Numerické metody — numerické reseni soustav linearnich rovnic

Zkrdcend verze 2025

Mirko Navara
http://cmp.felk.cvut.cz/~navara/
katedra kybernetiky FEL CVUT

Karlovo namésti, budova G, mistnost 104a

https://moodle.fel.cvut.cz/courses/B4BOINUM
12. prosince 2025

Obsah
1 _APROXIMACE FUNKCI| 11
I1.1  Typické alohy| . . . . . . . . e 11
[1.1.1  Aproximace funkci v ekonomii| . . . . . .. ... 11
I1.1.2  Aproximace funkci v teorii pravdépodobnosti a matematicke analyze| . . . ... ... .. 11
[1.1.3  Aproximace funkci v elektrotechnice| . . . . . . ... ... ... o oo o000 11
1.1. akladni uloha aproximacel . . . . . . . . . 12
IL.2 Interpolacel . . . . . o L 13
[1.2.1  Prosta interpolace| . . . . . . . .. 13
I1.3 Interpolace polynomem| . . . . . . . . . L 15
[1.3.1 Lagrangeova konstrukce interpolacniho polynomu|. . . . . .. ... ... .. ... ... .. 16
[[:3322 Newtonova konstrukce interpolaéniho polynomul . . . . . . . . . . .. oot 17
[1.3.3  Nevilluv algoritmus| . . . . . . . . .. 18
1.3.4  Chyba aproximace interpolacnim polynomem| . . . . . . . . . . .. ... . oL 20
1.3.5  CebySevovy POlyNomY| . . . . . . o oo 24
11.3.6  Priklad pouziti interpolacniho polynomu na realnych datech|. . . . . . ... .. ... ... 26
[1.3.7 Hermituv interpolacni polynom| . . . . . ... ... ... ... ... ... . . 00000 27
[[33:8 Aproximace Taylorovou Fadoul. . . . . . v v v v v e e e 29
[1.4  Interpolace spliny|. . . . . . . . e 30
[1.4.1 Kubicky spline| . . . . . . . . .. 31
11.4.2  Priklad pouziti splinu na realnych datech| . . . . . . .. ... ... .. 000, 34
I1.5  Metoda nejmensich ¢tvercul . . . . . . . .. L 35
[1.5.1 Reseni aproximace podle kritéria nejmensich ¢tvercd| . . . . . . . .. ... .. 36
[1.5.2  Ortogonalizace| . . . . . . . . . . . e 39
1.5.3  Aproximace goniometrickym polynomem| . . . . . . ... ... 0 Lo Lo 40
1.5.4 CebySevova aproximace polynomem| . . . . . . . . ... ... ... 42
I1.6  Richardsonova extrapolace|. . . . . . . . . . Lo 43
2 NUMERICKA DERIVACE] 46
2.1 Formulace probléemu| . . . . . . ... 46
2.2 Chyba metody u numerické derivace| . . . . . . . . . ... 47
A ické ivacel . . ... 47
2.3 Odhady chyb metody u numerické derivace| . . . . . . . . .. .. oL 48
2.4 Doporucena délka kroku| . . . . . . .o oo 48
2.5 Vyuziti Richardsonovy extrapolace v numericke derivaci| . . . . . . .. ... ... ... 50
2.6 Odhad derivace z realnych dat| . . . . . . . .. . 51




13_NUMERICKA INTEGRACE] 62

8.1  Newtonovy-Cotesovy Vzorce| . . . . . . . . . . . . o o i e e e e 63
[3.1.1 Metoda levych obdélniku| . . . ... .. ... ... ... oo o oo 64
BI2 ObdénfkovA metodal . . . . . . . .o 64
B8.1.3  Lichobéznikova metodal . . . . . . . . . .. . L L 65
3.1.4  Simpsonova metoda) . . . . .. Lo Lo 65
13.1.5  Obecné Newtonovy-Cotesovy vzorce| . . . . . . . . . . . . . oo v it v it 66

3.2  Odhad chyby numerické integrace|. . . . . . . . . . . . 66

3.3 RAd metod integrace| . . . . . . ... 67

8.4 Numericka integrace realnych dat|. . . . . . . . ... . o o o 68

3.5 Gaussova metoda integrace| . . . . . . . ... e 69

3.6 Richardsonova extrapolace pri integracil . . . . . . . . . . ... L oo 70
3.6.1 Rombergova metodal . . . . . . . . . L 72

3.7 Praktické stanoveni poctu intervalul. . . . . . . ..o o o 73

3.8 Redeni obtiznéjsich tloh tpravou zadanil . . . . . . . . ... 74
13.8.1 Integrace pres nekonecny intervall . . . . . . . . ... oL o Lo 74
8.8.2  Omezeniintervalul . . . . . . . . . . L 75
18.8.3  Pomalu konvergentni integraly| . . . . . . . . ... Lo 75

