Regular measures on tribes of fuzzy sets

Mirko Navara and Pavel Pták
Center for Machine Perception and Department of Mathematics
Faculty of Electrical Engineering
Czech Technical University
166 27 Praha, Czech Republic
navara@cmp.felk.cvut.cz, ptak@math.feld.cvut.cz
http://cmp.felk.cvut.cz/~navara
Related work presented at Linz Seminars

1979
Henri M. Prade: Nomenclature of fuzzy measures
Erich Peter Klement: Extension of probability measures to fuzzy measures and their characterization
Werner Schwyhla: Conditions for a fuzzy probability measure to be an integral
Josette and Jean-Louis Coulon: Fuzzy boolean algebras

1980
Erich Peter Klement: Some remarks on t-norms, fuzzy σ-algebras and fuzzy measures
Werner Schwyhla: Remarks on non-additive measures and fuzzy sets
Ulrich Höhle: Fuzzy measures as extensions

1981
Erich Peter Klement: Fuzzy measures assuming their values in the set of fuzzy numbers
1982
Erich Peter Klement: On different approaches to fuzzy probabilities
Didier Dubois: Upper and lower possibilistic expectations and applications
Ronald R. Yager: Probabilities from fuzzy observations

1983
Siegfried Weber: How to measure fuzzy sets

1984
Robert Lowen: Spaces of probability measures revisited

1985
Siegfried Weber: Generalizing the axioms of probability

1986
Erich Peter Klement: Representation of crisp- and fuzzy-valued measures by integrals
Siegfried Weber: Some remarks on the theory of pseudo-additive measures and its applications
1987
Erich Peter Klement: On a class of non-additive measures and integrals

1988
Alain Chateauneuf: Decomposable measures, distorted probabilties and concave capacities
Siegfried Weber: Decomposable measures for conditional objects
Aldo Ventre: A Yosida-Hewitt like theorem for \bot-decomposable measures (joint paper with M. Squillante)
Massimo Squillante: \bot-decomposable measures and integrals: Convergence and absolute continuity (joint paper with L. D’Apuzzo and R. Sarno)
Ulrich Höhle: Non-classical models of probability theory
1998
Mirko Navara, Pavel Pták: Types of uncertainty and the role of the Frank t-norms in classical and nonclassical logics
Mirko Navara: Nearly Frank t-norms and the characterization of T-measures
Giuseppina Barbieri: A representation theorem and a Liapounoff theorem for T_s-measures
Beloslav Riečan: On the probability theory and fuzzy sets
Ulrich Höhle: Realizations for generalized probability measures
Marc Roubens: On probabilistic interactions among players in cooperative games
Radko Mesiar: k-order pseudo-additive measures
Classical measure theory [Halmos]

THEOREMS about
FUNCTIONALS (MEASURES) on
SETS

Also [Sugeno; Dubois, Prade; Wang, Klir; Pap]
What is fuzzy measure theory?

THEOREMS about

FUZZY FUNCTIONALS (MEASURES) on

SETS

[Feng; Guo, Zhang, Wu]
What is fuzzy measure theory?

THEOREMS about

FUNCTIONALS (MEASURES) on

FUZZY SETS

[Butnariu, Klement]
What is fuzzy measure theory?

THEOREMS about

FUZZY FUNCTIONALS (MEASURES) on

FUZZY SETS

[???]
What is fuzzy measure theory?

FUZZY THEOREMS about

FUZZY FUNCTIONALS (MEASURES) on

FUZZY SETS

[!!!]
What is fuzzy measure theory?

HERE:

THEOREMS about

FUNCTIONALS (MEASURES) on

FUZZY SETS

[Butnariu, Klement, Mesiar, Barbieri, Weber]
What is fuzzy measure theory?

HERE:

THEOREMS about

FUNCTIONALS (MEASURES) on

FUZZY SETS

[Butnariu, Klement, Mesiar, Barbieri, Weber]

Also measure theory on MV-algebras [Cignoli, D’Ottaviano, Mundici, Riečan]
Basic fuzzy logical operations

Standard negation, \(\neg x = 1 - x \)
Basic fuzzy logical operations

Standard negation, \(\neg x = 1 - x \)

Fuzzy conjunction (t-norm): \(T: [0, 1]^2 \rightarrow [0, 1] \) which is commutative, associative, nondecreasing, and \(T(a, 1) = a \)
Basic fuzzy logical operations

Standard negation, \(\neg x = 1 - x \)

Fuzzy conjunction (t-norm): \(T: [0, 1]^2 \rightarrow [0, 1] \) which is commutative, associative, nondecreasing, and \(T(a, 1) = a \)

A t-norm \(T \) is **strict** iff it is **continuous** and \(x > y, z > 0 \Rightarrow T(x, z) > T(y, z) \)
Basic fuzzy logical operations

