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5 NUMERICKÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC
5.1 Formulace úlohy a její obtíže
Úloha: Hledáme řešení soustavy n lineárních rovnic o n neznámých x1, x2, . . . , xn

a1,1 x1 + a1,2 x2 + · · ·+ a1,n xn = b1

a2,1 x1 + a2,2 x2 + · · ·+ a2,n xn = b2
...

an,1 x1 + an,2 x2 + · · ·+ an,n xn = bn

Maticový tvar:
A ~x = ~b ,

kde A = (ai,j)i,j=1,...,n je (regulární) matice soustavy,
~b = (b1, b2, . . . , bn)> vektor pravých stran,
~x = (x1, x2, . . . , xn)> vektor neznámých.
Cramerovo pravidlo má velkou výpočetní složitost a numerické chyby.

5.1.1 Druhy problémů

Matice soustavy:
• plné, ne příliš velké,
• řídké, často velmi velké (mj. u kubického splinu).

5.1.2 Špatná podmíněnost

~x = A−1~b

Malá změna koeficientů soustavy nebo pravé strany může způsobit velkou změnu řešení.
Zpětné dosazení (nepřesného) řešení ~xc dá reziduum řešení:

~r = ~b−A ~xc ,

Pokud matice A−1 má velké prvky, může být reziduum ~r malé, i když se vektor ~xc podstatně liší od přesného
řešení ~x.

~r = A~x−A ~xc = A (~x− ~xc) ,
~x− ~xc = A−1 ~r .

Jsou-li prvky matice A−1 velké, může i malá složka vektoru ~r způsobit velký rozdíl ~x− ~xc.
Malé reziduum nezaručuje malou chybu řešení!
Takové soustavy nazýváme špatně podmíněné.

Příklad 5.1 Soustava

2x+ 6 y = 8
2x+ 6.00001 y = 8.00001

má řešení x = 1, y = 1;
minimální změna koeficientů na soustavu

2x+ 6 y = 8
2x+ 5.99999 y = 8.00002

změní řešení na x = 10, y = −2.
Inverzní matice k oběma soustavám mají prvky řádově 105, což ukazuje na jejich špatnou podmíněnost.
Rovnice v soustavách jsou „skoro lineárně závislé“.
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5.1.3 Zdroje chyb

• nepřesnost koeficientů soustavy a pravé strany,
• zaokrouhlovací chyby při výpočtu,
• chyby metody – nekonečný proces je nahrazen konečným počtem kroků (u iteračních metod).

5.2 Přímé metody
Po konečném počtu kroků vedou (teoreticky) k přesnému řešení.

5.2.1 Gaussova eliminace (GEM)

Postupné úpravy matice soustavy pomocí ekvivalentních úprav (nemění řešení soustavy) na horní trojúhelníko-
vou matici, ze které lze zpětným dosazením snadno získat řešení.
Rozšířená matice soustavy má prvky

a
(0)
i,j = ai,j , pro i = 1, 2, . . . , n, j = 1, 2, . . . , n;

a
(0)
i,n+1 = bi , pro i = 1, 2, . . . , n .

Soustavu

a
(0)
1,1 x1 + a

(0)
1,2 x2 + · · ·+ a

(0)
1,n xn = a

(0)
1,n+1

a
(0)
2,1 x1 + a

(0)
2,2 x2 + · · ·+ a

(0)
2,n xn = a

(0)
2,n+1

...
a

(0)
n,1 x1 + a

(0)
n,2 x2 + · · ·+ a(0)

n,n xn = a
(0)
n,n+1

převedeme povolenými úpravami na tvar

a
(0)
1,1 x1 + a

(0)
1,2 x2 + · · ·+ a

(0)
1,n xn = a

(0)
1,n+1

a
(1)
2,2 x2 + · · ·+ a

(1)
2,n xn = a

(1)
2,n+1

...
a(n−1)

n,n xn = a
(n−1)
n,n+1 ,

ze kterého zpětnou substitucí vypočítáme vektor řešení.
Pokud vyjde na diagonále nulový prvek, stačí provést záměnu řádků (resp. sloupců – v tom případě musíme
zaměnit i odpovídající složky vektoru řešení!).
To lze, pokud je matice soustavy regulární.

Algoritmus 5.1 Pro k = 1, 2, . . . , n− 1, pro i = k + 1, k + 2, . . . , n, j = k + 1, k + 2, . . . , n+ 1

a
(k)
i,j = a

(k−1)
i,j −

a
(k−1)
i,k

a
(k−1)
k,k

a
(k−1)
k,j .