4 NUMERICKE RESENI NELINEARNICH ROVNIC] 79

4.1 Formulace problému| . . . . . . . . oL 79

4.2 Metoda puleni intervalu neboli bisekce| . . . . . . . ..o oo o 79

4.3 Metoda regula falsi| . . . . .. ... o 79
4 Univerzdlni odhad chybyl. . . . . . . . . . 80

45 Metoda secenl . . . . . .. L 81
4.6 Newtonova metoda (metoda tecen)| . . . . . . . . ... Lo 82
4.6.1 Odhad chyby Newtonovy metody|. . . . . . . . . . . ... . . 83
4.6.2  Konvergence Newtonovy metody| . . . . .. ... ... ... ... 0L 84

.6.3 ahrada derivace numerickym odhadem| . . . . . . . . ... ... ... o000 85

4.7 Konvergence a jeji rychlost (fad metody)|. . . . . . . . . ... o 86
4.7.1  RAd Newtonovy metody| . . . . . . . . . . . 88

4.7.2 R&d metody regula falsi| . . . . . . . ... 88

4.8  Kombinace startovacich a zpresnujicich metod|. . . . . . . . . .. ... 0oL 90
4.9 Metoda prosté iterace (MPI)| . . . . . . . . . .. 91
4.9.1  Kontraktivni funkeel . . . . . . . ... 92
4.9.2  Veta opevném bodé| . . . . ... 92
4.9.3  Optimalizace MPI| . . . .. .. 0 o 93

4.9.4 RA&d metody prosté iterace|. . . . . . ... 93
[4.9.5  Kritéria pro vybér metody Teseni rovnic| . . . . . . .. ... L 95

FEI0 Podobnd Glohy] . . . . . . . . . 95
4.10.1 Hledani nasobnych korenu| . . . . . . ... ... ..o 0o 95
4.10.2 ReSeni algebraickych rovnic neboli hledani kofent polynomda . . . . ... ... ... ... 96
4.10.3 Reseni rovnic v komplexnim oboru| . . . . . . .. .. ... 97
4.10.4 ReSeni soustav TOVIC] . . . . . . .o 97

5 NUMERICKE RESENI SOUSTAV LINEARNICH ROVNIC 99
p.1 Formulace ulohy a jeji obtizel . . . . . . . . ... 99
5.1.1  Druhy probléemul . . . . . . .. 99

5.1.2  Spatnd podminénost| . . . . . . ... 99
b.1.3  Zdroje chyb| . . . . . . e 100

b2 Primé metody|. . . . . . . oL 100
[.2.1 Gaussova eliminace (GEM)| . . . . .. ... ... .. ... ... ... ... ... 100
[5.-2.2 Vybér hlavntho prvka . . . . . .. oL 100
F23  Gaussova-Jordanova redukCel . . . . . oo 101
b24 LU-rozkladl . . . . . . . . e 101
P.2.5  Vypocet inverzni matice| . . . . . . . .. L oL 102
P.2.6  Vypocet determinantul . . . . . . . ... oL Lo e 102




............................................ 103
9.2.8  Vypocet vlastnich cisel|. . . . . . ... oo 103

b.3  Iteracni metody|. . . . . . . . L 103
B-31 Normy vektorth @ matic] . . . . . v v v vt e e e e 103
b.3.2  Kontraktivni vektorové funkcel . . . . . . ..o o000 oo 104
[0.3.3  Maticové iteracni metody| . . . . . . ..o 107
................................ 108

5.3.4 Jacobiova iteracni metoda (JIM)
5.3.5  Gaussova-Seidelova itera¢ni metoda (GSM)| . . . . .. .. ... Lo Lo oL 109
5.3.6  Superrelaxac¢ni metoda (SOR — Successive OverRelaxation method)|




5 NUMERICKE RESENI SOUSTAV LINEARNICH ROVNIC

5.1 Formulace tlohy a jeji obtize

Uloha: Hleddme feseni soustavy n linearnich rovnic o n neznamych x1, o, ..., z,
GmaT1+a 2T+ Fai T, = b
211+ a2+ -+ a2z, = ba
an,1T1 +an,2 To+ - +an,n Tn = bn

Maticovy tvar:
Ai=0,
kde A = (a; ;)i j=1,....n je (reguldrni) matice soustavy,
b= (b1,bo,...,b,) " vektor pravych stran,
= (x1,22,...,2,) vektor neznamych.
Cramerovo pravidlo mé velkou vypocetni slozitost a numerické chyby.

5.1.1 Druhy problému
Matice soustavy:
e plné, ne prilis velké,
o 1idké, ¢asto velmi velké (mj. u kubického splinu).
5.1.2 Spatni podminénost
F=A"1b

Mala zména koeficientt soustavy nebo pravé strany muze zptsobit velkou zménu feseni.
Zpétné dosazeni (nepfesného) feseni 7. dd reziduum reseni:

F=b—AZ.,
Pokud matice A~ m4 velké prvky, miize byt reziduum # malé, i kdyz se vektor Z. podstatné 1isi od pfesného
Teseni .
= AT-AZ. =A(Z-7,),

—Z. = A7

=

8l

Jsou-li prvky matice A~! velké, miiZe i mald slozka vektoru  zptisobit velky rozdil Z — &,.
Malé reziduum nezarucuje malou chybu feseni!
Takové soustavy nazyvame Spatné podminéné.