Standard negation, $\neg x = 1 - x$

Fuzzy conjunction (t-norm): $T: [0, 1]^2 \rightarrow [0, 1]$ which is commutative, associative, nondecreasing, and $T(a, 1) = a$

A t-norm T is strict iff it is continuous and

$x > y, z > 0 \Rightarrow T(x, z) > T(y, z)$

Fuzzy disjunction (t-conorm): $S: [0, 1]^2 \rightarrow [0, 1]$ dual to T:

$$S(x, y) = \neg T(\neg x, \neg y)$$
Basic notions of fuzzy measure theory

<table>
<thead>
<tr>
<th>classical measure theory</th>
<th>fuzzy measure theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ-algebra (\mathcal{T} \subseteq 2^X)</td>
<td>tribe ((\mathcal{T}, T)), where (\mathcal{T} \subseteq [0, 1]^X)</td>
</tr>
<tr>
<td>(\emptyset \in \mathcal{T})</td>
<td>(0 \in \mathcal{T})</td>
</tr>
<tr>
<td>(A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T})</td>
<td>(A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T})</td>
</tr>
<tr>
<td>(A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T})</td>
<td>(A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}) *</td>
</tr>
</tbody>
</table>
| \((A_n)_{n \in \mathbb{N}} \subseteq \mathcal{T}, A_n \not
 \rightarrow A \Rightarrow A \in \mathcal{T} \) | \((A_n)_{n \in \mathbb{N}} \subseteq \mathcal{T}, \hat{A}_n \not
 \rightarrow A \Rightarrow A \in \mathcal{T} \) |
| **measure** \(\mu: \mathcal{T} \rightarrow [0, \infty[\) | **measure** \(\mu: \mathcal{T} \rightarrow [0, \infty[\) |
| \(\mu(\emptyset) = 0 \) | \(\mu(0) = 0 \) |
| \(\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) \) | \(\mu(A \dot{\cup} B) = \mu(A) + \mu(B) - \mu(A \cap B) \) * |
| \(A_n \not
 \rightarrow A \Rightarrow \mu(A_n) \rightarrow \mu(A) \) | \(A_n \not
 \rightarrow A \Rightarrow \mu(A_n) \rightarrow \mu(A) \) |

* \((A \cap B)(x) = T(A(x), B(x)) \), \((A \dot{\cup} B)(x) = S(A(x), B(x)) \)
Basic notions of fuzzy measure theory

<table>
<thead>
<tr>
<th>classical measure theory</th>
<th>fuzzy measure theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ-algebra $\mathcal{T} \subseteq 2^X$</td>
<td>tribe (\mathcal{T}, T), where $\mathcal{T} \subseteq [0, 1]^X$</td>
</tr>
<tr>
<td>$\emptyset \in \mathcal{T}$</td>
<td>$0 \in \mathcal{T}$</td>
</tr>
<tr>
<td>$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$</td>
<td>$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$</td>
</tr>
<tr>
<td>$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$</td>
<td>$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$ *</td>
</tr>
<tr>
<td>$(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{T}, A_n \nearrow A \Rightarrow A \in \mathcal{T}$</td>
<td>$(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{T}, A_n \nearrow A \Rightarrow A \in \mathcal{T}$</td>
</tr>
<tr>
<td>measure $\mu : \mathcal{T} \to [0, \infty[$</td>
<td>regular measure $\mu : \mathcal{T} \to [0, \infty[$</td>
</tr>
<tr>
<td>$\mu(\emptyset) = 0$</td>
<td>$\mu(0) = 0$</td>
</tr>
<tr>
<td>$\mu(A \cup B)$</td>
<td>$\mu(A \cup B)$ *</td>
</tr>
<tr>
<td>$= \mu(A) + \mu(B) - \mu(A \cap B)$</td>
<td>$= \mu(A) + \mu(B) - \mu(A \cap B)$ *</td>
</tr>
<tr>
<td>$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$</td>
<td>$A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)$</td>
</tr>
<tr>
<td>$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$</td>
<td>$A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)$</td>
</tr>
</tbody>
</table>

* \((A \cap B)(x) = T(A(x), B(x)), \quad (A \cup B)(x) = S(A(x), B(x)) \)
Basic notions of fuzzy measure theory

