This presentation is also available at: https://cmp.felk.cvut.cz/~moravj34/stocamo

StOCaMo: Online Calibration Monitoring for Stereo Cameras

Jaroslav Moravec

The Department of Cybernetics, Faculty of Electrical Engineering Czech Technical University in Prague

June 26, 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Sensor calibration

- Sensors are not colocated and have their own internal parameters
 - \Rightarrow We need to know these for proper sensor fusion
- Calibration room or infrastructure-based

Jaroslav Moravec

June 26, 2023

Calibration monitoring

- The calibration is essential for all subsequent parts of autonomous operation
- But it is not stable due to vehicle twisting or thermal dilations
 - \Rightarrow The calibration monitoring could be neccessary

3/12

Taxonomy of Calibration

• Off-line calibration

$$(Batch of data B) \longrightarrow (Construct f(\theta|B)) \longrightarrow (argmin_{\theta} f(\theta|B))$$

- time-consuming
- large computational overhead
- high precision
- On-line calibration

Small batch of data
$$B_0 \longrightarrow \text{Construct } f(\theta|B_0) \longrightarrow \text{argmin}_{\theta} \mathbb{E} [f(\theta|B_0)]$$

- random $f(\theta|B_0) \rightarrow$ large variance
- $\mathbb{E}[f(\theta|B_0)]$ provides higher precision
- fast response

Taxonomy of Calibration

• Off-line calibration

$$(Batch of data B) \longrightarrow (Construct f(\theta|B)) \longrightarrow (argmin_{\theta} f(\theta|B))$$

- time-consuming
- large computational overhead
- high precision
- On-line calibration

$$(Small batch of data B_0) \longrightarrow (Construct f(\theta|B_0)) \longrightarrow (argmin_{\theta} \mathbb{E} [f(\theta|B_0)])$$

- random $f(\theta|B_0) \rightarrow$ large variance
- $\mathbb{E}[f(\theta|B_0)]$ provides higher precision
- fast response
- On-line calibration monitoring (OCaMo)

 $(Reference calibration \ \theta^{ref}) \longrightarrow (Small batch of data \ B_0) \longrightarrow (Calibration \ \theta^{ref}) \longrightarrow (C$

Calibration validity $P(heta^{ ext{ref}}|B_0)$

- needs to run on-line
- small computational overhead

Jaroslav Moravec

StOCaMo

• Examining epipolar distance between detected keypoints

oslav Moravec	StOCaMo	June 26, 2023	5 / 12

人口 医水理 医水黄 医水黄素 医胆道

• Examining epipolar distance between detected keypoints

• Examining epipolar distance between detected keypoints

			= +) < (+
Jaroslav Moravec	StOCaMo	June 26, 2023	5 / 12

• Examining epipolar distance between detected keypoints

iroslav Moravec	StOCaMo	June 26, 2023	5 / 12

人口 医水理 医水黄 医水黄素 医胆道

- Examining epipolar distance between detected keypoints
 - single frame estimation, without memory
 - small computational overhead
 - robust, without one-to-one matching

A (10) N (10)

		・ロト ・雪 ト ・ ヨ ト ・ ヨ ト	≣
Jaroslav Moravec	StOCaMo	June 26, 2023	6 / 12

			= 740
Jaroslav Moravec	StOCaMo	June 26, 2023	6 / 12

iroslav Moravec	StOCaMo	June 26, 2023	6 / 12

人口 医水理 医水黄 医水黄素 医胆道

				_		
aroslav Moravec	StOCaMo	June 26	5, 2023		6/12	

人口 医水理 医水黄 医水黄素 医胆道

イロト 不得下 イヨト イヨト ニヨー

aroslav Moravec	StOCaMo	June 26, 2023	6 / 12

$$\mathcal{KC}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i \in \mathcal{I}'} \sum_{j \in \mathsf{kNN}'_i} \exp\left[-\frac{d^2(\mathbf{x}_j^r \mid \mathbf{x}_i^l, \boldsymbol{\theta})}{2\sigma^2}\right] - \frac{1}{n} \sum_{j \in \mathcal{I}'} \sum_{i \in \mathsf{kNN}'_j} \exp\left[-\frac{d^2(\mathbf{x}_i^r \mid \mathbf{x}_j^r, \boldsymbol{\theta})}{2\sigma^2}\right]$$

 \mathcal{I}^{\prime}

 \mathcal{I}^r

イロト 不得 トイヨト イヨト э June 26, 2023

Jaros	lav №	lorave	(

6/12

$$\mathcal{KC}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{i \in \mathcal{I}'} \sum_{j \in \mathsf{kNN}'_i} \exp\left[-\frac{d^2(\mathbf{x}_j^r \mid \mathbf{x}_i^l, \boldsymbol{\theta})}{2\sigma^2}\right] - \frac{1}{n} \sum_{j \in \mathcal{I}'} \sum_{i \in \mathsf{kNN}'_i} \exp\left[-\frac{d^2(\mathbf{x}_i^r \mid \mathbf{x}_j^r, \boldsymbol{\theta})}{2\sigma^2}\right]$$