Pokud po provedení přímého chodu je nějaký diagonální prvek a(i−1)
i,i = 0 (resp. |a(i−1)

i,i | < ε), matice soustavy
je (resp. může být) singulární.
V opačném případě použijeme zpětnou substituci

xi = 1
a

(i−1)
i,i

(
a

(i−1)
i,n+1 −

n∑
j=i+1

a
(i−1)
i,j xj

)
, pro i = n, n− 1, . . . , 1 .

5.2.2 Výběr hlavního prvku

Pokud číslo na diagonále je v absolutní hodnotě malé, jeho malá změna vyvolá velkou změnu výsledku při dělení
a rostou zaokrouhlovací chyby.
Proto v každém kroku eliminace vybereme na diagonálu koeficient s co největší absolutní hodnotu = hlavní
prvek (pivot).
GEM s výběrem hlavního prvku
• úplným – vybíráme z (n− k)2 prvků zbylé čtvercové podmatice (výpočetně složité),
• sloupcovým – vybíráme v rámci sloupce a pouze vyměníme řádky,
• řádkový – vybíráme v rámci řádku a vyměníme sloupce (i pořadí neznámých!).
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5.2.3 Gaussova-Jordanova redukce

GEM může pokračovat eliminací prvků nad diagonálou.
Diagonální prvky lze převést na jedničky.
Sloupec pravých stran je pak vektor řešení.
Pro jedno použití je větší složitost, ale vyplatí se, pokud máme mnoho úloh lišících se pouze pravou stranou (např.
výpočet inverzní matice, kdy řešíme soustavu lineárních rovnic současně pro n pravých stran, kde vycházíme
z jednotkové matice).

5.2.4 LU-rozklad

Označme

L1 =



1 0 . . . 0
−a2,1

a1,1
1 0 . . . 0

−a3,1
a1,1

0 1
...

...
. . .

1 0
−an,1

a1,1
0 . . . 0 1


a vynásobme L1 · A. Dostaneme první přidruženou soustavu z GEM s vynulovaným prvním sloupcem pod
diagonálou. Pokračujeme:

A0 = A , Ai+1 = Li+1 ·Ai pro i = 0, 1, . . . , n− 2,

kde

Li+1 =



1 0 . . . 0
0 1 0 . . . 0

0 1
...

−a
(i)
i+2,i+1

a
(i)
i+1,i+1

. . .
...

...
... 1 0

0 0 − a
(i)
n,i+1

a
(i)
i+1,i+1

. . . 0 1


.

Po provedení n− 1 maticových násobení máme

Ln−1 · Ln−2 . . .L2 · L1 ·A = U ,

kde matice U je horní trojúhelníková (=výsledek přímého chodu GEM) a L = Ln−1 · Ln−2 · . . . · L2 · L1 dolní
trojúhelníková s jednotkami na diagonále. Inverzní matice L−1 = L existuje a je rovněž dolní trojúhelníková
s jednotkami na diagonále.

L ·A = U ,

A = L−1 ·U = L ·U .

Původní soustavu A ~x = L ·U ~x = ~b nahradíme dvěma soustavami s trojúhelníkovými maticemi

L ~y = ~b ,

U ~x = ~y ,

(neboť A ~x = L ·U ~x = L ~y = ~b),
které řešíme zpětnou substitucí.
Rozepsáním součinu L ·U dostáváme
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Algoritmus 5.2 Pro r = 1, 2, . . . , n

ui,r = ai,r −
i−1∑
s=1

li,s as,r pro i = 1, 2, . . . , r,

li,r = 1
ur,r

(
ai,r −

r−1∑
s=1

li,s us,r

)
pro i = r + 1, r + 2, . . . , n,

yi = bi −
i−1∑
s=1

li,s ys pro i = 1, 2, . . . , n,

xi = 1
ui,i

(
yi −

n∑
s=i+1

ui,s xs

)
pro i = n, . . . , 2, 1 .

Potřebujeme všechny prvky ur,r 6= 0 (i během výpočtu) nenulové =⇒ výběr hlavního prvku (částečný); zmenší
se tím i zaokrouhlovací chyby.
Poznámka: Celý algoritmus můžeme realizovat „na místě“, v jediné čtvercové matici. Pro překrývající se
diagonální prvky použijeme ur,r, protože na diagonále matice L jsou jedničky, které nepočítáme ani neukládáme.
Poznámka: Tato metoda je zvláště vhodná pro řadu úloh lišících se pouze pravými stranami.
Lze použít i výpočet inverzní matice A−1 (ovšem s větší složitostí).