Priklad 5.1 Soustava

2x + 6y = 8
2x+6.0000ly = 8.00001

md reseni =1, y=1;
minimdlni zména koeficienti na soustavu
2z + 6y = 8
2x45.99999y = 8.00002
zmeéni 1eseni na x = 10, y = —2.

Inverzni matice k obéma soustavdm maji proky vddové 10°, coZ ukazuje na jejich §patnou podminénost.
Rowvnice v soustavdach jsou ,skoro linedrné zdvislé “.
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5.1.3 Zdroje chyb

e nepresnost koeficientti soustavy a pravé strany,
e zaokrouhlovaci chyby pfi vypoctu,
e chyby metody — nekoneény proces je nahrazen koneénym poctem kroka (u itera¢nich metod).

5.2 Primé metody

Po koneéném poctu kroku vedou (teoreticky) k pfesnému FeSeni.

5.2.1 Gaussova eliminace (GEM)

Postupné tpravy matice soustavy pomoci ekvivalentnich tprav (neméni feseni soustavy) na horni trojihelniko-
vou matici, ze které 1ze zpétnym dosazenim snadno ziskat feSeni.
Rozsifena matice soustavy mé prvky

a0

a; = @, proi=12....n j=12....mn
ag,oﬁﬂ = b, proi=1,2,...,n
Soustavu
ago{ ] + a(o) To+ -+ a(o) — agor)lﬂ
a}goi 1+ a(o) Tyt -+ gofl Tp = agOBLH
(0) ) 21 +a( ) x2+--~+a§3%mn _ agzlﬂ

prevedeme povolenymi ipravami na tvar

(0) (0) (0) (0)

1T+ aj T2+ +ay = 0]
(1) (1) (1)
ATzt -+ a3, Tn = a354
(n—1) _  (n-1)
a’n,n LTn = n,n+1>

ze kterého zpétnou substituci vypocitame vektor reseni.

Pokud vyjde na diagondle nulovy prvek, sta¢i provést zaménu radka (resp. sloupci — v tom piipadé musime
zaménit i odpovidajici slozky vektoru reSeni!).

To 1ze, pokud je matice soustavy regularni.

Algoritmus 5.1 Prok=1,2,....n—1,proi=k+1,k+2,...,n, j=k+1L,k+2,...,n+1
PG

NON S a; (k 1)
Ui j = (k 1)
A,k
Pokud po provedeni primého chodu je néjaky diagonalni prvek a(l D—o (resp. |a \ < €), matice soustavy

je (resp. muze byt) singuldrni.
V opacéném ptipadé pouzijeme zpétnou substituci

1 (i-1) (i—1) .
R 1)(Zzn+1 Zal j), proi=nn—1,...,1.
zz j=t1+1

5.2.2 Vybér hlavniho prvku

Pokud ¢islo na diagonale je v absolutni hodnoté malé, jeho mald zména vyvola velkou zménu vysledku pii déleni
a rostou zaokrouhlovaci chyby.

Proto v kazdém kroku eliminace vybereme na diagondlu koeficient s co nejvétsi absolutni hodnotu = hlavni
prvek (pivot).

GEM s vybérem hlavniho prvku

e tplnym — vybirdme z (n — k)? prvki zbylé étvercové podmatice (vypocetné slozité),

e sloupcovym — vybirdme v ramci sloupce a pouze vyménime radky,

e radkovy — vybirdme v ramci fddku a vyménime sloupce (i poradi nezndmych!).
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5.2.3 Gaussova-Jordanova redukce

GEM mize pokracovat eliminaci prvkia nad diagonalou.

Diagonalni prvky lze prevést na jednicky.

Sloupec pravych stran je pak vektor reseni.

Pro jedno pouziti je vétsi sloZitost, ale vyplati se, pokud mame mnoho tloh lisicich se pouze pravou stranou (napf.
vypocet inverzni matice, kdy feSime soustavu linearnich rovnic soucasné pro n pravych stran, kde vychazime
z jednotkové matice).

5.2.4 LU-rozklad

Oznacme
1 0 0
fﬁ 1 0 0
X
1= -
1 0
—dni ... 0 1

ai,1

a vynasobme Lj - A. Dostaneme prvni pridruzenou soustavu z GEM s vynulovanym prvnim sloupcem pod
diagonalou. Pokracujeme:

AOZA, AZ‘+1:LZ'+1'A7; proz'zO,l,...,n—Q,

kde
1 0
0 1 0
o
Ly = _ %it2iqn
“221,i+1
: 1 0
a(l)
0 0 —tpin 0 1
A5l 041

Po provedeni n — 1 maticovych nasobeni mame
L, 1-L,o...Ly-L; - A=1U,

kde matice U je horni trojihelnikova (=vysledek piimého chodu GEM) a L=L, 1 -L,_o-...-Ls-L; dolni
trojihelnikova s jednotkami na diagonale. Inverzni matice LI'=1L existuje a je rovnéz dolni trojihelnikova
s jednotkami na diagondle.

