Center for Machine Perception presents
Center for Machine Perception presents

Mirko Navara (Praha)
Center for Machine Perception presents

Mirko Navara (Praha)

Semantical testing of tautologies in many-valued logics
Center for Machine Perception presents

Mirko Navara (Praha)

Semantical testing of tautologies in many-valued logics

What can computers do for us?
Center for Machine Perception presents

Mirko Navara (Praha)

Semantical testing of tautologies in many-valued logics

What can computers do for us?

(And what they cannot do.)
Semantical testing of tautologies

In **Boolean algebra**: only a “small” finite number of cases, 2^n, where n is the number of different variables.
Semantical testing of tautologies

In **Boolean algebra**: only a “small” finite number of cases, 2^n, where n is the number of different variables

In **many-valued logics**:
Semantical testing of tautologies

In **Boolean algebra**: only a “small” finite number of cases, 2^n, where n is the number of different variables

In **many-valued logics**: Depends on the choice of many-valued logic; the most interesting progress has been made in the Łukasiewicz logic, i.e., in MV-algebras
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra $[0, 1]$ [Chang 58]
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra $[0, 1]$ [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, \ m \in \mathbb{N}$ [Chang 58]
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra $[0, 1]$ [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, \ m \in \mathbb{N}$ [Chang 58]
 (better, but still infinite)
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra $[0, 1]$ [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, \ m \in \mathbb{N}$ [Chang 58]
 (better, but still infinite)
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, \ m \leq b_0(M)$, where $b_0(M) = 2^{(2^M)^2}$, M is the number of variables [Mundici 87] developed for another reason

1st bound

\(M \) ... the number of all occurrences of variables in the formula
\(n \) ... the number of different variables in the formula
1st bound

M ... the number of all occurrences of variables in the formula

n ... the number of different variables in the formula

[Mundici 87]: $m \leq b_0(M) = 2^{(2^M)^2} = 2^{4M^2}$
1st bound

M ... the number of all occurrences of variables in the formula

n ... the number of different variables in the formula

[Mundici 87]: $m \leq b_0(M) = 2(2^M)^2 = 2^{4M^2}$

<table>
<thead>
<tr>
<th>M</th>
<th>number of truth values-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>65,536</td>
</tr>
<tr>
<td>3</td>
<td>68,719,476,736</td>
</tr>
<tr>
<td>4</td>
<td>18,446,744,073,709,551,616</td>
</tr>
<tr>
<td>5</td>
<td>12,676,506,002,294,014,967,032,053,76</td>
</tr>
</tbody>
</table>
1st bound

M ... the number of all occurrences of variables in the formula

n ... the number of different variables in the formula

[Mundici 87]: $m \leq b_0(M) = 2^{(2M)^2} = 2^{4M^2}$

<table>
<thead>
<tr>
<th>M</th>
<th>number of truth values−1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>65 536</td>
</tr>
<tr>
<td>3</td>
<td>68 719 476 736</td>
</tr>
<tr>
<td>4</td>
<td>18 446 744 073 709 551 616</td>
</tr>
<tr>
<td>5</td>
<td>1267 650 600 228 229 401 496 703 205 376</td>
</tr>
</tbody>
</table>

Complexity $\sum_{m=1}^{b_0(M)} (m + 1)^n$
1st bound

\(M \) ... the number of all occurrences of variables in the formula
\(n \) ... the number of different variables in the formula

[Mundici 87]: \(m \leq b_0(M) = 2^{(2M)^2} = 2^{4M^2} \)

<table>
<thead>
<tr>
<th>(M)</th>
<th>number of truth values–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>65536</td>
</tr>
<tr>
<td>3</td>
<td>68719476736</td>
</tr>
<tr>
<td>4</td>
<td>1844674407370551616</td>
</tr>
<tr>
<td>5</td>
<td>1267650600228229401496703205376</td>
</tr>
</tbody>
</table>

Complexity \(\sum_{m=1}^{b_0(M)} (m + 1)^n \)

<table>
<thead>
<tr>
<th>(M) (\backslash) (n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2147581952</td>
<td>93831434829824</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(2.361 \times 10^{21})</td>
<td>(1.081 \times 10^{32})</td>
<td>(5.575 \times 10^{42})</td>
</tr>
</tbody>
</table>
"The importance of being a good teacher."
2nd bound

“The importance of being a good teacher.”

[Aguzzoli, Ciabattoni, B. Gerla]: $m = b_1(M) = 2^{M-1}$
2nd bound

“The importance of being a good teacher.”