5.2.5 Výpočet inverzní matice

E = jednotková matice
A ·A−1 = E =⇒ A vynásobená j-tým sloupcem matice A−1 je rovna j-tému sloupci jednotkové matice E.
~xj = j-tý sloupec A−1

~ej = j-tý sloupec E
A ~xj = ~ej

Máme soustavu rovnic, kde ~xj je vektor neznámých.
Jednotlivé sloupce inverzní matice A−1 dostaneme jako řešení soustavy pro různé pravé strany – sloupce ma-
tice E.
Můžeme využít GEM pro jednu matici soustavy a několik pravých stran současně; stačí „prodloužit“ cyklus pro
řádky rozšířené matice soustavy typu (n×2n), tedy j = k+ 1, k+ 2, . . . , 2n (viz Gaussova-Jordanova redukce).
Použití LU-rozkladu: A = L ·U:

A−1 = (L ·U)−1 = U−1 · L−1 .

Výpočet U−1 a L−1 je snadný, inverzní matice k trojúhelníkové je opět trojúhelníková.

5.2.6 Výpočet determinantu

Podle definice pouze pro velmi malé řády matic.
n 2 3 4 5 10 20 30

počet operací 4 18 96 600 36 288 000 4. 8 · 1019 7. 9 · 1033

GEM: po eliminaci jako součin prvků na diagonále:

det A = ±a(0)
1,1 a

(1)
2,2 a

(2)
3,3 . . . a

(n−1)
n,n .

POZOR! Výměna řádků či sloupců (při výběru hlavního prvku) mění znaménko determinantu. (Stačí si
pamatovat, zda počet výměn byl sudý nebo lichý.)

LU-rozklad A = L ·U:

det A = det (L ·U) = det L · det U = u1,1 u2,2 u3,3 . . . un,n .

(Jedná se o trojúhelníkové matice a L má navíc na diagonále jednotky.)
Opět nutno ošetřit znaménko při výměnách řádků nebo sloupců.
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5.2.7 Vlastní čísla

Definice 5.1 Číslo λ ∈ C je vlastní (charakteristické) číslo matice B ∈ Rn,n, též vlastní číslo line-
árního zobrazení ~x 7→ B ~x, jestliže existuje nenulový vektor ~x ∈ Cn (vlastní (charakteristický) vektor)
splňující ~x 7→ λ~x, tj. B ~x = λ~x.

Věta 5.1 Číslo λ je vlastní číslo matice B, právě když det(B− λE) = 0.

5.2.8 Výpočet vlastních čísel

Pro matice malých řádů:
• Vypočteme det(B− λE), což je polynom v proměnné λ stupně n (charakteristický polynom matice B).
• Vlastní čísla λi jsou kořeny charakteristického polynomu matice B (rovnice det(B − λE) = 0 je charakte-
ristická rovnice).

Speciální metody dovolují určit největší vlastní číslo a jemu příslušný vlastní vektor.
Poznámka: Za vlastní čísla nadále považujeme všechny kořeny charakteristické rovnice včetně komplexních.
(O těch bychom měli správně hovořit jen v komplexním vektorovém prostoru; v reálném není násobení kom-
plexním číslem definováno.)

5.3 Iterační metody
Snaží se konstruovat posloupnosti vektorů, konvergující k přesnému řešení soustavy.

5.3.1 Normy vektorů a matic

Rn ... n-rozměrný aritmetický vektorový prostor
Rn,n ... prostor čtvercových matic řádu n
~o ∈ Rn ... nulový vektor
O ∈ Rn,n ... nulová matice
E ∈ Rn,n ... jednotková matice

Definice 5.2 (Vektorová) norma je zobrazení ‖ . ‖v : Rn → R splňující
• ‖~x‖v ≥ 0, přičemž ‖~x‖v = 0⇔ ~x = ~o,
• ‖c ~x‖v = |c| ‖~x‖v,
• ‖~x+ ~y‖v ≤ ‖~x‖v + ‖~y‖v (trojúhelníková nerovnost) .

Příklad 5.3

‖~x‖e =

√√√√ n∑
i=1

x2
i , q = 2 , euklidovská,

‖~x‖s =
n∑

i=1
|xi| , q = 1 , součtová, „manhattanská“,

‖~x‖r = max
i=1,...,n

|xi| , q →∞ , maximová, Čebyševova,

‖~x‖q =
( n∑

i=1
|xi|q

) 1
q

, q ≥ 1 , společné zobecnění předchozích.

Co není norma: Pro q = 1/2 bychom dostali

‖~x‖1/2 =
( n∑

i=1

√
|xi|
)2
.