LA = U,

A_ = L1~U:L'U.

Puvodni soustavu A ¥ = L - UZ = b nahradime dvéma soustavami s trojihelnikovymi maticemi

S

Ly
Uz =

<y

-,

(nebot AZ=L-UZ¥=Ly=0),
které reSime zpétnou substituci.
Rozepsanim soucinu L - U dostavame
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Algoritmus 5.2 Pror=1,2,...,n

1—1
Uip = iy — g lisasr proi=1,2,...,7,
s=1
1 r—1
lir = (am — g lis usﬂa) proi=r+1,r+2,...,n,
UT’T o —
s=1
i—1
Y = bi—g lis Ys proi=1,2,...,n,
s=1
1 n
T; = (yi— g ui,sxs> prot=mn,...,2,1.
Uj,j =
s=i+41

Potfebujeme vSechny prvky u,, # 0 (i béhem vypoctu) nenulové = vybér hlavniho prvku (¢asteény); zmensi
se tim i zaokrouhlovaci chyby.

Poznamka: Cely algoritmus miuizeme realizovat ,na misté“, v jediné ¢tvercové matici. Pro prekryvajici se
diagonélni prvky pouzijeme u,.,, protoze na diagondle matice L jsou jednicky, které nepocitdme ani neuklddame.
Poznamka: Tato metoda je zvlasté vhodna pro fadu tloh lisicich se pouze pravymi stranami.

Lze pouzit i vipodet inverzni matice A~1 (ovSem s vétsi slozitosti).

5.2.5 Vypocet inverzni matice

E = jednotkovd matice
A-A'=E = A vynésobend j-tym sloupcem matice A~! je rovna j-tému sloupci jednotkové matice E.
#; = j-ty sloupec A~}
€; = j-ty sloupec E
AZ; =¢

Maéme soustavu rovnic, kde Z; je vektor nezndmych.
Jednotlivé sloupce inverzni matice A~! dostaneme jako feseni soustavy pro rtizné pravé strany — sloupce ma-
tice E.
Muzeme vyuzit GEM pro jednu matici soustavy a nékolik pravych stran soucasné; sta¢i ,prodlouzit“ cyklus pro
fadky rozsifené matice soustavy typu (nx2n), tedy j = k+1,k+2,...,2n (viz Gaussova-Jordanova redukee).
Pouziti LU-rozkladu: A =L - U:

A'=@L-Uu)y'=Uut.L!.

Vypocet U™ a L™! je snadny, inverzni matice k trojiihelnikové je opét trojihelnikova.

5.2.6 Vypocet determinantu

Podle definice pouze pro velmi malé rady matic.
n 2|13 | 4 5 10 20 30
pocet operaci | 4 | 18 | 96 | 600 | 36288000 | 4.8-10™ | 7.9-10%
GEM: po eliminaci jako souc¢in prvkl na diagondle:

det A = :I:a(l(’)i aég agfg, e agf;l) .

POZOR! Vyména fadku ¢i sloupct (pii vybéru hlavniho prvku) méni znaménko determinantu. (Stac¢i si
pamatovat, zda pocet vymén byl sudy nebo lichy.)

LU-rozklad A =L - U:
det A = det (L . U) =detL -detU = U1,1 U22U3,3 ---Unn -

(Jedn4 se o trojihelnikové matice a L mé navic na diagonale jednotky:.)
Opét nutno osetrit znaménko pri vyménach radka nebo sloupct.
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5.2.7 Vlastni ¢isla

Definice 5.1 Cislo A € C je vlastni (charakteristické) ¢islo matice B € R™", téZ vlastni ¢islo line-
arniho zobrazeni ¥ — BZ, jestliZe existuje nenulovy vektor £ € C" (vlastni (charakteristicky) vektor)
splniujici £ +— AT, tj. BT = \Z.

Véta 5.1 Cislo \ je vlastni cislo matice B, prdave kdyZ det(B — AE) = 0.

5.2.8 Vypocet vlastnich cisel

Pro matice malych radi:

e Vypocteme det(B — AE), coz je polynom v proménné \ stupné n (charakteristicky polynom matice B).
e Vlastni ¢isla \; jsou kofeny charakteristického polynomu matice B (rovnice det(B — AE) = 0 je charakte-
ristickd rovnice).

Specialni metody dovoluji urcit nejvetsi vlastni ¢islo a jemu prislusny vlastni vektor.

Poznamka: Za vlastni ¢isla nadale povazujeme vSechny koreny charakteristické rovnice véetné komplexnich.
(O téch bychom méli spravné hovofit jen v komplexnim vektorovém prostoru; v redlném nen{ nasobeni kom-
plexnim ¢islem definovéno.)

