaxial projections. We now show that tomographic reconstruction
lends itself well to the variational formulation.

Let f(x, y) be the unknown cross section of the object to be reconstructed. We
measure the projections of f at q angles θi. For each angle, we measure an integral along
a ray at N positions uj , that is

sij =

∫

R

f(t cos θi − uj sin θi, t sin θi + uj cos θi)dt (6.27)

This integral corresponds to our sampling operator. The variational formulation of the
reconstruction problem is thus: Find a function fout consistent with measurements s
(yielded by (6.27)) and minimizing a plausibility criterion J . We choose J to be Duchon’s
semi-norm J(f) = ‖f‖D2

.
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Figure 6.8: Approximating a 2D Gaussian (a) using sampling points (b). The difference
between the true function and (c) thin-plate spline r2 log r approximation, (d) approxima-
tion using r4 log r, and (e) approximation using r4 log r with measurements of derivatives.
The respective SNRs are: (c) 39.7 dB, (d) 25.7 dB, (e) 59.0 dB. The approximation using
derivatives gives the best results. Bear in mind, though, that the derivative method uses
an extra information (the derivatives) that the other methods cannot use.
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The projection/sampling operator (6.27) can be written as a convolution

sij = 〈δ(x sin θi − y cos θi + uj), f〉
=
(
δ(−x sin θi + y cos θi)︸ ︷︷ ︸

hi

∗f
)
(− sin θiuj , cos θiuj︸ ︷︷ ︸

xij

) (6.28)

The fundamental solution ϕi for the sampling operator (6.28) needs to satisfy the
equation (6.12) which in this case has the form

∆2ϕi(x, y) = δ(−x sin θi + y cos θi) (6.29)

To find ϕi, we rotate our coordinate system by −θi, which yields

∆2ϕi(x
′, y′) = δ(x′) (6.30)

because of the rotational invariance of the ∆2 operator. Consequently, a 1D function
ϕ(x′, y′) = ϕ(x′) that solves (6.30) also solves the corresponding 1D problem of Sec-
tion 6.4.1, and vice-versa. The fundamental solutions of the 1D problem are |x′|3. In our
2D case, after rotating the coordinate system back, we get

ϕi = | − sin θix+ cos θiy|3 (6.31)

Putting the pieces together, we find that our reconstruction takes the form

fout(x, y) = [a0 a1 a2]




1
x
y


+

q∑

j=1

N∑

i=1

λij | − sin θix+ cos θiy − uj |3 (6.32)

The interesting thing is the structure of the generating functions ϕi that are back-
projections (extensions) of the corresponding 1D fundamental solutions along the pro-
jection rays. This is the same form as the result of the standard back-projection algo-
rithm [135].

For a more realistic application, we consider that the measurements s are noisy.
We therefore use the approximation formulation from Section 6.3.5. Second, instead
of integrating over the whole space in (6.27),(6.28), we only integrate over the part
corresponding to the measurement device. If we also evaluate the regularization criterion
in the same domain, the fundamental solutions ϕ remain the same.

The drawback of the method in its presented form is the necessity to solve a large lin-
ear equation set which is often ill-conditioned when the matrix gets large. The condition-
ing is improved by working in an equivalent basis of localized versions of the generating
functions ϕi. To speed up the process, specialized iterative solvers can be used.
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Figure 6.9 shows a comparison of the reconstruction using the variational algorithm
and classical filtered back-projection [135] as implemented in Matlab. We can observe
that for a small number of measurements, the variational reconstruction algorithm gives
better result than the filtered back-projection. For a large number of measurements,
the results of the variational reconstruction are comparable to that of the filtered back-
projection. Thus, our method is especially useful in the case of few angles. More details
can be found in [137].

6.5 Conclusions

We have presented an interpolation and approximation scheme capable of treating
nonuniformly sampled multichannel output of a filter-bank. The reconstruction is opti-
mal in the sense of a user-chosen criterion.

The main advantages of our theory include generality with respect to the sampling op-
erators and sampling locations. It works for multivariate and multidimensional functions.
It places only negligible additional constraints on the input signal. Unlike traditional ap-
proaches, we do not specify the reconstruction space a priori. Instead, our method yields
basis functions (and thus the reconstruction space) that are optimal in a well-defined
sense for the problem at hand. It transforms a continuously-defined variational prob-
lem into a generally well-posed algebraic problem; the solution thereof is then obtained
from a system of linear equations. The method can also accommodate for non-exact
fits including non-linear data terms. In the least-squares case, the system matrix is the
regularized version of the matrix in the interpolation case. Otherwise, more general
multidimensional nonlinear problem solver is needed.

Presently, the weak point of our method is that it requires the solution of a large,
non-sparse system of equations. Additional research is required to develop fast numerical
solvers. Related aspect is the ill-conditioning of the system matrix due to the non-local
nature of the basis functions. We believe this can be improved using adequate pre-
conditioners, e.g., by localizing the basis functions, similar to the construction of B-spline
basis [6].

We believe that our reconstruction algorithm would be especially useful for applica-
tions where there are few measurements as it permits to use them in the best possible
way. We have presented several examples to illustrate its possible uses.

Our theory includes and explains many previously used methods; e.g., the well known
thin-plate splines.
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Figure 6.9: We are reconstructing the inner part of the Shepp and Logan phantom [135]
(top left), using projections at 8 uniformly distributed angles, 32 measurements per
angle. The result of the filtered back-projection (top right) has more artifacts and is
less geometrically precise than the variational reconstruction (bottom right). Note also,
that the unlike filtered backprojection, the variational reconstruction recovers well the
absolute amplitudes in the image.

135



136



Chapter 7

Variational Reconstruction:

Theory

This chapter is based on our article [138].

7.1 Abstract

The problem of generalized sampling described in Chapter 6 leads to the minimization of
a variational functional under linear constraints. Imposing generally desirable properties
on the solution limits largely the choice of the criterion. Linearity leads to a quadratic
criterion based on bilinear forms. Specifically, we show that the requirements of trans-
lation, rotation, and scale invariance restricts the form of the criterion to essentially
a one-parameter family. We show that the solution can be obtained as a linear combi-
nation of generating functions. We provide techniques to find these functions, and the
solution itself. Throughout the paper, the affirmations from the companion paper are
formulated more precisely, generalized, and also justified.

7.2 Introduction

In the preceding Chapter 6, we have presented a variational approach to generalized
sampling. The basic problem is to reconstruct a signal from a series of measurements
which are obtained by sampling one (or several) filtered version(s) of the original signal.
Our formulation leads to a functional minimization problem under linear constraints.
The original aspect is that the optimization is performed in the continuous domain rather
than in the discrete one, as is usually the case with this type of application. Our method
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is rather general and can handle all kinds of sampling configurations, including non-
uniform and/or non-ideal sampling. It is also suitable for inverse problems where the
measurement operator is shift-invariant; a typical example is tomographic reconstruction
from projection data [137].

In this paper, we present the mathematical foundations of the method. We will adopt
a slightly more general formulation of the problem and consider measurements that can
be any linear functionals of the input signal. We will concentrate on minimizing quadratic
energy functionals, as this yields a vector space characterization of the solution as a linear
combination of basis functions. The key feature here is that the basis functions themselves
are the result of a mathematical optimization. Consequently, they are optimally tailored
to the problem at hand.