Porušuje trojúhelníkovou nerovnost:

(1, 1) = (1, 0) + (0, 1) ,
‖(1, 1)‖1/2 = 22 = 4 > ‖(1, 0)‖1/2 + ‖(0, 1)‖1/2 = 1 + 1 = 2 .
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Změna měřítka: Je-li ‖ . ‖v vektorová norma a r > 0, pak ‖~x‖u = r ‖~x‖v je také vektorová norma.

Tvrzení 5.1 Norma je konvexní funkce.

Důkaz. Pro c ∈ 〈0, 1〉:

‖c ~x+ (1− c) ~y‖v ≤ ‖c ~x‖v + ‖(1− c) ~y‖v = c ‖~x‖v + (1− c) ‖~y‖v

�

Definice 5.3 Posloupnost vektorů ~x(0), ~x(1), ~x(2), . . . konverguje k vektoru ~x ∈ Rn, jestliže

lim
k→∞

x
(k)
i = xi pro i = 1, 2, . . . , n .

Věta 5.2 Posloupnost vektorů ~x(0), ~x(1), ~x(2), . . . konverguje k vektoru ~x ∈ Rn, právě když

lim
k→∞

‖~x(k) − ~x‖v = 0 ,

kde za normu můžeme zvolit libovolnou z výše uvedených vektorových norem.

(Konvergence nezáleží na volbě normy.)
Stejně můžeme i pro matice (ty také tvoří vektorový prostor) definovat normu ‖ . ‖M , ale má to háček:
Chceme, aby „malý vektor“ násobený „malou maticí“ nemohl dát „velký výsledek“.

‖A B ~x‖v ≤ ‖A‖M ‖B ~x‖v ≤

‖A B‖M≤︷ ︸︸ ︷
‖A‖M ‖B‖M ‖~x‖v .

Maximová norma (vektorů i matic) to nesplňuje:1/2 · · · 1/2
...

. . .
...

1/2 · · · 1/2


1/2 · · · 1/2

...
. . .

...
1/2 · · · 1/2


1/2

...
1/2

 =

1/2 · · · 1/2
...

. . .
...

1/2 · · · 1/2


n/4...
n/4

 =

n
2/8
...

n2/8

 .

Proto budeme požadovat

‖A B‖M ≤ ‖A‖M ‖B‖M , (Schwarzova nerovnost) (11)
‖B ~x‖v ≤ ‖B‖M ‖~x‖v . (maticová norma souhlasná s vektorovou) (12)

Definice 5.4 Maticová norma je zobrazení ‖ . ‖M : Rn,n → R splňující
• ‖B‖M ≥ 0, přičemž ‖B‖M = 0⇔ B = O
• ‖cB‖M = |c| ‖B‖M ,
• ‖B + C‖M ≤ ‖B‖M + ‖C‖M (trojúhelníková nerovnost),
• ‖B ·C‖M ≤ ‖B‖M ‖C‖M (Schwarzova nerovnost) .

Důsledek 5.1 ‖E‖M ≥ 1 .

5.3.2 Kontraktivní vektorové funkce

Definice 5.5 Vektorová funkce ϕ : I → J je kontraktivní (s koeficientem q), jestliže

∃q < 1 ∀~x, ~y ∈ I : ‖ϕ(~x)− ϕ(~y)‖v ≤ q · ‖~x− ~y‖v .

kontraktivita =⇒ spojitost
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Věta 5.3 (Banachova věta o pevném bodě pro vektorové funkce) Nechť I ⊂ Rn je uzavřená ome-
zená množina a funkce ϕ : I → I je kontraktivní s koeficientem q. Pak rovnice ϕ(x) = x má na I právě jedno
řešení x (pevný bod).

Speciálně pro lineární zobrazení φ(~x) = B ~x kontraktivita znamená

∃q < 1 ∀~x, ~y ∈ I : ‖B ~x−B ~y‖v = ‖B (~x− ~y)︸ ︷︷ ︸
~z

‖v ≤ q · ‖ ~x− ~y︸ ︷︷ ︸
~z

‖v ,

tj. ∀~z : ‖B~z‖v ≤ q · ‖~z‖v, a postačující podmínka je ‖B‖M ≤ q, kde maticová norma ‖ . ‖M je souhlasná
s vektorovou normou ‖ . ‖v.