[Aguzzoli, Ciabattoni, B. Gerla]: \(m = b_1(M) = 2^{M-1} \)

<table>
<thead>
<tr>
<th>(M)</th>
<th>number of truth values–1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
</tr>
</tbody>
</table>
2nd bound

“The importance of being a good teacher.”

[Aguzzoli, Ciabattoni, B. Gerla]: \(m = b_1(M) = 2^{M-1} \)

<table>
<thead>
<tr>
<th>(M)</th>
<th>number of truth values $- 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>64</td>
</tr>
</tbody>
</table>

Complexity: \((b_1(M) + 1)^n \)

<table>
<thead>
<tr>
<th>(M)</th>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>25</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>9</td>
<td>81</td>
<td>729</td>
<td>6561</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>17</td>
<td>289</td>
<td>4913</td>
<td>83521</td>
<td>1419857</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>33</td>
<td>1089</td>
<td>35937</td>
<td>1185921</td>
<td>39135393</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>65</td>
<td>4225</td>
<td>274625</td>
<td>17850625</td>
<td>1160290625</td>
</tr>
</tbody>
</table>
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra $[0, 1]$ [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m \in \mathbb{N}$ [Chang 58] (better, but still infinite)
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m \leq b_0(M)$, where $b_0(M) = 2^{(2^M)^2}$, M is the number of variables [Mundici 87]
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m = b_1(M) = 2^{M-1}$ [Aguzzoli, Ciabattoni, B. Gerla]
3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: \(m \leq b(M, n) = \left\lfloor \left(\frac{M}{n} \right)^n \right\rfloor \)
3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: \(m \leq b(M, n) = \left\lfloor \left(\frac{M}{n} \right)^n \right\rfloor \)

<table>
<thead>
<tr>
<th>(M \setminus n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: \(m \leq b(M, n) = \left\lfloor \left(\frac{M}{n} \right)^n \right\rfloor \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Complexity \(\sum_{m=1}^{b(M,n)} (m + 1)^n \)
3rd bound

[Aguzzoli, Ciabattoni, B. Gerla]: \(m \leq b(M, n) = \left\lfloor \left(\frac{M}{n} \right)^n \right\rfloor \)

<table>
<thead>
<tr>
<th>(M \backslash n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Complexity \(\sum_{m=1}^{b(M,n)} (m + 1)^n \)

<table>
<thead>
<tr>
<th>(M \backslash n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>54</td>
<td>35</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>139</td>
<td>224</td>
<td>97</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>384</td>
<td>2024</td>
<td>2274</td>
<td>275</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>818</td>
<td>8280</td>
<td>25332</td>
<td>12200</td>
</tr>
</tbody>
</table>
3rd bound

This approach is preferable. As a by-product, we find the minimal denominator for which the formula is not a tautology.
This approach is preferable. As a by-product, we find the minimal denominator for which the formula is not a tautology.

Implemented by [Brůžková 05].
Semantical testing of tautologies in MV-algebras

It is enough to consider evaluations in

- the standard MV-algebra $[0, 1]$ [Chang 58]
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m \in \mathbb{N}$ [Chang 58] (better, but still infinite)
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m \leq b_0(M), \text{where } b_0(M) = 2^{(2^M)^2}, M \text{ is the number of variables} \text{ [Mundici 87]}
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m = b_1(M) = 2^{M-1} \text{ [Aguzzoli, Ciabattoni, B. Gerla]}
- $\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\}, m \leq b(M, n), \text{where } b(M, n) = \left(\frac{M}{n}\right)^n \text{ [Aguzzoli, Ciabattoni, B. Gerla]}

Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):
How do the connectives contribute to M (and thus to the bounds):

\land increments M by 1
Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):

\land increments M by 1

\rightarrow increments M by 1
Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):

\land increments M by 1

\rightarrow increments M by 1

\neg has no influence
How do the connectives contribute to M (and thus to the bounds):

\land increments M by 1

\rightarrow increments M by 1

\neg has no influence

\land_s increments M by 2 because $x \land_s y = x \land (x \rightarrow y)$
Semantical testing of tautologies in MV-algebras 2

How do the connectives contribute to M (and thus to the bounds):

\land increments M by 1

\rightarrow increments M by 1

\neg has no influence

\land increments M by 2 because $\land_S x y = x \land (x \rightarrow y)$

\lor increments M by 2 because $\lor_S x y = (x \rightarrow y) \rightarrow y = \neg (\neg x \land \neg y)$
Semantical testing in many-valued logics 2