This article has four primary goals:

(1) To provide a precise mathematical formulation of generalized sampling in a varia-
tional setting. This is done in Sections 7.3.3 where we also state our assumptions
and list some of the general properties of the solution.

(2) To understand and control the key properties of the solution through an appropri-
ate selection of the regularization criterion. To this end, we investigate quadratic
shift-invariant criteria and their corresponding bilinear forms. In Section 7.4, we
provide the corresponding convolutional kernel representation in both time and fre-
quency domains. Our strategy is to impose some desirable properties on the solution
(enumerated in Section 7.3.4) and to infer the corresponding class of criteria. We
find that a small set of perfectly justifiable requirements, such as rotation and scale
invariance, essentially limits the degrees of freedom to a one-parameter family of
criteria. This is formalized in Theorem 3 at the end of Section 7.5.

(3) To solve our generalized sampling problem under hard constraints (consistency re-
quirement). The general solution is derived in Section 7.5 and described in Theo-
rem 4. We show how to construct a basis for the solution space. The critical step
involves finding the Green functions of the operator associated with the bilinear form
of the criterion. The solution usually includes an additional polynomial term whose
main effect is to make the reconstruction well-behaved far from the sampling points.
These results lead to the specification of the linear system of equations that yields
the optimal coefficients for the solution.

(4) To solve our generalized sampling problem under soft constraints. The idea here
is to consider a cost function that is the sum of a non-linear data term and the
same regularization criterion as before. In Section 7.6, we prove that the solution of
this approximation problem—irrespective of the form of the data term— lies in the
same subspace as in the previous case (hard constraints) (cf. Theorem 5). We also
work out an explicit formula for the least-squares case. Interestingly, this solution
can be obtained by an almost trivial modification of the hard-constrained equations
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(addition of constant diagonal term to the system matrix). The advantage of this
approach is that it stabilizes the reconstruction. It is also better suited for noisy
situations where it is often counterproductive to impose hard constraints.

7.3 Formulation

7.3.1 Notation

We denote vectors by bold letters and consider them as columns, that is x = [x1 . . . xm]T .
Matrices will be denoted by upright letters (X) with elements (X)i,j = xi,j

We define a scalar product of two multivariate vector functions as 〈f ,g〉 =∫
Rm f (x)Tg(x)dx. By extension, the notation 〈X, f〉 applied on a matrix X and a vector

f is a vector of scalar products between columns of X and f . Similarly, we define a convo-
lution of vector and matrix functions following the usual rules for matrix multiplication,
for example X ∗ y = z means

∑
j xi,j ∗ yj = zi.

The most important symbols used are given by the following list:

A the aproximation problem
B(f ,g) bilinear form associated to J(f) = B(f , f)
c a constant

�
space of test functions (indefinitely
differentiable and compactly supported)

ei unitary basis vector

f̂ ,
�
f Fourier tranform of f , f̂(ω) =

∫
f(x) e−iω

T xdx
fout,fout reconstructed function
F reconstruction space
hi sampling filter
H sampling filterbank HN×n = [h1 . . .hq ]
I identity matrix
J(f ) positive quadratic plausibility criterion
Ja criterion for the approximation problem
J∗ extended criterion
K kernel of the criterion J
L filterbank defining J
m,n dimensionality of the function f : Rm → Rn

N number of constraints
pk,pk basis vector of the kernel K

P dimensionality of K

P the variational problem
p number of columns of L
sij measurements

139



U convolutional kernel of the shift-invariant
bilinear form, U(x− y) = V(x,y)

V operator kernel of the bilinear form
λij ,λi Lagrange multipliers, coefficients
ϕ,ϕ fundamental solution, generating function
ψ,ψ Green function
ω,ω angular frequency
‖f‖M,s Duchon’s semi-norm
〈f ,g〉 L2 scalar product

‖f‖L2
L2 norm, 〈f , f〉1/2

7.3.2 Distributions

Many results in this article are obtained through calculations in the sense of distributions.
The basic reference here is Schwartz [139] or a gentler introduction [140]. A distribu-
tion u is a function-like object defined indirectly through its scalar products 〈u, v〉 with
arbitrary test functions v from the space

�
of compactly supported and infinitely dif-

ferentiable functions. Distributions are generalizations of functions and can often be
operated upon using the same rules, except, noteworthy, the multiplication. The major-
ity of the practically-used functions are indeed distributions. The best known example
of a distribution which is not a function is Dirac’s δ, defined as 〈δ, v〉 = v(0). Similarly,
its derivative δ′ gives 〈δ′, v〉 = −v′(0). Consequently, convolving δ ∗ v yields v, while
δ′ ∗ v = v′.

7.3.3 Problem definition

The variational problem we consider consists of finding a vector function f : Rm → Rn

minimizing a non-negative functional criterion J(f) under a finite number of constraints
〈hi, f〉 = si, where i = 1 . . .N , and hi are sampling filters. The expression 〈hi, f〉 linearly
maps functions to real scalars. As hi is a distribution, most linear forms can be written
in this way. Alternatively, the constraints can be also written as convolutions:

〈hi, f〉 = hRTi ∗ f(0) (7.1)

where hRi (x) = hi(−x) is a time-reversed version of hi.
1

When f satisfies all the N constraints 〈hi, f〉 = si, we write

〈HN×n, f〉 = HRT ∗ f(0) = s (7.2)

1For the sake of notational simplicity, we use a time-reversed version of h with respect to Chapter 6.
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We only consider functions from a space F induced by the criterion J and measurable
by the filters H

F =
{
f : Rm → Rn; J(f ) <∞ and

∥∥〈H, f〉
∥∥ <∞

}
(7.3)

where ‖ · ‖ is the usual Euclidean norm of vectors in RN . We say that fout solves the
variational problem P(J,H, s) iff f out minimizes J in F under constraints (7.2). Note
that there can be more than one of such functions f out with the same value of J(fout).

The main application of the variational problem just described is the generalized
reconstruction (in Chapter 6) where hi represent sampling filters, si are samples and J
is a regularization criterion. So as to be useful in this (and other) contexts, the solution
should satisfy a certain number of properties, which will in turn impose constraints on
the criterion J and the filters hi.

7.3.4 Properties of the solution

Ideally, we want the problem and its solution to have the properties detailed below. We
will see that they help us to specify an essentially one-parameter family of criteria. We
will be able to give a constructive theorem concerning the existence property, obtain
unicity in the majority of useful cases, and guarantee the invariance and linearity of the
solution in the sense detailed below.

For each property, we give an indication of how it can be verified or guaranteed. Note,
however, that the conditions we give are only sufficient, not necessary, because searching
for necessary conditions proved to be extremely difficult and of small practical interest.
On the other hand, we will see in the forthcoming sections that our conditions yield
a sufficiently general family of criteria.

Proposition 1 (Existence and uniqueness) There is exactly one solution f out.

The motivation of the existence requirement is clear: we want our method to give us
at least one solution for any possible measurements si. There are various reasons why
the problem P might not have a solution. For example, when the constraints are con-
tradictory, or when the solution space is not complete with respect to J . That is to
say, if for any sequence of functions f i satisfying the constraints such that the criterion
J(f i) is decreasing, this sequence does not converge in F . A typical example might
be a sequence of continuous functions converging towards a discontinuous one, under
a derivative criterion.