June 26, 2023

→ < ∃ →</p>

$$egin{aligned} \mathcal{F}(oldsymbol{ heta}^{ ext{ref}}) &= rac{1}{| ext{grid}|} \sum_{oldsymbol{ heta} \in ext{grid}} \mathbb{1}\left[\mathcal{KC}(oldsymbol{ heta}) \geq \mathcal{KC}(oldsymbol{ heta}^{ ext{ref}})
ight] \end{aligned}$$

$$m{F}(m{ heta}^{ ext{ref}}) = rac{1}{| ext{grid}|} \sum_{m{ heta} \in ext{grid}} \mathbb{1} \left[m{ extsf{KC}}(m{ heta}) \geq m{ extsf{KC}}(m{ heta}^{ ext{ref}})
ight]$$

- * ロ > * 個 > * 画 > * 画 > - 画 - の Q ()・

Jaros	lav N	Aorav	/ec

$$m{F}(m{ heta}^{ ext{ref}}) = rac{1}{| ext{grid}|} \sum_{m{ heta} \in ext{grid}} \mathbb{1} \left[m{ extsf{KC}}(m{ heta}) \geq m{ extsf{KC}}(m{ heta}^{ ext{ref}})
ight]$$

э

$$V(oldsymbol{ heta}^{ ext{ref}}) = rac{p_c(oldsymbol{ heta}^{ ext{ref}})}{p_c(oldsymbol{ heta}^{ ext{ref}}) + p_d(oldsymbol{ heta}^{ ext{ref}})}$$

7/12

F-index evaluation & V-index parameters learning

- Synthetic dataset for parameter learning:
 - CARLA [2]: 24° VFOV and 1241×376 px (rectified)
 - 155 sequences with 200 frames each
 - \blacktriangleright Calibration tolerance was set to 0.005 \rightarrow kernel σ and sampling grid size
- Evaluating F-index on seven decalibration magnitudes:

▶ $[-\delta, \delta]$ m or rad, $\delta \in \{0, 0.0025, 0.005, 0.01, 0.02, 0.05, 0.075\}$

• Selecting p_c and p_d based on 0.005 and 0.05 magnitudes, respectively

Jaroslav Moravec

June 26, 2023

8/12

Synthetic decalibration on real data

- Two real datasets:
 - ▶ KITTI [3]: 29.5° VFOV and 1241×376 px (rectified)
 - ► EuRoC MAV [1]: 55° VFOV and 752×480 px (unrectified)
- Two magnitudes of synthetic decalibration:
 - ► Small: [-0.005, 0.005] m or rad
 - \rightarrow should not report a decalibration (examines TN and FP)
 - ▶ Large: $[-0.02, -0.01] \cup [0.01, 0.02] \text{ m or rad}$
 - \longrightarrow should report a decalibration (examines TP and FN)

	ΤP	FN	ΤN	FP	Prec.	Recall	Acc.
KITTI	11854	156	11666	344	97.2	98.7	97.9
EuRoC	33240	3580	36321	499	98.5	90.3	94.5

Synthetic decalibration on real data

- Two real datasets:
 - ▶ KITTI [3]: 29.5° VFOV and 1241×376 px (rectified)
 - EuRoC M/V [1]: 55° VFOV and 752×480 px (unrectified)
- Two magnitudes of synthetic decalibration:
 - ► Small: [-0.005, 0.005] m or rad
 - \rightarrow should not report a decalibration (examines TN and FP)
 - ▶ Large: $[-0.02, -0.01] \cup [0.01, 0.02] \text{ m or rad}$
 - \longrightarrow should report a decalibration (examines TP and FN)

	TP	FN	ΤN	FP	Prec.	Recall	Acc.
KITTI	11854	156	11666	344	97.2	98.7	97.9
EuRoC	33240	3580	36321	499	98.5	90.3	94.5

- Tested on KITTI (below) and EuRoC
- Downstream = ORB-SLAM2, failure = RMSE larger than threshold (as in [6])
- 100 decalibrations of 6 decalibration magnitudes
 - ▶ $[-\delta, \delta]$ m or rad, $\delta \in \{0.0025, 0.005, 0.01, 0.02, 0.05, 0.075\}$
 - each decalibration is tested on ten random frames for more informative statistics

Dec.	TP	FN	ΤN	FP	Acc.
0.0025	0	0	990	10	99.0
0.005	0	0	959	41	95.9
0.01	262	218	376	144	63.8
0.02	699	191	82	28	78.1
0.05	924	66	3	7	92.7
0.075	928	72	0	0	92.8
Avg.					87.1
[6]					62