<table>
<thead>
<tr>
<th>Classical measure theory</th>
<th>Fuzzy measure theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ-algebra $\mathcal{T} \subseteq 2^X$</td>
<td>Tribe $(\mathcal{T}, \mathcal{T}^*)$, where $\mathcal{T} \subseteq [0, 1]^X$</td>
</tr>
<tr>
<td>$\emptyset \in \mathcal{T}$</td>
<td>$0 \in \mathcal{T}$</td>
</tr>
<tr>
<td>$A \in \mathcal{T} \Rightarrow A' = X \setminus A \in \mathcal{T}$</td>
<td>$A \in \mathcal{T} \Rightarrow A' = 1 - A \in \mathcal{T}$</td>
</tr>
<tr>
<td>$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$</td>
<td>$A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$ *</td>
</tr>
<tr>
<td>$(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{T}, A_n \nearrow A \Rightarrow A \in \mathcal{T}$</td>
<td>$(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{T}, A_n \nearrow A \Rightarrow A \in \mathcal{T}$</td>
</tr>
<tr>
<td>Measure $\mu: \mathcal{T} \rightarrow [0, \infty[$</td>
<td>Regular measure $\mu: \mathcal{T} \rightarrow [0, \infty[$</td>
</tr>
<tr>
<td>$\mu(\emptyset) = 0$</td>
<td>$\mu(0) = 0$</td>
</tr>
<tr>
<td>$\mu(A \cup B)$</td>
<td>$\mu(A \cup B)$ *</td>
</tr>
<tr>
<td>$= \mu(A) + \mu(B) - \mu(A \cap B)$</td>
<td>$= \mu(A) + \mu(B) - \mu(A \cap B)$ *</td>
</tr>
<tr>
<td>$A_n \nearrow A \Rightarrow \mu(A_n) \rightarrow \mu(A)$</td>
<td>$A_n \nearrow A \Rightarrow \mu(A_n) \rightarrow \mu(A)$</td>
</tr>
<tr>
<td>$A_n \searrow A \Rightarrow \mu(A_n) \rightarrow \mu(A)$</td>
<td>$A_n \searrow A \Rightarrow \mu(A_n) \rightarrow \mu(A)$</td>
</tr>
</tbody>
</table>

Always: Crisp elements of \mathcal{T}, i.e., $\mathcal{T} \cap \{0, 1\}^X$, determine a σ-algebra \mathcal{B}

* $(A \cap B)(x) = T(A(x), B(x))$, \hspace{1cm} $(A \cup B)(x) = S(A(x), B(x))$
Full tribes

Example: Let \(\mathcal{B} \) be a \(\sigma \)-algebra of subsets of \(X \), \(\mathcal{T} \) be the corresponding collection of characteristic functions (indicators):

\[
\mathcal{T} = \{ \chi_A | A \in \mathcal{B} \}.
\]

Then \((\mathcal{T}, T) \) is a tribe (for any t-norm \(T \)).
It is called a **Boolean tribe**.
Full tribes

Example: Let \mathcal{B} be a σ-algebra of subsets of X, \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{ \chi_A \mid A \in \mathcal{B} \}.$$

Then (\mathcal{T}, T) is a tribe (for any t-norm T).

It is called a **Boolean tribe**.

Example: The tribe of all constants from $[0, 1]$ (w.l.o.g., with a singleton domain) may be identified with numbers from $[0, 1]$.

It is called a **full tribe of constants**.
Full tribes

Example: Let \mathcal{B} be a σ-algebra of subsets of X, \mathcal{T} be the corresponding collection of characteristic functions (indicators):

$$\mathcal{T} = \{\chi_A \mid A \in \mathcal{B}\}.$$

Then $(\mathcal{T}, \mathcal{T})$ is a tribe (for any t-norm T). It is called a **Boolean tribe**.

Example: The tribe of all constants from $[0, 1]$ (w.l.o.g., with a singleton domain) may be identified with numbers from $[0, 1]$. It is called a **full tribe of constants**.

Example: Let \mathcal{B} be a σ-algebra of subsets of X,

$$\mathcal{T} = \{A \in [0, 1]^X \mid A \text{ is } \mathcal{B}\text{-measurable}\}$$

Then $(\mathcal{T}, \mathcal{T})$ is a T-tribe for any measurable t-norm T. It is called a **full tribe**.
Łukasiewicz t-norm

\[T_L(x, y) = \max(x + y - 1, 0) \]

These tribes correspond to set-representable \(\sigma\)-complete MV-algebras
Łukasiewicz t-norm

\[T_L(x, y) = \max(x + y - 1, 0) \]

These tribes correspond to set-representable \(\sigma \)-complete MV-algebras.

Theorem: [Butnariu, Klement] All elements of \(T \) are \(B \)-measurable. Each measure is regular and it is of the form

\[\mu(A) = \int A \, d\nu \]

where \(\nu = \mu \upharpoonright B \) is a (classical) measure on \(B \).
Łukasiewicz t-norm

\[T_L(x, y) = \max(x + y - 1, 0) \]

These tribes correspond to set-representable \(\sigma \)-complete MV-algebras

Theorem: [Butnariu, Klement] All elements of \(T \) are \(B \)-measurable. Each measure is **regular** and it is of the form

\[\mu(A) = \int A \, d\nu \]

where \(\nu = \mu \upharpoonright B \) is a (classical) measure on \(B \).