We also want the solution to be unique. For the uniqueness, it is useful for J to be
discriminative so that as few functions f as possible have the same criterion value J .

In practice, we verify existence and uniqueness a posteriori. We first construct a func-
tion and then verify that it solves the problem and that no other function does. In some
cases, the work on the a priori analysis has been already done [72, 128].
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Proposition 2 (Vector space of solutions) If f solves P(J,H, r) and g solves P(J,H,
s) then αf + βg solves P(J,H, αr + βs) for α, β ∈ R.

This scalar linearity property ensures that the solution space is a vector space and that
consequently every solution can be expressed as a linear combination of N basis functions
(where N is the number of constraints). We will see later (see Section 7.4.1) that this is
ensured if the criterion J is a quadratic criterion.

Proposition 3 (Matrix linearity) If f solves P(J,ATH, s) then Af + b solves
P(J,H, s + 〈H,b〉), where A is an arbitrary matrix.

This comprises the cases of rotating, scaling, shifting, permuting, inverting, and otherwise
linearly deforming the ‘output’ coordinate system of the function f . We want the solution
to be invariant with respect to these changes. The matrix linearity property is guaranteed
if J is pseudo-invariant with respect to these changes, which means that the criterion
value for Af + b is proportional to the criterion value for f , namely

J(Af + b) = c(A,b)J(f ) (7.4)

where c is a continuous function of A and b, independent of f .

For the remainder of this paper, we consider only matrices satisfying

AAT = kI (7.5)

(where I is an identity matrix) which corresponds to orthogonal transformations and
uniform scaling. See Section 7.5.4 for details.

Proposition 4 (Geometric invariance) If g solves P(J,H, s) then f solves P(J,H′, s),
where g(x) = f(Ax + b), provided that 〈H′, f 〉 = 〈H,g〉 for all f .

This encompasses the cases of rotating, scaling, and shifting the coordinate system of x.
We want our solution to be invariant with respect to these changes. The new filter H′

can be written in the functional form as H(x) = (det A)H′(Ax + b). Consequently, we
want A to be an invertible matrix. Similarly to Property 3, the geometric invariance can
be ensured by pseudo-invariance with respect to the geometric transformations; i.e.,

J(f
(
Ax + b)

)
= c(A,b)J

(
f(x)

)
(7.6)

where c is a continuous function of A and b, independent of f , and with no connection
to c in (7.4).

We shall impose geometric invariance only with respect to orthogonal matrices A,
satisfying AAT = I. See Section 7.5.1 for details.
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Proposition 5 (Density) The solution space F contains all test functions u from
�

.
For any function f ∈ F , there is a sequence of test functions u1,u2, . . . such that
lim
i→∞

J(f − ui) = 0.

This property is indeed somewhat technical but its significance can be readily grasped.
The first part ensures that the solution space is large, that it contains as many ‘good’
functions as possible. It guarantees that at least all test functions can be measured using
the criterion J . The second part concerns the behavior of J for functions on the closure
of

�
, that is to say, for functions that are not in

�
but which can be expressed as a limit

of a sequence of test functions. It guarantees the continuity of J on F . Consequently, we
can do most of our reasoning in the space of test functions and then extend the result to
the whole of F using a limiting process.

In practice, Property 5 is always satisfied by the quadratic semi-norms we will be
considering; in particular, by the semi-norms of Duchon. (This originates from the
density of

�
in Sobolev spaces.)

7.4 Bilinear forms

From now on, we consider exclusively those criteria that can be expressed using a non-
negative bilinear form. A bilinear form B(f ,g) maps pairs of functions f , g onto R.
It is symmetric (B(f ,g) = B(g, f)) and linear (B(αf + βg,h) = αB(f ,h) + βB(f ,g))
with respect to both its arguments. It is non-negative iff B(f , f) ≥ 0 for all f ∈ F . We
associate B with a criterion

J(f ) = B(f , f) (7.7)

which we call a quadratic criterion. Conversely, given a quadratic criterion J , the asso-
ciated bilinear form B can be obtained as

B(f ,g) =
1

4

(
J(f + g)− J(f − g)

)
(7.8)

The square-root
√
J of the criterion defined in this way is a semi-norm; i.e., it satisfies

the triangular inequality and semi-linearity (
√
J(λf ) = |λ|

√
J(f)). Unlike for a norm,

there might be more than one f satisfying J(f ) = 0. Such functions define a kernel K.
The criterion J is convex. The important Cauchy-Schwartz inequality |B(f ,g)| ≤√
J(f )J(g) holds too. The equality is reached for f ,g such that ∃λ, µ ∈ R, λµ 6= 0; λf +

µg ∈ K.

7.4.1 Quadratic criterion and linear constraints

The restriction to bilinear forms is justified, namely in view of satisfying Property 2 which
yields a useful vector space structure for the solution space. The proof that a quadratic
criterion J implies Property 2 can be found in Appendix A.
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Because of the convexity of J , if there is a local minimum, it is also the global mini-
mum. Moreover, if two functions f 1, f2 solve the problem P, then their difference f 1− f2

necessarily belongs to K. (See Appendix B for a proof.) Therefore if the constraints (7.2)
cannot be met by two distinct functions differing by an element from the kernel, the so-
lution is unique. This is easy to check, because in most cases of interest the kernel K is
fairly small. We will see later that it mostly consists of low-order polynomials.

7.4.2 Operator kernel of a bilinear form

Any bilinear form satisfying very mild conditions (see [139]) can be written in the form
of a scalar product:

B(f ,g) =

∫

R2m

fT (x)V(x,y)g(y)dxdy (7.9)

where V is a n× n matrix of distributions called an operator kernel of the bilinear form.
Technically, the existence of the integral is not guaranteed unless both f and g are from
the class

�
of infinitely differentiable and compactly supported test functions.

Without any loss of generality, we can assume V to be symmetrical (V(x,y) =
V(y,x)), because the operator kernel can always be symmetrized as 1

2

(
V(x,y)+V(y,x)

)

without affecting the associated bilinear form B. By exchanging f and g we also find
that V must have a matrix symmetry V = VT . The implications of (7.4) and (7.6) on
the properties of V are studied in Section 7.5.

7.4.3 Convolutional kernel

If V is translation-invariant, it can be written using a single-parametric distribution
matrix U(x− y) = V(x,y). This transforms (7.9) to

B(f ,g) =

∫

Rm

fT (x)U(x − y)g(y)dxdy (7.10)

for test functions f ,g. We recognize the convolution here:

B(f ,g) = 〈f ,U ∗ g〉 for g ∈ �
(7.11)

where the restriction of g to test functions is useful to ensure that 〈f ,U ∗ g〉 exists. We
call U the convolutional kernel of the bilinear form. Because of the symmetries of V, we
have the same symmetries on U; i.e., U(x) = U(−x) = UT (x).