5.3 Iteracni metody

Snazi se konstruovat posloupnosti vektort, konvergujici k presnému feseni soustavy.

5.3.1 Normy vektord a matic

R™ ... n-rozmérny aritmeticky vektorovy prostor
R™™ .. prostor ¢tvercovych matic radu n

0 € R™ ... nulovy vektor

O € R™™ ... nulova matice

E € R™" ... jednotkova matice

Definice 5.2 (Vektorovd) | norma| je zobrazend ||. ||, : R™ — R splriujict
o ||Z]|, >0, pricemz|Z|, =0< =0,

o ey = e[ |Z],

o [|[Z+ Yo < 1Z|lo + |¥]lw (trojihelnikovd nerovnost) .

Priklad 5.3

1Z]e = q=2, euklidovskd,

Z]|s = qg=1, souctovd, ,,manhattanskd“,

1] = q— 00, mazximovd, Cebysevova,
n 1

[Z]lq = (Z |$i|q) ’, g>1, spolecné zobecnéni predchozich.
i=1

Co neni norma: Pro ¢ = 1/2 bychom dostali

n

Il = (3 Vied)

Porusuje trojuhelnikovou nerovnost:

(1,1) = (1,0) + (0,1),
1Dz =22 =4 > [(L,0)]ly2 + (0, D] =1+1=2.
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Zména méritka: Je-li ||. ||, vektorova norma a r > 0, pak ||Z||, = 7 ||Z||, je také vektorova norma.
Tvrzeni 5.1 Norma je konvexni funkce.

Dikaz. Pro ¢ € (0,1):

leZ+ (1 =) Fllo < lle@llo + [I(1 = ) Fllo = c[|Z[l + (1 = ) [[F]]

Definice 5.3 Posloupnost vektori @0, 20 #2) . konverguje k vektoru & € R", jestlize

(k)

i

lim z

= proi=1,2,...,n.
k—o0

Véta 5.2 Posloupnost vektord 0,21 22| konverguje k vektoru & € R™, pravé kdys

lim 2% — 2|, =0,
k—o00

kde za normu mizZeme zvolit libovolnou z vyse uvedenych vektorovjch norem.

(Konvergence nezdlezi na volbé normy.)
Stejné muzeme i pro matice (ty také tvori vektorovy prostor) definovat normu ||. ||5r, ale ma to hacek:
Chceme, aby ,maly vektor“ nasobeny ,malou matici“ nemohl dat ,velky vysledek“.

lAB|m<

———
[ABZ(o < [[Allar[[BZlo < [[Allar [1Bllar [[7]] -

Maximova norma (vektort i matic) to nespliuje:

12 - 1/2\ [1/2 - 1/2\ [1/2 1/2 -+ 1/2\ [n/4 n?/8

1/2 - 1/2 /2 - 1/2 1/2 1/2 - 1/2 n/4 n?/8
Proto budeme pozadovat

A Blar < ||Alla IBlars (Schwarzova nerovnost) (11)

IBZ|lo < [IB|lar [|1Z]]o - (maticovd norma souhlasna s vektorovou) (12)

Definice 5.4 ‘ Maticovd norma ‘ je zobrazent ||. ||ar: R™™ — R splriugict
IBllas >0, pricemZ |Blly =0< B =0

e Bllar = [e[ [[Bl[ar,

IB+ Clla < |Blla + [|ICllas (trojihelnikovd nerovnost),

IB-Clla < |B|la [|Cllas (Schwarzova nerovnost) .

Disledek 5.1 |E|la > 1.

5.3.2 Kontraktivni vektorové funkce

Definice 5.5 Vektorovd funkce p: I — J je kontraktivni (s koeficientem q), jestlize
g <1VEGel:|o@) —e@l <q- 17—l

kontraktivita = spojitost
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Véta 5.3 (Banachova véta o pevném bodé pro vektorové funkce) Necht I C R™ je uzavrend ome-
zend mnozina a funkce : I — I je kontraktivni s koeficientem q. Pak rovnice p(x) = x md na I prdvé jedno
Teseni T (pevny bod).

Speciélné pro linearni zobrazeni ¢(Z) = B ¥ kontraktivita znamend

Jq <1VEGeI:|BZ-Byll,=|B @9l <q |Z-7lo,
——

z zZ
tj. VZ: |BZ]ly < ¢ ||Z]|v, & postacujici podminka je ||Bl||as < ¢, kde maticovd norma ||. ||as je souhlasna
s vektorovou normou ||. ||,-
Véta 5.4 Ke kazdé vektorové normé ||. ||, lze najit souhlasnou maticovou normu || . ||v . Staét pro kaZdou matici
B € R™" definovat |B||y jako nejmenst cislo, které spliuje (19). Takto definovand funkce | . ||y : R™" — R
je maticovd norma a nazjvd se operdtorovd norma indukovand (vektorovou) normou ||. ||,. Ekvivalentné ji
lze zavést predpisem
B?Z . - z
Bl =sup B2 = oy B3, (#=2)

= |1Zlle @)=t 121
(To je polomér obrazu jednotkové koule v zobrazeni ¢(¥) = B Z.
Kazdd vétsi maticovd norma je rovnéz souhlasnd s ||. |-
Dausledek 5.2 IE|ly =1.