\[\int A \, d\nu \ldots \text{linear integral measure} \]
Frank t-norms

Frank t-norms T^F_λ, $\lambda \in [0, \infty]$, [Frank] are defined by

$$T^F_\lambda(x, y) = \begin{cases}
\log_\lambda \left(1 + \frac{\left(\lambda^x - 1\right)\left(\lambda^y - 1\right)}{\lambda - 1}\right) & \text{if } \lambda \in]0, \infty[\setminus \{1\}, \\
T_M(x, y) = \min(x, y) & \text{if } \lambda = 0, \\
T_P(x, y) = x \cdot y & \text{if } \lambda = 1, \\
T_L(x, y) = \max(x + y - 1, 0) & \text{if } \lambda = \infty.
\end{cases}$$
Regular measures on full tribes, strict Frank t-norms

Frank t-norm T^F_{λ} is strict iff $0 < \lambda < \infty$
Regular measures on full tribes, strict Frank t-norms

Frank t-norm T^F_λ is strict iff $0 < \lambda < \infty$

Theorem: Regular measures on (T, T^F_λ) are (regular) measures on (T, T_L), i.e., of the form

$$\mu(A) = \int A \, d\nu$$

where $\nu = \mu \upharpoonright \mathcal{B}$ is a classical measure on \mathcal{B} (μ is a linear integral measure).
Nearly Frank t-norms

[Mesiar, MN]

Nearly Frank t-norm:

\[T(a, b) = h_{-1}^{-1}(T_{\chi_T}^F(h_T(a), h_T(b))) \]

where \(T_{\chi_T}^F \) is a Frank t-norm and \(h_T: [0, 1] \to [0, 1] \) is an increasing bijection which *commutes with* \(\neg \), i.e., \(h_T(\neg a) = \neg h_T(a) \)
Nearly Frank t-norms

[Mesiar, MN]

Nearly Frank t-norm:

\[T(a, b) = h_T^{-1}(T_{\lambda_T}^F(h_T(a), h_T(b))) \]

where \(T_{\lambda_T}^F \) is a Frank t-norm and
\(h_T: [0, 1] \rightarrow [0, 1] \) is an increasing bijection which commutes with \(\neg \), i.e.,
\[h_T(\neg a) = \neg h_T(a) \]

\(\lambda_T, h_T \) are uniquely determined by \(T \) (except for the case \(T = T_M \))
Nearly Frank t-norms

[Mesiar, MN]

Nearly Frank t-norm:

\[T(a, b) = h_T^{-1}(T_{\lambda_T}^F(h_T(a), h_T(b))) \]

where \(T_{\lambda_T}^F \) is a Frank t-norm and
\(h_T: [0, 1] \rightarrow [0, 1] \) is an increasing bijection which commutes with \(\neg \), i.e.,
\(h_T(\neg a) = \neg h_T(a) \)

\(\lambda_T, h_T \) are uniquely determined by \(T \) (except for the case \(T = T_M \))

There are nearly Frank t-norms which are not Frank (take \(h_T \neq \text{id} \))
Regular measures on full tribes, strict nearly Frank t-norms

Strict nearly Frank t-norms correspond to strict Frank t-norms
Regular measures on full tribes, strict nearly Frank t-norms

Strict nearly Frank t-norms correspond to strict Frank t-norms

Theorem: Each regular measure is of the form

$$\mu(A) = \int (h_T \circ A) \, d\nu$$

where $\nu = \mu \upharpoonright \mathcal{B}$ is a classical measure on \mathcal{B}.
Regular measures on full tribes, strict nearly Frank t-norms

Strict nearly Frank t-norms correspond to **strict** Frank t-norms

Theorem: Each **regular** measure is of the form

\[\mu(A) = \int (h_T \circ A) \, d\nu \]

where \(\nu = \mu \upharpoonright \mathcal{B} \) is a classical measure on \(\mathcal{B} \).

\(\int (h_T \circ A) \, d\nu \) ... **generalized integral measure**
Regular measures on full tribes, strict t-norms which are not nearly Frank
Regular measures on full tribes, strict t-norms which are not nearly Frank

There are strict t-norms which are not nearly Frank [MN]
Regular measures on full tribes, strict t-norms which are not nearly Frank

There are strict t-norms which are not nearly Frank [MN]

Can we recognize them?
Regular measures on full tribes, strict t-norms which are not nearly Frank

There are strict t-norms which are not nearly Frank [MN]

Can we recognize them?

Yes [Mesiar]
Regular measures on full tribes, strict \(t \)-norns which are not nearly Frank

There are strict \(t \)-norns which are not nearly Frank \([MN]\)

Can we recognize them?

Yes \([\text{Mesiar}]\)

Theorem: For each strict \(t \)-norm which is not nearly Frank, there are no non-zero regular measures on a full tribe.
Regular measures on full tribes, strict t-norms which are not nearly Frank

There are strict t-norms which are not nearly Frank [MN]

Can we recognize them?

Yes [Mesiar]

Theorem: For each strict t-norm which is not nearly Frank, there are no non-zero regular measures on a full tribe.