7.4.4 Fourier form

Both (7.9) and (7.10) can be also calculated in the Fourier domain. For this, we need

the Fourier transforms f̂ , ĝ, and Û (see Section 7.3.1 for a definition). The Fourier
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transform can be calculated for test functions and extended to tempered distributions,
such as polynomials. For example, the expression (7.10) can be written using Parseval’s
theorem as

B(f ,g) =
1

(2π)m

∫

Rm

f̂T (ω) Û(ω) ĝ∗(ω) dω (7.12)

7.4.5 Extending the bilinear form

The original equations (7.9),(7.10) define B(f ,g) only for test functions
�

. However,
we will need later to evaluate B also for f from some larger class F ⊃ F , conserv-
ing all the properties of the bilinear form. The parameter g is still in

�
. Already,

(7.9) retains a meaning if f belongs to the dual (distribution) space of the space
G =

{∫
V(x,y)g(y)dy; g ∈ � }

. If we define B through (7.11), it allows us to con-

sider f from the class F of distributions, provided that U is compactly supported. When
the convolution URT ∗ f exists, we can alternatively calculate

B(f ,g) = 〈URT ∗ f ,g〉 (7.13)

More extensions are indeed possible. They all coincide for test functions but might
give different results when evaluated for other functions. To work with the extended
version of B we need to define an extended kernel of functions f that yield zero B(f ,g)
for all g ∈ �

. Recall that the kernel K in the classical sense is defined as a set of functions
for which J(f) = 0. Generally, the extended kernel is a superset of a classical kernel.
However, for the bilinear forms considered here, the two kernels are identical. Therefore
we will not distinguish between them.

7.4.6 Factorizing the convolutional kernel

An alternative, symmetric definition of B is:

B(f ,g) =
〈
LT ∗ f , LT ∗ g

〉
for f ,g ∈ �

(7.14)

which leads to a very simple expression for J :

J(f) = ‖LT ∗ f‖2 =

p∑

i=1

‖lTi ∗ f‖2 (7.15)

The convolutional operator LN×p has an adjoint L† = LRT (that is, 〈L ∗ f ,g〉 =〈
f , LRT ∗ g

〉
). We obtain an equivalence to (7.11) by setting U = LRT ∗ L.

There are generally many possible factorizations, leading to many extensions as de-
tailed in the previous section. To illustrate this point we consider the example of the
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scalar distribution in two dimensions: u = ∂4

∂x4 δ + 2 ∂4

∂x2∂y2 δ + ∂4

∂y4 δ. It can be factorized

either simply as L =
[
∂2

∂x2 δ + ∂2

∂y2 δ
]
, or alternatively as L =

[
∂2

∂x2 δ
√

2 ∂2

∂x∂yδ
∂2

∂y2 δ
]T

.

The latter factorization leads to the Duchon’s semi-norm (see Section 7.5.7)

‖f‖2
D2

=

∫

R2

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy (7.16)

while the former gives a semi-norm based on the Laplacian:

‖f‖2
∆2

=

∫

R2

(
∂2f

∂x2

)2

+ 2
∂2f

∂x2

∂2f

∂y2
+

(
∂2f

∂y2

)2

dxdy (7.17)

which is not strictly equivalent to (7.16). An example is f = xy which gives ‖f‖2
∆2

= 0
but ‖f‖2

D2
= ∞.

An important case where the expressions (7.17) and (7.16) are equivalent is when f
is a test function. Then, by integration by parts,

∫

R2

∂2f

∂x2

∂2f

∂y2
dxdy =

∫

R2

(
∂2f

∂x∂y

)2

dxdy (7.18)

These may sound like technicalities but they should not be overlooked; otherwise,
one may easily formulate problems that are not well defined mathematically (as was for
example the case in [134]).

Coming back to the general formulation, we write the Fourier domain equivalent
of (7.14) and (7.15):

B(f ,g) =
1

(2π)m
〈L̂f̂ , L̂ĝ〉 (7.19)

=
1

(2π)m

∫

Rm

(
L̂f̂
)T

(ω)
(
L̂ĝ
)∗

(ω)dω (7.20)

with an associated criterion

J(f) =
1

(2π)m

∫

Rm

‖L̂f̂‖2dω (7.21)

where Û = L̂T L̂∗. Note that the phase of L̂ can be freely chosen, in addition to the
freedom demonstrated in the time-domain factorization. The phase of L̂ may represent
the shift of L in the time-domain; more generally, it corresponds to applying an all-pass
(unitary-gain) filter to L.
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7.5 Imposing invariance properties

The intent of this section is to apply the first principles from Section 7.3.4 to come up
with a constrained form of the variational criterion that is consistent with our invariance
requirements. We will end up with what is essentially a one-parameter family of criteria
(cf. Theorem 3).

As we have seen, sufficient conditions to ensure Properties 3 and 4 are given by (7.4)
and (7.6), respectively. We now show how (7.4) and (7.6) constrain our choice of the
kernel V of the bilinear form B. It is useful to realize that if

∫
fT (x)V(x,y)f (y)dxdy =

∫
fT (x)W(x,y)f (y)dxdy for all f ∈ �

(7.22)

then by considering f + g and f − g instead of f , we get

∫
fT (x)V(x,y)g(y)dxdy =

∫
fT (x)W(x,y)g(y)dxdy for all f ,g ∈ �

(7.23)

which is equivalent to saying that V = W in the distributional sense. The converse holds
too, by substituting f = g. Therefore, equations (7.4) and (7.6) on the criterion translate
into equations for the distributional kernel V as follows

Matrix linearity: ATV(x,y)A = c(A,b)V(x,y) (7.24)

and

∫
V(x,y)dy = 0 (7.25)

Geometric invariance:

V(x,y) = c(A,b)V(Ax + b,Ay + b)(det A)2 (7.26)

7.5.1 Geometric translation invariance

From (7.25), we directly see that

B(f ,b) = 0 for any constant b and f ∈ �
(7.27)

and thus there exists an extension of J to functions outside of
�

such that J(b) = 0. In
other words, the criterion J must give zero for constant functions.

We can now consider geometric translation invariance (in the domain of x), by setting
A = −I (reflection about the origin) and b = x + y in (7.26), which simplifies to

V(x,y) = c(−I,x + y)V(y,x) (7.28)
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Using the symmetry of V, this implies c(−I,x+y) = 1 for all x,y. Letting b = y in (7.26)
leads to

V(x,y) = U(y − x) (7.29)

where we have substituted V(y − x,0) = U(y − x). Because of the symmetry of V, we
get

U(y − x) = V(x,y) = V(y,x) = U(x− y) (7.30)

which means we can use the simpler expression (7.10) instead of (7.9). Equation (7.26)
then becomes

U(x) = c(A)U(Ax) (7.31)

for any matrix A.

7.5.2 Rotational invariance

Another special case of geometrical transformations are rotations and symmetries; i.e.,
matrices which satisfy the orthogonality condition AAT = I. Applying (7.31) twice yields

c(AB) = c(A)c(B) (7.32)

Consider this equation for a Householder matrix A = I − 2vvT , where vTv = 1. Since
A2 = I, from (7.32) we have |c(A)| = 1. Furthermore, as J ≥ 0, we necessarily have
c(A) ≥ 0 and thus c(A) = 1.

The equation (7.31) becomes U(x) = U(Ax). It is always possible to choose A such
that Ax = ‖x‖e1, where e1 is the first basis vector, see [141]. Consequently, the distri-
bution U must be radial:

U(x) = U0(r) where r = ‖x‖ (7.33)

It is easy to verify that thanks to the orthonormality of A, rotating x → Ax does not
change r.