Věta 5.4 Ke každé vektorové normě ‖ . ‖v lze najít souhlasnou maticovou normu ‖ . ‖V . Stačí pro každou matici
B ∈ Rn,n definovat ‖B‖V jako nejmenší číslo, které splňuje (12). Takto definovaná funkce ‖ . ‖V : Rn,n → R
je maticová norma a nazývá se operátorová norma indukovaná (vektorovou) normou ‖ . ‖v. Ekvivalentně ji
lze zavést předpisem

‖B‖V = sup
~z 6=~o

‖B~z‖v

‖~z‖v
= sup
‖~x‖v=1

‖B ~x‖v ,

(
~x = ~z

‖~z‖v

)
.

(To je poloměr obrazu jednotkové koule v zobrazení φ(~x) = B ~x.
Každá větší maticová norma je rovněž souhlasná s ‖ . ‖v.

Důsledek 5.2 ‖E‖V = 1 .

Poznámka: Zde máme prostor konečné dimenze, kde sup je max.

Základní maticové normy
Operátorová norma indukovaná součtovou normou vektorů:

‖B‖S = sup
‖~u‖s=1

‖B ~u‖s = max
j
‖(b1,j , . . . , bn,j)‖s = max

j

n∑
i=1
|bi,j | =

= ‖(‖(b1,1, . . . , bn,1)‖s, ‖(b1,2, . . . , bn,2)‖s, . . . , ‖(b1,n, . . . , bn,n)‖s)‖r

se nazývá sloupcová maticová norma.

Operátorová norma indukovaná maximovou normou vektorů:

‖B‖R = sup
‖~u‖r=1

‖B ~u‖r = max
i=1,...,n

n∑
j=1
|bi,j | = max

i=1,...,n
‖(bi,1, . . . , bi,n)‖s =

= ‖(‖(b1,1, . . . , b1,n)‖s, ‖(b2,1, . . . , b2,n)‖s, . . . , ‖(bn,1, . . . , bn,n)‖s)‖r

se nazývá řádková maticová norma.

Příklad 5.4

‖B‖F =

√√√√ n∑
i=1

n∑
j=1

b2
i,j

je maticová norma zvaná euklidovská nebo Frobeniova a je souhlasná s euklidovskou normou vektorů.
Ale není to operátorová norma indukovaná euklidovskou normou vektorů,

sup
‖~x‖e=1

‖B ~x‖e ,

pro tu neexistuje jednoduchý vzorec, protože je např. zdola omezená vlastními čísly matice B.
Nemůže to být operátorová norma, neboť pro jednotkovou matici ‖E‖F =

√
n 6= 1.
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Příklad 5.5 Pro libovolnou maticovou normu ‖ . ‖M∥∥∥∥∥
(

1 1
1 1

)k
∥∥∥∥∥

M

= 2k

∥∥∥∥(1 1
1 1

)∥∥∥∥
M

→∞ pro k →∞ ,∥∥∥∥∥
( 1

4
1
41

4
1
4

)k
∥∥∥∥∥

M

= 1
2k

∥∥∥∥( 1
4

1
41

4
1
4

)∥∥∥∥
M

→ 0 pro k →∞ ,

‖Bk‖M ≤ ‖B‖k
M → 0 pro ‖B‖M ≤ 1 , k →∞ .

Tvrzení 5.2 Operátorová norma je bezrozměrná, změna měřítka vektorové normy nemá vliv. Pokud vektorovou
normu ‖ . ‖v vynásobíme r > 0, ‖~x‖u := r ‖~x‖v, operátorová norma se nezmění:

max
~x6=~o

‖B ~x‖u

‖~x‖u
= max

~x6=~o

r ‖B ~x‖v

r ‖~x‖v
= max

~x6=~o

‖B ~x‖v

‖~x‖v
= ‖B‖V .

Věta 5.5 Ke každé maticové normě ‖ . ‖M existuje alespoň jedna souhlasná vektorová norma ‖ . ‖v, a to ‖~x‖v =
‖X‖M , kde

X =


x1 0 0 . . . 0
x2 0 0 . . . 0
...
xn 0 0 . . . 0

 .

Důkaz.

‖B ~x‖v =

∥∥∥∥∥∥∥∥∥∥


∑n

j=1 b1,j xj 0 . . . 0∑n
j=1 b2,j xj 0 . . . 0

...∑n
j=1 bn,j xj 0 . . . 0


∥∥∥∥∥∥∥∥∥∥

M

= ‖B ·X‖M ≤ ‖B‖M ‖X‖M = ‖B‖M ‖~x‖v .

�

Důsledek 5.3 ‖ . ‖F je souhlasná s ‖ . ‖e.