<table>
<thead>
<tr>
<th>measures</th>
<th>tribes</th>
<th>(T) nearly Frank (with (h_T))</th>
<th>(T) not nearly Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>full</td>
<td>(\int (h_T \circ A) , d\nu)</td>
<td>0</td>
</tr>
</tbody>
</table>
Measures on full tribes, strict t-norms which are not nearly Frank

(Regularity is omitted.)
Measures on full tribes, strict t-norms which are not nearly Frank

(Regularity is omitted.)

Theorem: Each measure is of the form

\[\mu(A) = \varrho(\text{Supp } A) \]

where \(\varrho \) is a classical measure on \(\mathcal{B} \).
Measures on full tribes, strict t-norms which are not nearly Frank

(Regularity is omitted.)

Theorem: Each measure is of the form

$$\mu(A) = \varrho(\text{Supp } A)$$

where ϱ is a classical measure on \mathcal{B}.

$\varrho(\text{Supp } A)$... support measure
Measures on full tribes,
strict nearly Frank t-norms
Measures on full tribes, strict nearly Frank t-norms

Theorem: [Butnariu, Klement; Mesiar, MN] Each measure is of the form

\[\mu(A) = \int (h_T \circ A) \, d\nu \pm \varrho(\text{Supp } A) \]

where \(\nu, \varrho \) are classical measures on \(\mathcal{B} \).
Measures on full tribes, strict nearly Frank t-norms

Theorem: [Butnariu, Klement; Mesiar, MN] Each measure is of the form

$$\mu(A) = \int (h_T \circ A) \, d\nu \pm \varrho(\text{Supp } A)$$

where ν, ϱ are classical measures on \mathcal{B}.

Particular case of strict Frank t-norms:

$$\mu(A) = \int A \, d\nu \pm \varrho(\text{Supp } A)$$
Measures on full tribes, strict nearly Frank t-norms

Theorem: [Butnariu, Klement; Mesiar, MN] Each measure is of the form

\[
\mu(A) = \int (h_T \circ A) \, d\nu \pm \varrho(\text{Supp } A)
\]

where \(\nu, \varrho\) are classical measures on \(\mathcal{B}\).

Particular case of strict Frank t-norms:

\[
\mu(A) = \int A \, d\nu \pm \varrho(\text{Supp } A)
\]

<table>
<thead>
<tr>
<th>measures</th>
<th>tribes</th>
<th>(T) nearly Frank (with (h_T))</th>
<th>(T) not nearly Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>full</td>
<td>(\int (h_T \circ A) , d\nu)</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>full</td>
<td>(\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A))</td>
<td>(\varrho(\text{Supp } A))</td>
</tr>
</tbody>
</table>
Examples of measures on the full tribe of constants \(([0, 1], T)\), \(T\) strict nearly Frank
Examples of measures on the full tribe of constants \(([0, 1], T), T\) strict nearly Frank

Example:

\[
\kappa(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0
\end{cases}
\]

It is a support measure on a singleton.

It is \textbf{monotone}, but \textbf{not regular}.
Examples of measures on the full tribe of constants \(([0, 1], T)\), \(T\) strict nearly Frank

Example:

\[
\kappa(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0
\end{cases}
\]

It is a support measure on a singleton.
It is **monotone**, but **not regular**.

Example:

\[
\mu(x) = \begin{cases}
1 - \frac{x}{2} & \text{if } x > 0 \\
0 & \text{if } x = 0
\end{cases}
\]

It is a measure which is a linear combination of a support measure \(\kappa\) and a regular measure \(\nu = id\), \(\mu = \kappa - \frac{1}{2} id\)
It is **neither monotone nor regular**.
Charges

Alternative notion:

Signed measure (charge) on a tribe \((\mathcal{T}, T)\):

\[\mu: \mathcal{T} \rightarrow \mathbb{R} \]

s.t.

- \(\mu(0) = 0 \)
- \(\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) \)
- \(A_n \uparrow A \Rightarrow \mu(A_n) \rightarrow \mu(A) \)
Charges

Alternative notion:

Signed measure (charge) on a tribe \((\mathcal{T}, T)\):

\[\mu: \mathcal{T} \to \mathbb{R} \text{ s.t.} \]

\[\begin{align*}
\text{\ding{53}} & \quad \mu(0) = 0 \\
\text{\ding{53}} & \quad \mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B) \\
\text{\ding{53}} & \quad A_n \nearrow A \Rightarrow \mu(A_n) \to \mu(A)
\end{align*} \]

Moreover, for a regular signed measure (regular charge) we require

\[\begin{align*}
\text{\ding{53}} & \quad A_n \searrow A \Rightarrow \mu(A_n) \to \mu(A)
\end{align*} \]
Tribes which are not full
Tribes which are **not** full