7.5.3 Scale invariance

The last remaining class of geometrical transformations we consider is uniform scaling.
Using expression (7.31) as before yields: U0(x) = c(λ)U0(λx), where λ is a real scaling
factor, and where we have accommodated the Jacobian λ2m into c(λ). We use the
rotation invariant form (7.33) which gives U0(r) = c(λ)U0(λr) for λ > 0. Note that
c(λλ′) = c(λ)c(λ′). Repetitive scaling by λ yields c(λ)k = c(λk). This implies c(λ)1/q =
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c(λ1/q) and c(λ)p/q = c(λp/q). By continuity also c(λ)x = c(λx), for real x. Consequently
we have c(λ) = λγ and

U0(r) = λγU0(λr) (7.34)

In the case where the radial form of the convolutional kernel U0(r) is a function, the
preceding equation implies U0(r) = cr−γ . Note that when γ ≤ 2m, then U(x) is not
locally integrable over Rm×Rm. Therefore, we need to consider the integral in the sense
of distributions.

The corresponding expression in the Fourier domain is

Û(ω) = c‖ω‖2α (7.35)

where 2α = γ −m and the factor 2 is for future convenience and notational consistency
with [45].

7.5.4 Matrix linearity

We have already studied the effect of b in (7.24). Let us now concentrate on the impli-
cations of A. Substituting (7.30) yields: ATU(x)A = c(A)U(x), thus c(AB) = c(A)c(B).
We show that c(A) = 1 by the same proof as in Section 7.5.2. Thus U(x) commutes with
an arbitrary orthogonal matrix A:

UA = AU (7.36)

Similarly to Section 7.5.2, we will consider only Householder matrices A = I − 2vvT .
Substituting into (7.36) yields vvTU = UvvT . Right-multiplying by v shows that
v(vTUv) = Uv, which means that any vector v is an eigenvector of U. This implies
that U is a multiply of an identity matrix.

U(x) = u(x) · I (7.37)

7.5.5 Form of the criterion

A direct consequence of the results from the preceding sections is the following theorem:

Theorem 3 (Form of the criterion) Let J(f) be a quadratic criterion. Then any as-
sociated variational problem P satisfies Property 2. Furthermore, P satisfies Properties 3
and 4 if and only if J can be expressed in the following form:

J(f) = c

∫

Rm

n∑

i=1

‖ω‖2α

︸ ︷︷ ︸
(Û)

ii

|f̂i(ω)|2 dω (7.38)

for any tempered distribution f .
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The bilinear form associated to (7.38) is

B(f, g) = c

∫

Rm

n∑

i=1

‖ω‖2α f̂i(ω) ĝ∗i (ω) dω (7.39)

7.5.6 Laplacian semi-norm

The criterion defined in the Fourier domain by (7.38) is easily associated to an equivalent
semi-norm in the time domain using an iterated m-dimensional Laplacian for even α

J∆α
(f) =

∫

Rm

∣∣∣∆α/2f(x)
∣∣∣
2

dx (7.40)

7.5.7 Duchon’s semi-norms

The principal disadvantage of (7.40) is that its kernel K∆ is too large. For example for
α = 2, it contains every function that satisfies Laplace equation, such as the real part
of an analytical function, for example (x + iy)k + (x − iy)k. Therefore, the variational
problem with this criterion will typically have an infinite number of solutions.

Fortunately, it turns out that there are other time-domain forms which correspond
to (7.38) and which do not have this problem. Namely, we now present the family of
semi-norms introduced by Duchon [45]. He first defines a differential operator DM as
a vector of all possible partial derivatives of f of order M :

DMf =

[
∂Mf

∂xM1
, . . . ,

∂Mf

∂xk1 . . . ∂xkM

, . . . ,
∂Mf

∂xMm

]
(7.41)

with k1, . . . , kM ∈ {1, . . . ,m}M . For example, for m = 2, M = 2 we get

D2f(x, y) =

[
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y∂x
,
∂2f

∂y2

]
(7.42)

Then he defines a semi-norm by taking the sum of the squares of all the elements and
integrate it over the space Rm

‖f‖DM
=

(∫

Rm

‖DMf‖2dx

)1/2

(7.43)

where ‖ · ‖ is an euclidean norm in Rm
M

. More explicitely (using the commutativity of
the partial derivatives)

‖f‖2
DM

=
∑

|l|=M

M !

l!

∫

Rm

(
∂Mf

∂xl

)2
dx (7.44)
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where l1, . . . , lm ∈ {0, . . . ,M}, l! =
∏m
s=1 ls!, |l| =

∑m
s=1 ls and ∂xl = ∂xl11 . . . ∂x

lm
m .

Following our example for m = 2 and M = 2, we get the most often used Duchon’s
semi-norm (7.16). This semi-norm leads to the well known thin-plate splines [96].

Interestingly, the kernel of ‖·‖D2
contains only functions whose second partial deriva-

tives are zero; i.e., linear polynomials a0 + a1x + a2y. Generally, the kernel KDM
of

Duchon’s semi-norm of order M contains polynomials of degree M − 1.

7.5.8 Semi-norms for fractional derivatives

Duchon goes one step further in combining the time and Fourier domain definitions to
obtain also semi-norms corresponding to fractional derivatives.

J(f)DM,s
=

∫

Rm

‖ω‖2s
∥∥ �

DMf
∥∥2

l2
dω (7.45)

where
�

is the Fourier transform operator as defined in Section 7.4.4. When s = 0, this
definition is completely equivalent to (7.43), that is, ‖f‖2

DM
= J(f)DM,0

. When, on the
other hand, M = 0, this definition is equivalent to (7.38); i.e., J(f)∆α

= ‖f‖D0,α
. For

s < 1, the kernel of J(f)DM,s
is the kernel of ‖f‖DM

.

7.5.9 Corresponding bilinear forms

All the Duchon’s semi-norms presented above can be associated with a bilinear form so
that ‖f‖2 = J(f) = B(f, f). The basic form (7.43) gives

BM (f, g) =

∫

Rm

(DMf) · (DMg)dx (7.46)

or equivalently

BM (f, g) =

∫

Rm

∑
∑
kl=M

M !

k!

∂Mf

∂xk

∂Mg

∂xk
dx (7.47)

The general form (7.45) leads to

BM,s(f, g) =

∫

Rm

‖ω‖2s
∥∥ �

DMf(x)
∥∥ ∥∥ �

DM g(x)
∥∥ dω (7.48)

7.6 Solution of the variational problem

In this section, we reconsider our variational problem P(J,H, s) defined in Section 7.3.3,
derive some properties of its solution f out and use them to obtain the explicit form of
the solution.
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7.6.1 Lagrange multipliers

First, we construct an augmented criterion according to the Lagrange multipliers’
method.

J∗(f ,λ) = J(f)− 2λT (〈H, f〉 − s) (7.49)

where λ ∈ RN is the vector of Lagrange multipliers. If fλ minimizes J∗(f ,λ) then
choosing λ such that 〈H, f〉 = s implies that f out = fλopt

minimizes J(f ) under con-
straints (7.2).