Důkaz. ∥∥∥∥∥∥∥∥∥


x1 0 0 . . . 0
x2 0 0 . . . 0
...
xn 0 0 . . . 0


∥∥∥∥∥∥∥∥∥

2

F

=
n∑

i=1
x2

i = ‖~x‖2
e .

�

Definice 5.6 Posloupnost matic B(0) =
(
b

(0)
i,j

)n

i,j=1, B(1) =
(
b

(1)
i,j

)n

i,j=1, B(2) =
(
b

(2)
i,j

)n

i,j=1, . . . konverguje
k matici B =

(
bi,j

)n

i,j=1, jestliže

lim
k→∞

b
(k)
i,j = bi,j pro každé i, j = 1, 2, . . . , n .

(B(k) ... k-tý člen posloupnosti)

Věta 5.6 Posloupnost matic B(0), B(1), B(2), . . . konverguje k matici B, právě když

lim
k→∞

‖B(k) −B‖M = 0 ,

pro nějakou maticovou normu ‖ . ‖M .
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(Konvergence nezáleží na volbě normy.)

Definice 5.7 Matice B je konvergentní, jestliže posloupnost matic B,B2,B3,B4, . . . konverguje k nulové
matici. V opačném případě řekneme, že matice B je divergentní.

Definice 5.8 Spektrální poloměr matice B ∈ Rn,n je číslo

%(B) = max
i=1,2,...,n

|λi| ,

kde λi, i = 1, 2, . . . , n, jsou vlastní čísla matice B (včetně komplexních).

Věta 5.7 Každá maticová norma ‖ . ‖M splňuje

‖B‖M ≥ %(B) .

Důkaz. (Jen pro případ, že vlastní číslo λ s největší absolutní hodnotou je reálné.)
Nechť ~y je vlastní vektor příslušný λ, B ~y = λ~y.
Maticová norma ‖ . ‖M je souhlasná s nějakou vektorovou normou ‖ . ‖v, tedy větší nebo rovna příslušné operá-
torové normě ‖ . ‖V , indukované ‖ . ‖v, pro kterou platí

‖B‖M ≥ ‖B‖V = max
~x6=~o

‖B ~x‖v

‖~x‖v
≥ ‖B ~y‖v

‖~y‖v
= |λ| ‖~y‖v

‖~y‖v
= |λ| = %(B) .

�

Věta 5.8 Matice B je konvergentní ⇐⇒ %(B) < 1.

Věta 5.9 Postačující podmínky konvergentnosti matice B:

• ‖B‖M < 1 pro nějakou maticovou normu,

• lineární zobrazení ~x 7→ B ~x je kontraktivní vzhledem k nějaké vektorové normě.

Příklad 5.6 Matice
B =

(
0.8 0.8
0.1 0.1

)
je konvergentní, ‖B‖S = 0.9 < 1, ačkoli ‖B‖R = 1.6 > 1 , ‖B‖F =

√
1.3 > 1 .

5.3.3 Maticové iterační metody

Hledáme posloupnost vektorů ~x(k) ∈ Rn splňující ~x(k) → ~x, tj. ‖~x(k) − ~x‖v → 0.
Použijeme rekurentní vzorec

~x(k+1) = Fk(~x(k), ~x(k−1), . . . , ~x(k−m)) .

Omezíme se na lineární jednobodové stacionární maticové iterační metody, tj. Fk nezávisí na k, závisí
jen na ~x(k), a to „lineárně“ (správně afinně),

~x(k+1) = B ~x(k) + ~c .

Např.

~b = A ~x ,

~x+~b = ~x+ A ~x = (E + A) ~x ,
~x = (E + A) ~x−~b ,

~x(k+1) = (E + A)︸ ︷︷ ︸
B

~x(k) −~b︸︷︷︸
~c

.
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Vektor chyby:

~ε(k) = ~x(k) − ~x (předpokládáme 6= ~o)
~x(k) = B ~x(k−1) + ~c

~x = B~x+ ~c

~x(k) − ~x = B (~x(k−1) − ~x) = B2 (~x(k−2) − ~x) = . . . = Bk (~x(0) − ~x)
~ε(k) = B ~ε(k−1) = . . . = Bk ~ε(0)

lim
k→∞

Bk = O ⇒ lim
k→∞

~ε(k) = ~o .

Věta 5.10 Nutná a postačující podmínka konvergence iterační metody tvaru ~x(k+1) = B~x(k) +~c je %(B) < 1.
Pak pro vzdálenost od limity ~x platí

‖~x(k) − ~x‖v ≤
%(B)

1− %(B) ‖~x
(k) − ~x(k−1)‖v .