Poznamka: Zde mame prostor konec¢né dimenze, kde sup je max.

Zakladni maticové normy
Operéatorova norma indukovand souc¢tovou normou vektori:

n
IBlls = sup |Bils =max(|(bs;,....bn;)lls = mjaxz 1bi,5] =
i=1

||7]|s=1

= [[(N115- - bn 1)l 1(B1,25 -, b 2) s -5 [[(Brms - -5 b)),

se nazyva sloupcova maticova norma.

Operatorova norma indukovand maximovou normou vektori:

n
IBllz= sup [Bal,= max > |bi;|= max |[(bi,..,bin)ls =
i=1,...,n i=1,...,n

[l ~=1 j=1

= [[([[(br,1, - brn)llss (D21, - - b2m) 5 -+ [ (Bn1s - - Onn)[ls) I,

se nazyva radkova maticova norma.

Priklad 5.4

PIPIL

i=1j=1

IBllF =

je maticovd norma zvand euklidovskd nebo Frobeniova a je souhlasnd s euklidovskou normou vektori.
Ale neni to operdtorovd norma indukovand euklidovskou normou vektori,

sup [|B .,

[I1Z]le=1

pro tu neexistuje jednoduchy vzorec, protoZe je napr. zdola omezend vlastnimi c¢isly matice B.
NemiiZe to bijt operdtorovd norma, nebot pro jednotkovou matici ||E||rp = /n # 1.
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Priklad 5.5 Pro libovolnou maticovou normu ||. ||a

k
i =9k 1 — o0 pro k — oo,
1 1 L 1)y

M
1 1\ 11
<% i‘) = <‘11 i‘)H — 0 pro k — oo,
i1/, 2I\zi i/l

IB*|[ar < B, — 0 pro By <1, k — 0.

Tvrzeni 5.2 Operdtorovd norma je bezrozmérnd, zména méritka vektorové normy nemd vliv. Pokud vektorovou

normu ||. ||, vyndsobime r > 0, ||Z|| := r || %], operdtorovd norma se nezméni:
Bzr Bz7 Bzr
g (BT oIB A, B,
w20 2o 7o rlZe w2 (17w
Véta 5.5 Ke kazdé maticové normé ||. | v existuje alespori jedna souhlasnd vektorovd norma ||. ||, a to |||, =
[X[laz, kde
T 0 0 ... 0
i) 0 0 ... 0
X=1.
z, 0 0 ... O
Dikaz.
Z?:l bl,j .’Ej 0O ... 0
N Eﬁzl b27j Ty 0 ... 0 o
1Bz, = . = 1B - X[ar < [IBllar [X[[as = [Bllas [| 7]} -
Z?:l bn,j Zj 0O ... 0 M
]
Disledek 5.3 ||. ||F je souhlasnd s ||. ||c.
Dikaz. )
z1 0 0 0
z2 0 0 0 noo
| _ 3 a2 — 2.
: i=1
z, 0 0 ... O P
0
. . 0 1 2 .
Definice 5.6 Posloupnost matic B(O) = (bg,j))?,jzl’ B = (b’EJ)ZjZI’ B® = (bg,j))zj:l,--- konverguje

k matici B = (bi;);._,. jestlize

lim 0% = b, ;  pro kazdéi,j=1,2,...,n.

k—oo "
B¥) .. k-t élen posloupnosti)
Véta 5.6 Posloupnost matic BO, B, B@) | . konverguje k matici B, prdvé kdyz

lim |B® — By =0,
k— o0

pro néjakou maticovou normu ||. ||ar-

106



(Konvergence nezélezi na volbé normy.)

Definice 5.7 Matice B je konvergentni, jestlize posloupnost matic B,B?,B3,B*, ... konverguje k nulové
matici. V opacném pripadé rekneme, Ze matice B je divergentni.

Definice 5.8 Spekiralni polomeér matice B € R™" je cislo

i=1,2,...,
kde \i,i =1,2,...,n, jsou vlastni ¢isla matice B (véetné komplexnich).
Véta 5.7 Kazdd maticovd norma ||. ||ar spliuje

IBl[a > o(B).

Dikaz. (Jen pro piipad, Ze vlastni ¢islo A s nejvétsi absolutni hodnotou je realné.)
Necht 3 je vlastni vektor prislusny A, By = \¢/.

Maticovd norma ||. ||as je souhlasné s néjakou vektorovou normou ||. ||, tedy vétsi nebo rovna prislusné operé-
torové normé ||. ||y, indukované ||. ||, pro kterou plati

IBZllo  [BFllo _ A9l

[Bllar > [|Blly = max ==+ > ——=— = ——
a#5 || 7|, 1%l 171l

= [A[=o(B).

Véta 5.8 Matice B je konvergentni <= o(B) < 1.