They exist
Tribes which are not full

They exist

Example: Boolean tribes
Tribes which are not full

They exist

Example: Boolean tribes

Example:
\[\mathcal{T} = \{ A \in [0, 1]^\mathbb{R} \mid A \text{ is Borel-measurable, } A(x) \in \{0, 1\} \text{ almost everywhere} \} \]
(\(\mathcal{T} \) an arbitrary measurable t-norm)
Tribes which are not full

They exist

Example: Boolean tribes

Example:
\[T = \{ A \in [0, 1]^\mathbb{R} \mid A \text{ is Borel-measurable, } A(x) \in \{0, 1\} \text{ almost everywhere} \} \]

\((T\text{ an arbitrary measurable t-norm})\)

Example: [Butnariu, Klement; Mesiar; MN]
\[\mathcal{B} \ldots \text{ a } \sigma\text{-algebra of subsets of } X \]
\[\Delta \ldots \text{ a } \sigma\text{-ideal in } \mathcal{B} \]
\[T = \{ A \in [0, 1]^X \mid A \text{ is } \mathcal{B}\text{-measurable, } A^{-1}(]0, 1[) \in \Delta \} \]

\((T, T)\text{ is a tribe called a weakly full tribe (weakly generated tribe)}\)
Tribes which are weakly full

There are many strict t-norms T such that all tribes (\mathcal{T}, T) are weakly full.
Tribes which are weakly full

There are many strict t-norms T such that all tribes (T, T) are weakly full.

These are strict sufficient t-norms, i.e., t-norms which – with the standard negation and limits of monotone sequences approximate sufficient sets of fuzzy logical operations “as much as possible” [Butnariu, Klement, Mesiar, MN]
Tribes which are weakly full

There are many strict t-norms T such that all tribes (T, T) are weakly full.

These are strict sufficient t-norms, i.e., t-norms which – with the standard negation and limits of monotone sequences approximate sufficient sets of fuzzy logical operations “as much as possible” [Butnariu, Klement, Mesiar, MN]

Example: Strict t-norms from the following families are sufficient: Aczél–Alsina, Frank, Hamacher*, the eighth Mizumoto, the tenth Mizumoto, Schweizer–Sklar*, the third Schweizer, etc.

* except for one value of the parameter
Tribes which are not weakly full
Tribes which are not weakly full

They exist (even for strict t-norms)
Tribes which are not weakly full

They exist (even for strict t-norms)

Example: Hamacher product, T^H_0:

$$T^H_0(x, y) = \begin{cases}
0 & \text{if } x = y = 0, \\
\frac{xy}{x+y-xy} & \text{otherwise}.
\end{cases}$$

Let $X = \{x, y\}$. There is a distance d on $[0, 1]$ and $c \in \mathbb{R}$ such that (\mathcal{T}, T^H_0) is a tribe, where $\mathcal{T} = \{0, 1\} \cup \{A \in]0, 1[^X \mid d(A(x), A(y)) \leq c\}$.
Tribes which are not weakly full

They exist (even for strict t-norms)

Example: Hamacher product, T^H_0:

$$T^H_0(x, y) = \begin{cases}
0 & \text{if } x = y = 0, \\
\frac{xy}{x+y-xy} & \text{otherwise}.
\end{cases}$$

Let $X = \{x, y\}$. There is a distance d on $[0, 1]$ and $c \in \mathbb{R}$ such that (\mathcal{T}, T^H_0) is a tribe, where $\mathcal{T} = \{0, 1\} \cup \{A \in]0, 1[^X \mid d(A(x), A(y)) \leq c\}$

Further counterexamples:

T-norms T obtained from the Hamacher product by the formula

$$T(x, y) = h_{T}^{-1}(T^H_0(h_T(x), h_T(y))) ,$$

where h_T is an order automorphism of $[0, 1]$ which commutes with \neg
Further counterexamples

This way, we obtain
Further counterexamples

This way, we obtain

- strict Dombi t-norms \((\lambda \in]0, \infty[)\)

\[
x \overset{D_{\lambda}}{\wedge} y = \frac{1}{\left(\left(\frac{1}{x} - 1\right)^{\lambda} + \left(\frac{1}{y} - 1\right)^{\lambda}\right)^{\frac{1}{\lambda}}} + 1
\]
Further counterexamples

This way, we obtain

- **strict Dombi t-norms** \((\lambda \in]0, \infty[)\)

\[
x \Join_{D^\lambda} y = \frac{1}{\left(\left(\frac{1}{x} - 1\right)^\lambda + \left(\frac{1}{y} - 1\right)^\lambda\right)^{\frac{1}{\lambda}}} + 1
\]

- **the first Mizumoto t-norm**

\[
x \wedge_{M_1} y = \frac{2}{\pi} \arccot \left(\cot \frac{\pi}{2} x + \cot \frac{\pi}{2} y \right)
\]
Further counterexamples