We carry on using a standard variational argument. We take a small perturbation
αg, where g ∈ F and α ∈ R, add it to f out and study the change

ξ(α) = J∗(fout + αg)− J∗(fout) (7.50)

it induces in the criterion. We consider its derivative

∂

∂α
ξ = 2B(fout,g)− 2λT 〈H,g〉 (7.51)

Iff (f out,λ) is a saddle point, then ∂
∂αξ = 0, and 〈H, fout〉 = s. (See Appendix C for

a proof.) This directly leads to the following lemma:

Lemma 1 A function f out from F satisfying 〈H, f out〉 = s solves the variational problem
P, if and only if there is a real vector λ such that for all g ∈ F

B(f out,g) = λT 〈H,g〉 (7.52)

Note that because of the Property 5 on density, we can initially consider only g from
�

and then extend to F , while the Lemma remains valid.
For g from the kernel K, we have B(f out,g) = 0 (because B(g,g) = 0) and thus

λT 〈H,g〉 = 0 for each g ∈ K (7.53)

7.6.2 Introducing fundamental solutions

We now suppose that we have found a set of functions ϕi such that

B(ϕi,g) = 〈hi,g〉 for all g ∈ �
(7.54)

We call ϕi a fundamental solution corresponding to a filter hi. (See also Section 7.6.5.)
Often there is no fundamental solution ϕi in F . Then we search ϕi in F , which is why
we had to restrict g to

�
(Section 7.4.5).

We want HRT ∗ϕi to be finite for all i = 1, . . . N . If this is not the case, we can suspect
that our minimization problem does not have a solution in F , which can hopefully be
proven using another method.
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7.6.3 Explicit solution of the variational problem

In order to obtain a more useful result than Lemma 1, we will use the linearity of B.
Take a function

f(x) =

N∑

i=1

λiϕi (7.55)

Because of (7.54), the function (7.55) clearly satisfies (7.52). We might be tempted to
conclude that, if f is consistent with constraints (7.2), then it solves P. However, this
will not necesarrily work because ϕi, and therefore f in (7.55), does not in general belong
to the admissible solution space F .

With (7.55), we have exactly as many λi’s as there are consistency constraints (7.2).
This means that there are not enough degrees of freedom in (7.55) to ensure the condition
f ∈ F .

Note that if p belongs to K then B(f + p,g) = B(f ,g). We can therefore add to f
a function p from K, obtaining fout = f + p, which gives us the possibility to make
fout ∈ F , while conserving the validity of (7.52).

Equation (7.53) will allow us to find the p. If K has a finite basis, we can express
p(x) as

p(x) =

P−1∑

k=0

akpk(x) (7.56)

Through linearity, (7.53) is equivalent to the orthogonality constraint

λT 〈H,pk〉 = 0 for each k (7.57)

which, together with the consistency constraints (7.2), gives the same number of con-
straints as there are additional unknowns in (7.56). Combining (7.57) and (7.2) gives us
a set of linear equations for exactly as many unknowns λi and ak, which is a necessary
condition for the unicity of the solution. (More on unicity in Section 7.6.7.) Adding the
kernel term is in general sufficient to ensure that f out ∈ F . We summarize our findings
in the form of a theorem. See Appendix C for a proof.

Theorem 4 (Variational problem solution) Let λi and ak be real numbers and
{pk} a basis of the kernel K of J . Let further {ϕi} be a set of fundamental solutions
corresponding to filters H, in the sense of (7.54). Then the function

fout(x) =
P−1∑

k=0

akpk +
N∑

i=1

λiϕi (7.58)

solves the interpolation problem P(J,H, s) (where J(f) = B(f , f )) if and only if the
following three conditions are satisfied:
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(i) The solution f out belongs to F as defined by (7.3), i.e., J(f out) <∞.

(ii) The solution f out is consistent with the constraints (7.2),i.e., 〈H, f out〉 = s.

(iii) The coefficients λi are orthogonal in the sense of (7.57), i.e., λT 〈H,pk〉 = 0, ∀ k.

Symbolically, we can combine (7.52) and (7.2) by substituting g = f out, yielding
a very simple expression for the optimal value of the criterion J(f out)

J(f out) = λT s (7.59)

where s is the measurement vector.

7.6.4 Linear equation set

The solution fout(x) is given by equation (7.58) which contains P +N unknown param-
eters. These parameters are determined from a linear system of equations

[
A Q1

Q2 0

]

︸ ︷︷ ︸
B

[
λ

a

]
=

[
s
0

]
(7.60)

The sub-matrix [A Q1] corresponds to the constraints (7.2). The sub-matrix A of size
N × N represents the contribution of the fundamental solutions and its elements are
(A)i,j = 〈hi, ϕj〉. In many cases 〈hi, ϕj〉 = 〈hj , ϕi〉 and the matrix A is symmetrical.

The sub-matrix Q1 of size N × P represents the contribution of the kernel element
p in (7.58). Its elements are thus (Q1)i,k = 〈hi,pk〉. The third sub-matrix Q2 is of
size P ×N ; it represents the orthogonality conditions (7.57). Its elements are (Q1)k,i =

〈hi,pk〉. We can see that Q1 = QT2
def
= Q. Consequently, if A is symmetrical, then B is

symmetrical as well.

7.6.5 Finding the fundamental solutions

To find the fundamental solutions ϕ as defined by (7.54), it is useful to start from the
convolutional formulation of the bilinear form (7.13). Similarly, we use the convolutional
form (7.2) to describe the sampling. Thus, the (7.54) becomes

〈U ∗ϕi,g〉 = 〈hi,g〉 (7.61)

The fundamental solutions are then defined through the distributional equations

U ∗ [ϕ1 . . .ϕq ]︸ ︷︷ ︸
Φ

= H (7.62)
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The task can be broken in two parts. We first solve for the Green functions ψi

U ∗ [ψ1 . . .ψn]︸ ︷︷ ︸
Ψ

= δ(x) In×n, x ∈ Rm (7.63)

Once we have the Green functions ψi, we get the fundamental solutions ϕi by convolution
with the measurement operators H:

[ϕ1 . . .ϕq ] = Φ = Ψ ∗ H (7.64)

We see from (7.63) that when U is symmetrical, then Ψ is symmetrical too. When
further H is symmetrical, then the same holds true for Φ (from (7.64)). This is often the
case, as U and H are mostly diagonal. Consequently, this causes the matrices A and B
to be symmetrical as well. (See Section 7.6.4.)

7.6.6 Green functions

As an example, let us first study a simple scalar case (n = 1, m = 1). As criterion, we
choose Duchon’s semi-norm ‖f‖D2

= ‖f ′′‖L2
which corresponds to l = δ′′ in (7.14) and

thus u = lR ∗ l = d4

dx4 δ. The corresponding Green function must satisfy

u ∗ ψ =
d4δ

dx4
∗ ψ =

d4ψ

dx4
= δ (7.65)

Integrating four times, we get a family of possible Green functions ψ(x) = x3
+/12+a3x

3+
a2x

2 + a1x+ a0, where x3
+ is the one-sided power function. For convenience, we choose

the symmetrical one ψ(x) = |x|3/12.
The Green functions corresponding to general Duchon’s semi-norms (7.45) are best

analyzed in the Fourier domain using (7.38) with α = M + s. Then the following must
hold:

û ψ̂ = ‖ω‖2α ψ̂ = 1 (7.66)

also in the distributional sense. Because both u and δ are radial2 distributions, and
a convolution of two radial distributions is also radial, ψ is radial as well. That is why
the resulting functions ψ (and ϕ, if h preserves radiality) are called radial basis functions.