Véta 5.9 Postacujici podminky konvergentnosti matice B:
o ||B|la < 1 pro néjakou maticovou normu,

e linedrni zobrazeni ¥ — B X je kontraktivni vzhledem k néjaké vektorové normé.

0.8 0.8
B= <0.1 o.1>

je konvergentni, |B|lg = 0.9 < 1, ackoli |B|, =16>1, |B|p=v13>1.

Priklad 5.6 Matice

5.3.3 Maticové iteracni metody
Hleddme posloupnost vektori Z(%) € R™ spliujici %) — Z, tj. [|2*) — Z|,, — 0.
Pouzijeme rekurentni vzorec

Zk+1) — Fk(f(k), f(k—1)7 . 7gg(k—m)) )

Omezime se na linearni jednobodové stacionarni maticové iteracni metody, tj. Fj nezavisi na k, zavisi
jen na ¥, a to ,linedrné* (spravné afinné),

D) =Bz 1z

Napf.
b = AL,
F+b = F+AT=(E+A)T,
i = (BE+A)Z-b,
FH = B4+ A)7Z® b .
— 7
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Vektor chyby:

gk = gk _F (pfedpokldddme # 0)
7P = Bk 4z
7 = BZ+¢
0 _F = B@EkD_F) =B2(@*? -F) =...= B (@ -7
g = Bak-D = =Bk
kli_)n;oBk =0 = Jim SR

Véta 5.10 Nutnd a postacujici podminka konvergence iteracni metody tvaru £*+D = BZ*) 4 ¢ je o(B) < 1.
Pak pro vzddlenost od limity T plati

o = Q(B) o (e
||;L'(k) . va < 1_7@(]3) ||$(k) _ ;L‘(k 1)Hv-

Véta 5.11 Postacujici podminka konvergence iteracni metody tvaru Z++1) = BZ®) + & je |B|/y < 1 (pro
néjakou maticovou normu). Odhad chyby je

(‘C) _ < &14 (C) _ I(k 1)
x Tllv > Y v

(normy matice a vektord miZeme volit, ale musi byt souhlasné).

(Pocatecn{ odhad i vektorova norma mohou byt libovolné.)

5.3.4 Jacobiova itera¢ni metoda (JIM)

Vyjadiime matici A ve tvaru
A=D+L+U,

kde D je diagonalni, L ostre dolni trojuhelnikova a U ostfe horni trojihelnikova.
AZ=D+L+U)Z=Di+(L+U)Z¥ = b,
DZ = —(L+U)Z+5b,
7 = D' (—(L+U)Z+b),

volime
—(k+1) — _D—l L (k) D—l z .
T (L+U) 2% + b
By €IIM

Predpokldddme, ze hlavni diagondla matice A neobsahuje zddny nulovy prvek (toho lze dosdhnout vyménou
fadkl nebo sloupeit).

Chceme, aby na diagondle byly ,velké“ prvky.

Po slozkach:

by
r = —— (0,172 Toa+a1323+ ...+ a1n I”) +
ai a1
ba
3 = ———(a2121+a23%3+ ...+ a2 Tn) +
az 2 a2 2
1 b
T, = - (@ppz1+an2Ta+...4+apn_1Tn-1)+
G, Qan,n
i—1 n
k1 1 k k bs ;
LD a; ™ 4 a; ) + 2L i=1,2,...,n.
i @ g 3 g @i » ’
1,1 j=1 j=i+1 1,7

Podminka ukonéeni: ||£*+1) — z(®)||, < e,
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5.3.5 Gaussova-Seidelova itera¢ni metoda (GSM)

Kazd4 uz vypoctens slozka vektoru Z(*t1) se ihned pouzije v dalsim vypoétu.

i—1 n
1 Z b;
m£k+1) = _a, . (: :ai’j x§k+1) + ai’j m_gk)) + a; ; 9
ii \jT5q R

)

j=i+1

Pro realizaci vypoctu stac¢i pouze jeden vektor .

Maticovy tvar:

(D+L)# =

8

f(kJrl)

—UZ+b,
—(D+L)"Y(UZ—-b),

~-D+L)'U® + (D+L) 5.
~—_— ———— —————

Basm asM

MiuZe se stét, ze konverguje pouze jedna z téchto metod (nebo zadn4).

i=1,2,...

1.

Véta 5.12  [Num. Recipes] Pokud JIM i GSM konverguji, pak 0 < o(Bgsm) = 0(Bum)? < oBym) < 1, takze

GSM konverguje rychleji.

(Muzeme ocekavat, ze bude stacit asi 2x méné kroku.)

Problém: urceni vlastnich ¢isel matice.

Definice 5.9 Matice A € R™" se nazyvd ostre diagondlné dominanitni, jestlize

n

laiil > > lail

pro kaZdé i =1,2,...,n.

J=1.0#i

Véta 5.13 Necht matice A € R™" je ostre diagondlné dominantni, pak JIM i GSM konverguje pro libovolnou

pocdtecni iteraci.