This way, we obtain

- strict Dombi t-norms \((\lambda \in]0, \infty[)\)

\[
x \, D^\lambda y = \frac{1}{\left(\left(\frac{1}{x} - 1 \right)^\lambda + \left(\frac{1}{y} - 1 \right)^\lambda \right)^{\frac{1}{\lambda}}} + 1
\]

- the first Mizumoto t-norm

\[
x \, M^1 y = \frac{2}{\pi} \arccot \left(\cot \frac{\pi}{2} x + \cot \frac{\pi}{2} y \right)
\]

Theorem: All other strict t-norms found in the literature are sufficient.
Tribes which are not weakly full

Open problem: Characterize tribes for non-sufficient t-norms.
Tribes which are not weakly full

Open problem: Characterize tribes for non-sufficient t-norms.

Although we do not know a characterization of tribes, we can characterize regular measures on them.
Tribes which are not weakly full

Open problem: Characterize tribes for non-sufficient t-norms.

Although we do not know a characterization of tribes, we can characterize regular measures on them.

Extreme cases:
Full tribes: no non-zero regular measures.
Tribes which are not weakly full

Open problem: Characterize tribes for non-sufficient t-norms.

Although we do not know a characterization of tribes, we can characterize *regular* measures on them.

Extreme cases:
Full tribes: *no* non-zero regular measures.
Boolean tribes: *many* non-zero regular measures.
Tribes which are not weakly full

Open problem: Characterize tribes for non-sufficient t-norms.

Although we do not know a characterization of tribes, we can characterize *regular* measures on them.

Extreme cases:
Full tribes: **no** non-zero regular measures.

Boolean tribes: **many** non-zero regular measures.

General case: something between.
Regular measures on tribes

\[\Delta_T = \{ A^{-1}(]0, 1[) \mid A \in \mathcal{T} \} \text{ is a } \sigma\text{-ideal in } \mathcal{B} \]
Regular measures on tribes

\[\Delta_T = \{ A^{-1}(]0, 1[) \mid A \in T \} \text{ is a } \sigma\text{-ideal in } B \]

Theorem: If \(T \) is strict and **not nearly Frank**, then each measure is of the form

\[\mu(A) = \varrho(\text{Supp } A) \]

where \(\varrho \) is a (classical) measure on \(B \) which **vanishes at** \(\Delta_T \)
Regular measures on tribes

\[\Delta_T = \{ A^{-1}(]0, 1[) \mid A \in T \} \text{ is a } \sigma\text{-ideal in } \mathcal{B} \]

Theorem: If \(T \) is strict and **not nearly Frank**, then each measure is of the form

\[\mu(A) = \varrho(\text{Supp } A) \]

where \(\varrho \) is a (classical) measure on \(\mathcal{B} \) which **vanishes at** \(\Delta_T \)

For strict nearly Frank t-norms the tribes are weakly full and the characterization is as before.
Regular measures on tribes

\[\Delta_T = \{ A^{-1}([0,1]) \mid A \in \mathcal{T} \} \] is a \(\sigma \)-ideal in \(\mathcal{B} \)

Theorem: If \(T \) is strict and not nearly Frank, then each measure is of the form

\[\mu(A) = \varrho(\text{Supp } A) \]

where \(\varrho \) is a (classical) measure on \(\mathcal{B} \) which vanishes at \(\Delta_T \)

For strict nearly Frank \(t \)-norms the tribes are weakly full and the characterization is as before.

<table>
<thead>
<tr>
<th>measures</th>
<th>tribes</th>
<th>(T) nearly Frank (with (h_T))</th>
<th>(T) not nearly Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>full</td>
<td>(\int (h_T \circ A) , d\nu)</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>full</td>
<td>(\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A))</td>
<td>(\varrho(\text{Supp } A))</td>
</tr>
<tr>
<td>regular</td>
<td>general</td>
<td>(\int (h_T \circ A) , d\nu)</td>
<td>(\varrho(\text{Supp } A)) *</td>
</tr>
</tbody>
</table>

* where \(\varrho \upharpoonright \Delta_T = 0 \); then \(\varrho(\text{Supp } A) = \varrho(A^{-1}(1)) = \int (h_T \circ A) \, d\varrho \) (\(h_T \) arbitrary)
Measures on tribes
Measures on tribes

Characterization of measures is known only for weakly full tribes (e.g., if T is sufficient).
Measures on tribes

Characterization of measures is known only for weakly full tribes (e.g., if T is sufficient).