We express ψ(x) as ψ(r), with r = ‖x‖. Consequently ψ̂(ω) is radial too and can be

expressed as ψ̂(‖ω‖).
The problem of finding ψ̂ from (7.66) is well studied (cf. [139], page 258). In the

Fourier domain, we get, for 2α−m not an even integer:

� −1Pf ‖ω‖−2α = c r2α−m (7.67)

2We call a distribution u radial, if 〈u, v(x)〉 = 〈u, v(Ωx)〉 holds for any test function v and rotation
Ω about the origin.
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where c is a constant which can be calculated but which is irrelevant for our purposes. The
‘Pf’ (‘partie finie’ [139]—finite part) symbol means that we are considering a distribution
that coincides with the function ‖ω‖−2α for ω 6= 0, which does not hinder the validity of
the equation (7.66) in the distributional sense.

If 2α−m is an even positive integer, the above formula has to be modified as

� −1Pf ‖ω‖−2α = c0r
2α−m log r + c1r

2α−m (7.68)

For our task, we do not have to consider the c1r
2α−m part of (7.68) because it belongs

to K.
For 2α − m even, it is actually easier to work directly in the time domain. If we

have a radial function g(r) that satisfies g′ = r1−m, then ∆g = Smδ. (See Appendix D
for a proof.) The constant Sm is the surface of the m-dimensional unit hypersphere.3

For example, for m = 2 we get ∆ log r = 2πδ. Iteratively applying the formula for the
Laplacian of a radial function

∆ψ(x) = ψ′′(r) +
m− 1

r
ψ′(r) (7.69)

yields ∆2r2 log r = ∆(4 log r + 4) = 8πδ, ∆3r4 log r = 64πδ, and ∆4r6 log r = 2304πδ.
For m = 3, we have ∆r−1 = 4πδ, ∆2r = 8πδ, ∆3r3 = 96πδ, etc.

Generally, Duchon’s semi-norm ‖f‖DM,s
leads to a fundamental solution ϕ(r) =

cr2(M+s)−m, if the exponent is not even, or ϕ(r) = cr2(M+s)−m log r otherwise. This
permits us to choose from the continuum of Duchons’ semi-norms the one that suits us
best.

In the multidimensional (n > 1) case, where U = uI, we get simply Ψ = ψI.

7.6.7 Unicity of the solution

Let us suppose that the set of fundamental solutions {ϕi} and a finite basis {pk} exist.
Then there is a set of linear equations (7.60) to determine the unknowns λi and ak. If
this set has a unique solution, the interpolation problem will also have a unique solution,
provided, of course, that (7.57) implies f ∈ F .

In the single channel, ideal sampling (〈hi, f〉 = f(xi)), unidimensional case, the set
has the form (7.60) with (A)ij = ϕ(xi−xj) and (Q1)ik = (QT2 )ik = pk(xi). If ϕ is radial,
it can be written as ϕ(x) = ϕ(r) = φ(r2). Miccheli [128] proved that A is nonsingular
provided that φ′ is completely monotonic but not constant on (0,∞), φ is continuous on
[0,∞) and positive on (0,∞), and xj are distinct. (A function φ is completely monotonic
provided it is in C∞ and (−1)lφ(l) ≥ 0 for l = 0, 1, . . . .)

Powell [72] has additionally shown that if K is the space of polynomials of order
M − 1 and if either φ(M) or −φ(M) is strictly completely monotonic on (0,∞), then B is

3Sm = 2πm/2/Γ(m/2) which for m = 2,m = 3 yields the familiar values 2π and 4π [127].
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nonsingular provided that the xj are distinct and that there is no non-zero polynomial
Q of order M −1 such that Q(xj) = 0 for all j. This is closely related to our observation
in Section 7.4.1.

The radial functions ϕ(r) = rβ give completely monotonic φ(M) which guarantees the
regularity of A, as do the most often used rβ log r, stemming from Duchon semi-norms
with β = 2(M+s)−m. (The semi-norm ‖f‖DM,s

leads to φ(r) = crM+s−m/2, eventually

φ(r) = crM+s−m/2 log r. The kernel K contains polynomials up to order M − 1, so we
need to calculate φ(M).)

7.7 Approximation problem

In some applications it might be interesting to replace the ‘hard’ constraints (7.2) by
‘soft’ ones, by adding a data term penalizing solution far from the constraints. To define
a variational approximation problem we introduce a combined criterion Ja. We consider
the following general form:

Ja(f) = J(f ) +
� (

〈H, f〉, s
)

(7.70)

where
�

: RN × RN → R is an arbitrary distance function. We use it to measure the
distance between the measurements and the sampled solution 〈H, f〉. We then say that
fout ∈ F is a solution to an approximation problem A(Ja,H, s), iff for all functions f ∈ F
we have Ja(f) ≥ Ja(fout).

The problem of solving the approximation problem A is closely related to the con-
strained problem P, as demonstrated by the following Theorem.

Theorem 5 (AP solution) Let us denote Jmin(z) the criterion value J(f ) of a function
f solving a constrained problem P(J,H, z). Let us further define z∗ as

z∗ = argmin
z

(
Jmin(z) +

�
(z, s)

)
(7.71)

Then fout solves the problem A(Ja,H, s), iff it solves the interpolation problem P(J,H, z∗)

The proof follows from the observation that the data term in Ja depends only on the
measurements zi = 〈hi, f 〉 of the solution f . Thus, the minimization

fout = arg min
f∈F

Ja(f) (7.72)

required to solve A can be broken into two parts: (a) external minimization with respect
to the z, and (b) internal minimization trying to find the proper f out minimizing J given
z. We see that the internal optimization is exactly the constrained variational problem
described previously. Once it is solved, the external minimization becomes a standard
multidimensional optimization problem which can be solved by existing numerical meth-
ods [50], or in some special cases analytically (see next section for an example).
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7.7.1 Least-squares approximation

Often, the general criterion (7.70) can be replaced by a simple least-squares form

Ja(f ) = J(f) + γ
∑

i

(〈hi, f〉 − si)
2

(7.73)

We first realize that according to Theorem 5, the solution has the form (7.58). We then
use the method of small perturbations by evaluating the change (similarly to (7.50))

ξ(α) = Ja(fout + αg)− Ja(fout) (7.74)

Its derivative needs to be zero for all g ∈ F , in order for f out to be a minimum,i.e.,
∂ξ
∂α = 0. This implies

∂

∂α
ξ = 2B(fout,g) + 2γ

∑

i

〈hi,g〉
(
〈hi, fout〉 − si

)
= 0 (7.75)

Substituting (7.52) into B(f out,g) in (7.75) yields

−
∑

i

λi〈hi,g〉 = γ
N∑

i=1

〈hi,g〉
(
〈hi, fout〉 − si

)
(7.76)

As this equality needs to hold for all g, we can factor out the term dependent on g.
Substituting in the solution (7.58) yields

γ−1λi = si −
N∑

j=1

λj〈hi,ϕj〉 −
P−1∑

k=0

ak〈hi,pk〉 (7.77)

By taking g ∈ K in (7.75) we get the same orthogonality constraints (7.57) as in the in-
terpolation case. Combining (7.57) with the preceding equation leads to a linear equation
set

[
A + γ−1I Q

QT 0

]

︸ ︷︷ ︸
B

[
λ

a

]
=

[
s
0

]
(7.78)

Note the fundamental similarity to (7.60) and the simple form of the regularization by
adding a diagonal matrix.