- Tested on KITTI (below) and EuRoC
- Downstream = ORB-SLAM2, failure = RMSE larger than threshold (as in [6])
- 100 decalibrations of 6 decalibration magnitudes
 - ► $[-\delta, \delta]$ m or rad, $\delta \in \{0.0025, 0.005, 0.01, 0.02, 0.05, 0.075\}$
 - each decalibration is tested on ten random frames for more informative statistics

Dec.	I I P	ΕN		FΡ	Acc.
.0025	0	0	990	10	99.0
0.005	0	0	959	41	95.9
0.01	262	218	376	144	63.8
0.02	699	191	82	28	78.1
0.05	924	66	3	7	92.7
0.075	928	72	0	0	92.8
Avg.					87.1
[6]					62
	Dec. .0025 0.005 0.01 0.02 0.05 0.075 Avg. [6]	Dec. IP .0025 0 0.005 0 0.01 262 0.02 699 0.05 924 0.075 928 Avg. [6]	Dec. IP FN .0025 0 0 0.005 0 0 0.01 262 218 0.02 699 191 0.05 924 66 0.075 928 72 Avg. [6]	Dec. IP FN IN .0025 0 0 990 0.005 0 0 959 0.01 262 218 376 0.02 699 191 82 0.05 924 66 3 0.075 928 72 0 Avg. [6]	Dec. IP IN IP 0.0025 0 0 990 10 0.005 0 0 959 41 0.01 262 218 376 144 0.02 699 191 82 28 0.05 924 66 3 7 0.075 928 72 0 0 Avg. [6]

- Tested on KITTI (below) and EuRoC
- Downstream = ORB-SLAM2, failure = RMSE larger than threshold (as in [6])
- 100 decalibrations of 6 decalibration magnitudes
 - ► $[-\delta, \delta]$ m or rad, $\delta \in \{0.0025, 0.005, 0.01, 0.02, 0.05, 0.075\}$
 - each decalibration is tested on ten random frames for more informative statistics

Dec.	TP	FN	TN	FP	Acc.
0.0025	0	0	990	10	99.0
0.005	0	0	959	41	95.9
0.01	262	218	376	144	63.8
0.02	699	191	82	28	78.1
0.05	924	66	3	7	92.7
0.075	928	72	0	0	92.8
Avg.		L			87.1
[6]					62

- Tested on KITTI (below) and EuRoC
- Downstream = ORB-SLAM2, failure = RMSE larger than threshold (as in [6])
- 100 decalibrations of 6 decalibration magnitudes
 - ► $[-\delta, \delta]$ m or rad, $\delta \in \{0.0025, 0.005, 0.01, 0.02, 0.05, 0.075\}$
 - each decalibration is tested on ten random frames for more informative statistics

Dec.	TP	FΝ	TN	FP	Acc.
0.0025	0	0	990	10	99.0
0.005	0	0	959	41	95.9
0.01	262	218	376	144	63.8
0.02	699	191	82	28	78.1
0.05	924	66	3	7	92.7
0.075	928	72	0	0	92.8
Avg.					87.1
[6]					62

Predicting downstream data processing failure

- Tested on KITTI (below) and EuRoC
- Downstream = ORB-SLAM2, failure = RMSE larger than threshold (as in [6])
- 100 decalibrations of 6 decalibration magnitudes
 - $[-\delta, \delta]$ m or rad, $\delta \in \{0.0025, 0.005, 0.01, 0.02, 0.05, 0.075\}$
 - each decalibration is tested on ten random frames for more informative statistics

FP

10

41

144

28

7

Acc.

99.0

95.9

63.8

78.1

92.7

92.8

87.1

62

0.44

Regression of the RMSE with validity index of StOCaMo

3

0 0

Future Work & Conclusion

lar	os	lav	M	loi	ra١	/e	c

< □ > < □ > < □ >
 June 26, 2023

< □ > < 円

э

Future Work & Conclusion

References I

- [1] Michael Burri, Janosch Nikolic, Pascal Gohl, et al. "The EuRoC micro aerial vehicle datasets". In: (2016).
- [2] Alexey Dosovitskiy, German Ros, Felipe Codevilla, et al. "CARLA: An Open Urban Driving Simulator". In: *Proc. of the Annual Conf. on Robot Learning*. 2017, pp. 1–16.
- [3] Andreas Geiger, Philip Lenz, and Raquel Urtasun. "Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite". In: *Conference on Computer Vision and Pattern Recognition (CVPR)*. 2012.
- [4] Jesse Levinson and Sebastian Thrun. "Automatic Online Calibration of Cameras and Lasers". In: *Proceedings Robotics: Science and Systems Conference*. Vol. 2. 2013, p. 7.
- [5] Yanghai Tsin and Takeo Kanade. "A correlation-based approach to robust point set registration". In: 2004, pp. 558–569.
- [6] Jiapeng Zhong, Zheyu Ye, Andrei Cramariuc, et al. "CalQNet-Detection of Calibration Quality for Life-Long Stereo Camera Setups". In: 2021, pp. 1312–1318.

3