Věta 5.11 Postačující podmínka konvergence iterační metody tvaru ~x(k+1) = B~x(k) + ~c je ‖B‖M < 1 (pro
nějakou maticovou normu). Odhad chyby je

‖~x(k) − ~x‖v ≤
‖B‖M

1− ‖B‖M
‖~x(k) − ~x(k−1)‖v ,

(normy matice a vektorů můžeme volit, ale musí být souhlasné).

(Počáteční odhad i vektorová norma mohou být libovolné.)

5.3.4 Jacobiova iterační metoda (JIM)

Vyjádříme matici A ve tvaru
A = D + L + U ,

kde D je diagonální, L ostře dolní trojúhelníková a U ostře horní trojúhelníková.

A ~x = (D + L + U) ~x = D ~x+ (L + U) ~x = ~b ,

D ~x = −(L + U) ~x+~b ,

~x = D−1 (−(L + U) ~x+~b) ,

volíme
~x(k+1) = −D−1 (L + U)︸ ︷︷ ︸

BJIM

~x(k) + D−1~b︸ ︷︷ ︸
~cJIM

.

Předpokládáme, že hlavní diagonála matice A neobsahuje žádný nulový prvek (toho lze dosáhnout výměnou
řádků nebo sloupců).
Chceme, aby na diagonále byly „velké“ prvky.
Po složkách:

x1 = − 1
a1,1

(a1,2 x2 + a1,3 x3 + . . .+ a1,n xn) + b1

a1,1

x2 = − 1
a2,2

(a2,1 x1 + a2,3 x3 + . . .+ a2,n xn) + b2

a2,2
...

xn = − 1
an,n

(an,1 x1 + an,2 x2 + . . .+ an,n−1 xn−1) + bn

an,n

x
(k+1)
i = − 1

ai,i

(i−1∑
j=1

ai,j x
(k)
j +

n∑
j=i+1

ai,j x
(k)
j

)
+ bi

ai,i
, i = 1, 2, . . . , n .

Podmínka ukončení: ‖~x(k+1) − ~x(k)‖v < ε.
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5.3.5 Gaussova-Seidelova iterační metoda (GSM)

Každá už vypočtená složka vektoru ~x(k+1) se ihned použije v dalším výpočtu.

x
(k+1)
i = − 1

ai,i

(i−1∑
j=1

ai,j x
(k+1)
j +

n∑
j=i+1

ai,j x
(k)
j

)
+ bi

ai,i
, i = 1, 2, . . . , n .

Pro realizaci výpočtu stačí pouze jeden vektor ~x.
Maticový tvar:

(D + L) ~x = −U ~x+~b ,

~x = −(D + L)−1 (U ~x−~b) ,
~x(k+1) = −(D + L)−1 U︸ ︷︷ ︸

BGSM

~x(k) + (D + L)−1~b︸ ︷︷ ︸
~cGSM

.

Může se stát, že konverguje pouze jedna z těchto metod (nebo žádná).

Věta 5.12 [Num. Recipes] Pokud JIM i GSM konvergují, pak 0 ≤ %(BGSM) = %(BJIM)2 ≤ %(BJIM) < 1, takže
GSM konverguje rychleji.

(Můžeme očekávat, že bude stačit asi 2× méně kroků.)

Problém: určení vlastních čísel matice.

Definice 5.9 Matice A ∈ Rn,n se nazývá ostře diagonálně dominantní, jestliže

|ai,i| >
n∑

j=1,j 6=i

|ai,j | pro každé i = 1, 2, . . . , n .

Věta 5.13 Nechť matice A ∈ Rn,n je ostře diagonálně dominantní, pak JIM i GSM konverguje pro libovolnou
počáteční iteraci.

Důkaz. Pro JIM: BJIM má prvky

bi,j =
{
−ai,j

ai,i
i 6= j ,

0 i = j ,

‖B‖R = max
i=1,...,n

n∑
j=1
|bi,j | = max

i=1,...,n

n∑
j=1,j 6=i

|ai,j |
|ai,i|

= max
i=1,...,n

1
|ai,i|

n∑
j=1,j 6=i

|ai,j | < 1 .

�

Poznámka: Pro transponovanou matici dostaneme jinou podmínku, ale stejně užitečnou, neboť zajistí ‖B‖S <
1.
Poznámka: Ostře diagonálně dominantní matice vychází např. u soustav lineárních rovnic, kterými se řeší
osvětlení scény za předpokladu lambertovských povrchů. (Soustavy jsou extrémně velké, mnohdy se ani nevejdou
do paměti.) Navíc při změně osvětlení se změní jen pravá strana.