7.8 Conclusions

We have presented a systematic way of solving variational problems minimizing quadratic
regularization criteria under general linear constraints. We have also considered replacing
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the constraints by a corresponding penalty function and we show that it leads to a solution
with the same form. The solution of such problems lies in a vector space uniquely
corresponding to the problem at hand, generated by a system of fundamental solutions,
related to Green functions. We have shown how the requirements we impose on the
variational problem solution determine the choice of the criterion, leading to the family
of semi-norms introduced by Duchon.

7.9 Appendix

A Linearity with respect to measurements

Let us have a function v from F0 where F0 =
{
v ∈ F ; ∀ i; 〈hi,v〉 = 0

}
. By linearity, γv

also belongs to F0 for γ ∈ R. We then have J(f + γv) ≥ J(f) because f solves the GIP.
Consequently 2γB(f ,v) + γ2B(v,v) ≥ 0 and thus γB(f ,v) ≥ 0 for sufficiently small
(positive or negative) γ which implies

B(f ,v) = 0 for any v from F0 (7.79)

This leads to J(αf + βg + v)− J(αf + βg) = 2B(αf + βg,v) + J(v) = J(v) ≥ 0, which
proves that αf + βg solves the problem with measurements αr + βs, when f and g solve
problems with measurements r and s, respectively.

B Difference between two solutions

We prove that if two functions f 1 and f2 both minimize J(f ) under some constraints (7.2),
then J(f1 − f 2) = 0. Using (7.79) we deduce B(f 1, f1 − f2) = B(f 2, f1 − f2) = 0. This
directly yields J(f1 − f2) = B(f 1, f1 − f2) +B(f 2, f2 − f1) = 0.

C GIP solution

First suppose that fout solves the GIP. Then by definition f out ∈ F and 〈H, fout〉 = s.
The equations (7.53) and (7.2) are valid by construction. As pk ∈ K, we have (7.57).
Conversely, suppose that 〈H, f out〉 = s and (7.57) holds. The formula (7.58) for f out gives
B(f out,g) =

∑
i λiB

(
ϕi,g

)
. Substituting (7.54) leads to B(f ,g) =

∑
i λi〈hi,g〉 for all

g ∈ �
. As f ∈ F and

�
is dense in F , the preceding formula holds also for all f ∈ F

which permits us to apply Lemma 1.

D Dirac Laplacian

Consider 〈∆g, v〉, where v is a test function. This scalar product equals -
∫
∇g∇v dx.

We change to spherical coordinates x → (r, φ1, . . . , φm−1). The integral becomes
−
∫
g′ ∂v∂r r

m−1drdΩ where dΩ = dφ1 . . . dφm−1 and
∫

dΩ = Sm. We use the fact that
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rm−1g′ = 1. Then by integration over r we get −
∫

[v(r)]
r=∞
r=0 dΩ. As v is a test function,

v(∞) = 0, and the integral simplifies to −Sm[v]∞0 = Smv(0). Consequently, ∆g = Smδ.
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and Ron Kikinis, Eds., pp. 297–306. Springer-Verlag, 1996.

[16] B. McGregor, “Automatic registration of images of pigmented skin lesions,” Pat-
tern Recognition, vol. 31, no. 6, pp. 805–817, 1998.

[17] Fred L. Bookstein, “Principal warps: Thin-plate splines and the decomposition of
deformations,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 567–585,
June 1989.

[18] C. Davatzikos, J. Prince, and R. Bryan, “Image registration based on boundary
mapping,” IEEE Transactions on Medical Imaging, vol. 15, no. 1, Feb. 1996.

[19] C. Huang, W. Chang, L. Wu, and J. Wang, “Three-dimensional PET emission
scan registration and transmission scan synthesis,” IEEE Transactions on Medical
Imaging, vol. 16, no. 5, Oct. 1997.
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Conclusions

Elastic registration is an unavoidable part of any comparison or evaluation of biomedical
images involving different subjects, techniques, or acquired at different times. It permits
to eliminate the differences due to different acquisition conditions, while keeping the
relevant changes.

The intensity-based approach is preferable for automatic registration because it al-
leviates the need for a difficult feature detection step. The sum of square differences
is a reasonable measure of the quality of the fit, and we have found it to perform well
in our applications. B-spline representation of both the image and the deformation is
computationally efficient, has good approximation properties and lends itself well to
a multiresolution approach. The described automatic algorithm takes advantage of all
these properties; it is reasonably fast, robust, and has been used in a number of real
applications, including MRI, SPECT and ultrasound imaging.

A semi-automatic method combining the automatic method with landmark informa-
tion yields good results even in situation where the automatic method by itself fails, and
its accuracy is much better than that of purely landmark based registration.

Classical landmark interpolation can be formulated as a special case of a more general
variational interpolation or approximation problem. Any object can be reconstructed
given a quadratic plausibility criterion and a set of linear measurements. Moreover, the
reconstruction lies in a vector space and is determined by a simple linear equation set.
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Availability of the software

I wrote countless lines of code while working on my Ph.D. thesis. A major part of what
I wrote is available to your perusal under the GNU Public License (GPL),4 provided you
give me the appropriate credit. The GPL basically means you can use my programs for
free but there is no waranty and you may not incorporate it into a proprietary program.
The source code can be found either on a CD coming with some copies of this thesis or
from my web page: http://bigwww.epfl.ch/kybic. If you publish your work and you
have used my code, you should reference either this thesis or one of our relevant papers.

The first generation of the registration algorithm for unidirectional deformations was
written in Matlab, in summer 1998. The time critical routines were reimplemented in C
and the resulting algorithm is described in Chapter 4. The second generation added sup-
port for multidimensional deformations, still in Matlab and C, was used to register the
SPECT images (Chapter 5) and in part of the ultrasound experiments. The third gener-
ation of the registration algorithm, developed in January 2001, sports Python as its glue
language, replacing Matlab. Python is free, portable, and results in much better struc-
tured code. Functionally, it is equivalent to the second generation, only faster. Finally
the current, fourth reincarnation is even faster, the code has been restructured, the defor-
mation model modified, and new optimizer introduced. It also adds the semi-automatic
virtual spring mode. All experiments in Chapter 5 (except SPECT registration) were
performed using the fourth generation code.

The variational reconstruction algorithms (Chapters 6 and 7) and landmark warp-
ing (Chapter 3) were mostly implemented in Matlab with some time critical routines
reimplemented in C.

I also wrote web server software MOW (Matlab on the Web) permitting to make
interactive demonstrations written in Matlab available on the Web. The server part is
written in Python, the client part is a Java applet. A variant called MOS (Matlab on
the server) eliminates the need for Java by generating the complete pages on the server.

All software was developed on Unix. However, it should not be difficult to port
it to other platforms. In fact, the third generation of the registration algorithm was

4Available from http://www.gnu.org/copyleft/gpl.html or by mail from Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
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successfully run under the Windows 95 operating system.
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