Related questions:
Semantical testing in many-valued logics 2

Related questions:

Semantical testing in many-valued logics 2

Related questions:

- Testing of tautologies in Gödel logic
Semantical testing in many-valued logics 2

Related questions:

- Testing of tautologies in Gödel logic

 It is enough to consider evaluations in \(\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\} \), \(m = n + 1 \) [Baaz]
Semantical testing in many-valued logics 2

Related questions:

- Testing of tautologies in Gödel logic

 It is enough to consider evaluations in \(\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\} \), \(m = n + 1 \) [Baaz]

- Testing of satisfiability in Gödel logic
Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? **Still a problem.**

- Testing of tautologies in Gödel logic

 It is enough to consider evaluations in \(\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\} \), \(m = n + 1 \) [Baaz]

- Testing of satisfiability in Gödel logic

 Reduces to classical logic [Hájek 98].
Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? **Still a problem.**

- Testing of tautologies in Gödel logic

 It is enough to consider evaluations in \(\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\} \), \(m = n + 1 \) [Baaz]

- Testing of satisfiability in Gödel logic

 Reduces to classical logic [Hájek 98].

- Testing of satisfiability in product logic
Semantical testing in many-valued logics 2

Related questions:

- Testing of satisfiability in Łukasiewicz logic? **Still a problem.**

- Testing of tautologies in Gödel logic

 It is enough to consider evaluations in \(\{0, \frac{1}{m}, \frac{2}{m}, \ldots, 1\} \), \(m = n + 1 \) [Baaz]

- Testing of satisfiability in Gödel logic

 Reduces to classical logic [Hájek 98].

- Testing of satisfiability in product logic

 Reduces to classical logic [Hájek 98].
- Testing of tautologies in product logic?
- Testing of tautologies in product logic?

 Zeros in evaluations have to be handled separately (easy task).
 The evaluation on the rest can be transformed to an evaluation in Łukasiewicz logic.
- Testing of tautologies in product logic?

 Zeros in evaluations have to be handled separately (easy task).
 The evaluation on the rest can be transformed to an evaluation in Łukasiewicz logic.

 This transforms the task to that previously solved, only the bound of the number of values has to be modified.
 This bound is still an open question.
- Testing of tautologies in product logic?

 Zeros in evaluations have to be handled separately (easy task).
 The evaluation on the rest can be transformed to an evaluation in Łukasiewicz logic.

 This transforms the task to that previously solved, only the bound of the number of values has to be modified.
 This bound is still an open question.

...

- Testing of tautologies in basic logic?

 [Hájek; Haniková; Montagna, Pinna, and Tiezzi 03]; so far no implementation.

Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:
Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming
Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

 The task can be directly translated to a system of linear equalities and inequalities.
Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

 The task can be directly translated to a system of linear equalities and inequalities.

 In the simpler cases, it can be solved by standard CAS's [Fermüller].
Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

 The task can be directly translated to a system of linear equalities and inequalities.

 In the simpler cases, it can be solved by standard CAS's [Fermüller].

 Moreover, the hypersequent calculus by [Ciabattoni, Fermüller, and Metcalfe 05] allows to test tautologies in Gödel and product logics as well.
Semantical testing in many-valued logics 3

Alternative approaches to testing of tautologies:

- Linear programming, mixed integer programming

 The task can be directly translated to a system of linear equalities and inequalities.

 In the simpler cases, it can be solved by standard CAS's [Fermüller].

 Moreover, the hypersequent calculus by [Ciabattoni, Fermüller, and Metcalfe 05] allows to test tautologies in Gödel and product logics as well.

 Programmed by [Hähnle et al. ∼95].
- Search for counterexamples
Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]
Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]

May give only a negative answer.
Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]

 May give only a **negative answer**.

Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]

 May give only a negative answer.

 Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.
Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]

 May give only a negative answer.

 Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

 It proved the dependence of the axioms A2 and A3 of the Hájek’s basic logic.
Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]

 May give only a negative answer.

 Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

 It proved the dependence of the axioms A2 and A3 of the Hájek’s basic logic.

 A chance to obtain a positive answer.
Semantical testing in many-valued logics 4

- Search for counterexamples
 - random [Brůžková 05]
 - iterative [Panti]

 May give only a **negative answer**.

 Normally, the length of proofs is at most 10, but with a heuristic search, a proof of length of 18 has been obtained.

 It proved the dependence of the axioms A2 and A3 of the Hájek’s basic logic.

 A chance to obtain a **positive answer**.

The latter two methods do not guarantee an ultimate answer, but they give a reasonable chance to obtain it.