Dikaz. Pro JIM: By méa prvky

b _{_Z:Jl Z#]v
ij = A
0 Z_.]7

]
:.T
I

n
max E |b; ;| = max
i=1,..,n 4 i=1,..,n
Jj=1

n
Z |ai,j

j=1,j#i il

i=1,...,n |ai,i|

n

! > aiy

J=1,5#i

<1.

O

Poznamka: Pro transponovanou matici dostaneme jinou podminku, ale stejné uziteénou, nebot zajisti |B|ls <

1.

Poznamka: Ostie diagonalné dominantni matice vychazi napt. u soustav linedrnich rovnic, kterymi se resi
osvétleni scény za predpokladu lambertovskych povrchii. (Soustavy jsou extrémné velké, mnohdy se ani nevejdou
do paméti.) Navic pfi zméné osvétleni se zmén{ jen pravd strana.

Definice 5.10 Matice A € R™" se nazyvd pozitivné definitni, jestlize pro kaZdy menulovy vektor £ € R"

plati

ZTAZ>0.

Véta 5.14 Necht matice A € R™" je symetrickd a pozitivné definitni, pak GSM konverguje.
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Poznamka: Symetrickd a pozitivné definitni je napf. matice soustavy norméalnich rovnic u metody nejmensich
¢tverct.

Poznamka: Matice soustavy rovnic pro koeficienty kubického splinu je ostie diagonalné dominantni, navic
ridka, takze slozitost jedné iterace je imérna n. Pii rovnomérném rozdéleni uzlovych boda je navic symetricka,
coz dovoluje Teseni s témér linedrn{ slozitosti [Spielman, Teng].
5.3.6 Superrelaxa¢ni metoda (SOR — Successive OverRelaxation method)
Konvergenci urychli jakakoliv modifikace, ktera vede ke zmenseni spektralniho poloméru matice B.
o
D7 = Di+w(-A7+b)=
— D7+uw ((—L—D—U):E’—i—E) :

(1-w)DZ—wUZ+wb, (GSM: w :=1)
[(1-w)D —wU] F+wb,
7 = D+wl)! ([(1 —w)D-wU] fwz?) -

(

(

= D+wl) " [(1-w)D-wU]i+w(D+wl) b,
) = D4wl) ' [1-w)D-wU] #® +w(D+wL) b,
—_—
B. Cu

kde w je relaxacni faktor. (Pro w = 1 dostdvame GSM.) Po slozkéch:
i—1
x§k+1) _ ;(_;ai,j x;k+1 jzz;rlaw MONEY ) (1-w)al (k)
Véta 5.15 Metoda SOR konverguje pro libovolnou pocdtecni iteraci pravé tehdy, kdyZ o(B,,) < 1.

Véta 5.16 (Ostrowského) Necht A je symetrickd matice s kladngmi proky na diagondle. Pak plati o(B,) < 1
praveé tehdy, kdyz matice A je pozitivné definitni a 0 < w < 2.

Poznamka: Casto je lepsf relaxacni faktor nadhodnotit.
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Dodatek: Prehled znaceni

Popis je zjednoduseny a nemusi byt presny, podrobnosti jsou v textu. Znaceni pouzité jen lokdlné zde neni
uvedeno.

Znaceni specifické pro tuto kapitolu

n ... pocet rovnic i neznamych

R™ ... n-rozmérny aritmeticky vektorovy prostor
R™™ ... prostor ¢tvercovych matic fadu n

0 € R™ ... nulovy vektor

O € R™"™ ... nulova matice

E € R™" ... jednotkova matice

A ... matice soustavy

b ... vektor pravych stran

Z ... vektor Treseni

T ... spravné fedent

#®) k=1,2,... ... posloupnost piibliznjch Feseni

- ... jakékoli priblizné feseni

... residuum priblizného feseni Z,.

L, U ... matice z LU-rozkladu (dolni a horni trojihelnikovi)

D,L,U ... matice v itera¢nich metodach (diagondlni, ostfe dolni a ost¥e horni trojihelnikova)

B, By, Basm, By .. iteraéni matice (obecnd, Jacobiova, Gaussova-Seidelova, superrelaxaéni)

Ai, t=1,2,... ... vlastni ¢isla itera¢ni matice

(.) ... spektralni polomér

G, Cy1M, CGSM, Cu ... konstantni vektor v itera¢nich metodach (obecnd, Jacobiova, Gaussova-Seidelova, superrela-
xacni)

SR

)

Vektorové normy:

I-llv -.. obecnd

[Ille ... euklidovské

||l ... maximové, Cebysevova

[Ills ... souctovd, ,manhattansk4®
Illg --- spoleéné zobecnéni pro ¢ > 1

Maticové normy:

[I-llazr ... obecnd

[Ille ... euklidovskd, Frobeniova
Iz .. Fadkova

I-lls .. sloupcova

Znaceni pouzZivané podobné v celém predmétu

R ... mnozina vSech realnych c¢isel
C ... mnozina vsech komplexnich ¢isel
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