Then measures are as before [Barbieri, H. Weber, MN]:

<table>
<thead>
<tr>
<th>measures</th>
<th>tribes</th>
<th>T nearly Frank (with h_T)</th>
<th>T not nearly Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>full</td>
<td>$\int (h_T \circ A) , d\nu$</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>full</td>
<td>$\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A)$</td>
<td>$\varrho(\text{Supp } A)$</td>
</tr>
<tr>
<td>regular</td>
<td>general</td>
<td>$\int (h_T \circ A) , d\nu$</td>
<td>$\varrho(\text{Supp } A)$</td>
</tr>
<tr>
<td>all</td>
<td>general</td>
<td>$\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A)$</td>
<td>$\varrho(\text{Supp } A)$</td>
</tr>
</tbody>
</table>

* where $\varrho \upharpoonright \Delta_T = 0$; then $\varrho(\text{Supp } A) = \varrho(A^{-1}(1)) = \int (h_T \circ A) \, d\varrho$ (h_T arbitrary)

** only for weakly full tribes
Measures on tribes

Characterization of measures is known only for weakly full tribes (e.g., if T is sufficient).

Then measures are as before [Barbieri, H. Weber, MN]:

<table>
<thead>
<tr>
<th>measures</th>
<th>tribes</th>
<th>T nearly Frank (with h_T)</th>
<th>T not nearly Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>full</td>
<td>$\int (h_T \circ A) , d\nu$</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>full</td>
<td>$\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A)$</td>
<td>$\varrho(\text{Supp } A)$</td>
</tr>
<tr>
<td>regular</td>
<td>general</td>
<td>$\int (h_T \circ A) , d\nu$</td>
<td>$\varrho(\text{Supp } A)$ *</td>
</tr>
<tr>
<td>all</td>
<td>general</td>
<td>$\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A)$</td>
<td>$\varrho(\text{Supp } A)$ **</td>
</tr>
</tbody>
</table>

* where $\varrho \upharpoonright \Delta_T = 0$; then $\varrho(\text{Supp } A) = \varrho(A^{-1}(1)) = \int (h_T \circ A) \, d\varrho$ (h_T arbitrary)

** only for weakly full tribes

Open problem: Characterize measures on tribes which are not weakly full.
Measures on tribes

Characterization of measures is known only for weakly full tribes (e.g., if T is sufficient).

Then measures are as before [Barbieri, H. Weber, MN]:

<table>
<thead>
<tr>
<th>measures</th>
<th>tribes</th>
<th>T nearly Frank (with h_T)</th>
<th>T not nearly Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>full</td>
<td>$\int (h_T \circ A) , d\nu$</td>
<td>0</td>
</tr>
<tr>
<td>all</td>
<td>full</td>
<td>$\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A)$</td>
<td>$\varrho(\text{Supp } A)$</td>
</tr>
<tr>
<td>regular</td>
<td>general</td>
<td>$\int (h_T \circ A) , d\nu$</td>
<td>$\varrho(\text{Supp } A)$ *</td>
</tr>
<tr>
<td>all</td>
<td>general</td>
<td>$\int (h_T \circ A) , d\nu \pm \varrho(\text{Supp } A)$</td>
<td>$\varrho(\text{Supp } A)$ **</td>
</tr>
</tbody>
</table>

* where $\varrho \upharpoonright \Delta_T = 0$; then $\varrho(\text{Supp } A) = \varrho(A^{-1}(1)) = \int (h_T \circ A) \, d\varrho$ (h_T arbitrary)

** only for weakly full tribes

Open problem: Characterize measures on tribes which are not weakly full.

For regular measures, the characterization is known in full generality.
CONCLUSION

We have a reasonable generalization of measure theory for tribes of fuzzy sets.
(There are analogues of Jordan and Hahn decomposition, Lyapunov theorem, etc.)
CONCLUSION

We have a reasonable generalization of measure theory for tribes of fuzzy sets.
(There are analogues of Jordan and Hahn decomposition, Lyapunov theorem, etc.)

In contrast to preceding work, most of the results do not need any assumptions on the structure of the tribe.
CONCLUSION

We have a reasonable generalization of measure theory for tribes of fuzzy sets. (There are analogues of Jordan and Hahn decomposition, Lyapunov theorem, etc.)

In contrast to preceding work, most of the results do not need any assumptions on the structure of the tribe.

Regular measures seem to be a reasonable alternative to the original definition by Butnariu and Klement.
CONCLUSION

We have a reasonable generalization of measure theory for tribes of fuzzy sets.
(There are analogues of Jordan and Hahn decomposition, Lyapunov theorem, etc.)

In contrast to preceding work, most of the results do not need any assumptions on the structure of the tribe.

Regular measures seem to be a reasonable alternative to the original definition by Butnariu and Klement.

The characterization of charges is simpler than that of measures.
CONCLUSION

We have a reasonable generalization of measure theory for tribes of fuzzy sets.
(There are analogues of Jordan and Hahn decomposition, Lyapunov theorem, etc.)

In contrast to preceding work, most of the results do not need any assumptions on the structure of the tribe.

Regular measures seem to be a reasonable alternative to the original definition by Butnariu and Klement.

The characterization of charges is simpler than that of measures.

Frank (more exactly, nearly Frank) t-norms play a prominent role in the characterization of measures.