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On-line Calibration Monitoring and Tracking gy facuuy

On-line calibration may considerably

improve efficiency of downstream

perception methods and/or detect

Inconsistencies that would otherwise

lead to autonomous system failure. R e o e
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% Off-line calibration provides high precision of parameters at the cost np stre
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w But: Parameters may change during system’s operation due to
vehicle twisting, thermal dilations or moving parts
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J OCaMo Tracking

 Local optimization of alignment between low-level features

from a camera-LiDAR pair, with FoV overlap % Stochastic gradient-based optimization with adaptive learning
* Kernel correlation [1] (robust, w/o 1-to-1 matching) rate (based on [2])

o : It utilizes filtering with adaptive memory to lower the variance of
the random loss function and so increases the precision

LTO Monitoring

¢ As the loss is a random function (not comparable across mini-batches),
we adapt a grid-based stochastic minimum-confirmation method from [3]

- | % [tuses a proxy measure that estimates the fraction of grid evaluations with

higher (worse) loss than in the reference (see the red dot)

= Upon this measure, we learn the probability distribution P(6"*|Bo)
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Experiment A Experiment B Experiment A Experiment B
. L . MAE [° 3 S % Simulating abrupt decalibration between
LIDAR projection depth should be consistent 3 ’ oo 50gand ﬁo on 545 seqUences
with stereo (tested on KITTI sequence) Preselection | Roll  Pitch  Yaw from the Waymo dataset [4] .
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< Could we use the monitoring as a validation technique for A i
tracking to create a precise and reliable recalibration method? Data preselection 7
% Could the frame preselection binary classifier be replaced with -
an informativeness metric per degree of freedom? = smans > et Celf et oo, ;
< The proposed monitoring was extended to camera-to-camera [9] e -
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