Definice 5.10 Matice A ∈ Rn,n se nazývá pozitivně definitní, jestliže pro každý nenulový vektor ~x ∈ Rn

platí
~x>A ~x > 0 .

Věta 5.14 Nechť matice A ∈ Rn,n je symetrická a pozitivně definitní, pak GSM konverguje.
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Poznámka: Symetrická a pozitivně definitní je např. matice soustavy normálních rovnic u metody nejmenších
čtverců.

Poznámka: Matice soustavy rovnic pro koeficienty kubického splinu je ostře diagonálně dominantní, navíc
řídká, takže složitost jedné iterace je úměrná n. Při rovnoměrném rozdělení uzlových bodů je navíc symetrická,
což dovoluje řešení s téměř lineární složitostí [Spielman, Teng].

5.3.6 Superrelaxační metoda (SOR – Successive OverRelaxation method)

Konvergenci urychlí jakákoliv modifikace, která vede ke zmenšení spektrálního poloměru matice B.

D ~x = D ~x+ ω

~o︷ ︸︸ ︷(
−A ~x+~b

)
=

= D ~x+ ω
(

(−L−D−U) ~x+~b
)
,

D ~x+ ωL ~x = (1− ω) D ~x− ωU ~x+ ω~b , (GSM: ω := 1)
(D + ωL) ~x = [(1− ω) D− ωU] ~x+ ω~b ,

~x = (D + ωL)−1
(

[(1− ω) D− ωU] ~x+ ω~b
)

=

= (D + ωL)−1 [(1− ω) D− ωU] ~x+ ω (D + ωL)−1~b ,

~x(k+1) = (D + ωL)−1 [(1− ω) D− ωU]︸ ︷︷ ︸
Bω

~x(k) + ω (D + ωL)−1~b︸ ︷︷ ︸
~cω

,

kde ω je relaxační faktor. (Pro ω = 1 dostáváme GSM.) Po složkách:

x
(k+1)
i = ω

ai,i

(
−

i−1∑
j=1

ai,j x
(k+1)
j −

n∑
j=i+1

ai,j x
(k)
j + bj

)
+ (1− ω)x(k)

i

Věta 5.15 Metoda SOR konverguje pro libovolnou počáteční iteraci právě tehdy, když %(Bω) < 1.

Věta 5.16 (Ostrowského) Nechť A je symetrická matice s kladnými prvky na diagonále. Pak platí %(Bω) < 1
právě tehdy, když matice A je pozitivně definitní a 0 < ω < 2.

Poznámka: Často je lepší relaxační faktor nadhodnotit.
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Dodatek: Přehled značení
Popis je zjednodušený a nemusí být přesný, podrobnosti jsou v textu. Značení použité jen lokálně zde není
uvedeno.

Značení specifické pro tuto kapitolu

n ... počet rovnic i neznámých
Rn ... n-rozměrný aritmetický vektorový prostor
Rn,n ... prostor čtvercových matic řádu n
~o ∈ Rn ... nulový vektor
O ∈ Rn,n ... nulová matice
E ∈ Rn,n ... jednotková matice
A ... matice soustavy
~b ... vektor pravých stran
~x ... vektor řešení
~x ... správné řešení
~x(k), k = 1, 2, . . . ... posloupnost přibližných řešení
~xc ... jakékoli přibližné řešení
~r ... residuum přibližného řešení ~xc

L,U ... matice z LU-rozkladu (dolní a horní trojúhelníková)
D,L,U ... matice v iteračních metodách (diagonální, ostře dolní a ostře horní trojúhelníková)
B,BJIM,BGSM,Bω ... iterační matice (obecná, Jacobiova, Gaussova-Seidelova, superrelaxační)
λi, i = 1, 2, . . . ... vlastní čísla iterační matice
%(.) ... spektrální poloměr
~c,~cJIM,~cGSM,~cω ... konstantní vektor v iteračních metodách (obecná, Jacobiova, Gaussova-Seidelova, superrela-
xační)

Vektorové normy:
‖.‖v ... obecná
‖.‖e ... euklidovská
‖.‖r ... maximová, Čebyševova
‖.‖s ... součtová, „manhattanská“
‖.‖q ... společné zobecnění pro q ≥ 1

Maticové normy:
‖.‖M ... obecná
‖.‖F ... euklidovská, Frobeniova
‖.‖R ... řádková
‖.‖S ... sloupcová

Značení používané podobně v celém předmětu

R ... množina všech reálných čísel
C ... množina všech komplexních čísel
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