1. (15 bodů) Nechť \((X,Y)\) je diskrétní náhodný vektor takový, že \(E(X) = \frac{1}{2}\) a nechť jeho tabulka sdružených pravděpodobností \(p_{X,Y}\) je následující:

\[
p_{X,Y}(x,y):\begin{array}{ccc}
 x & y & -1 & 0 & 1 \\
 0 & a & 1/8 & 1/4 \\
 1 & 1/8 & b & 1/8 \\
\end{array}
\]

kde \(a, b \in \mathbb{R}\).

a) Určete koeficienty \(a\) a \(b\).

b) Spočítejte kovarianci \(\operatorname{cov}(-2X + 7, 3Y - 100)\).

c) Jsou náhodné veličiny \(X\) a \(Y\) závislé či nezávislé? Zdůvodněte odpověď.

d) Určete rozdělení veličiny
\(Z = X - Y\).

Řešení:

(a)

\[
1/2 = E(X) = 0 \cdot (a + 1/8 + 1/4) + 1 \cdot (1/8 + b + 1/8) = b + 1/4 \\
\implies b = 1/4, \\
a = 1 - (3 \cdot 1/8 + 1/4 + b) \implies a = 1/8.
\]

Jiný postup: \(X\) má alternativní rozdělení s parametrem \(p = E(X) = 1/2\), takže

\[
1/2 = P(X = 0) = a + 1/8 + 1/4, \\
1/2 = P(X = 1) = 1/8 + b + 1/8.
\]

Odtud plyne opět \(a = 1/8, b = 1/4\).

(b)

\[
\operatorname{cov}(X,Y) = E(XY) - E(X)E(Y) = -1/16.
\]

\[
\operatorname{cov}(-2X + 7, 3Y - 100) = (-2) \cdot 3 \cdot \operatorname{cov}(X,Y) = 3/8.
\]

(c) Závislé, dokonce korelované. Lze řešit i bez znalosti hodnot parametrů \(a\) a \(b\):

\[
\begin{array}{ccc|c}
\cdots & 1 & p_X \\
 0 & \cdots & 1/4 & 1/2 \\
 1 & \cdots & 1/8 & 1/2 \\
p_Y & \cdots & 3/8 & \\
\end{array}
\]

Protože např. \(p_{X,Y}(0,1) = 1/4 \neq 1/2 \cdot 3/8 = p_X(0) \cdot p_Y(1)\), jsou \(X\) a \(Y\) závislé.

Jiný postup:

\[
P(X = 0) = P(X = 1) = 1/2;
\]

pokud by \(X\) a \(Y\) byly nezávislé, muselo by platit také

\[
P(X = 0, Y = 1) = P(X = 1, Y = 1),
\]

ale to není splněno.

(d) Hodnoty z veličiny \(Z = X - Y\) jsou pro jednotlivé případy uvedeny v tabulce:

\[
z(x,y) = x - y:
\]

\[
\begin{array}{ccc}
 x & y & \cdots -1 & 0 & 1 \\
 0 & 1 & 0 & -1 \\
 1 & 2 & 1 & 0 \\
\end{array}
\]
Pravděpodobnostní funkce p_Z vznikne sečtením pravděpodobností pro jednotlivé případy

$$p_Z(z) = P(X - Y = z) = \sum_{x,y \in \mathbb{R}} P(X = x, Y = y) =$$

$$= \begin{cases} \frac{1}{4}, & z = -1, \\ \frac{1}{8} + \frac{1}{8} = \frac{1}{4}, & z = 0, \\ \frac{3}{8} - \frac{1}{8} = \frac{1}{2}, & z = 1, \\ \frac{1}{8}, & z = 2, \\ 0, & \text{jinak}. \end{cases}$$

Zde lze řešit i bez znalosti hodnot parametrů a a b, protože vždy platí

$$a + b = 1 - \left(3 \cdot \frac{1}{8} + \frac{1}{4}\right) = \frac{3}{8}.$$

2. (15 bodů) U $n = 20$ dorostenců jsme zaznamenávali, kolik metrů skočí do dálky (veličina X) a za kolik minut uplavou vzdálenost jednoho bazénu (veličina Y). Zjistili jsme tyto hodnoty $x = 5.7$ m, $y = 1.2$ min,

$$\sum_{i=1}^{20} x_i^2 = 680\text{ m}^2, \quad \sum_{i=1}^{20} y_i^2 = 50\text{ min}^2, \quad \sum_{i=1}^{20} x_i y_i = 150\text{ m} \cdot \text{min}.$$

Otestujte na hladině významnosti 5 %, jestli veličiny X a Y jsou nekorelované. Uveďte předpoklad y potřebné pro tento test.

Řešení:

Předpokládáme nezávislá měření náhodného vektoru (X,Y) s dvourozměrným normálním rozdělením. K testování použijeme výběrový koeficient korelace $r(X, Y)$ a testovou statistiku $T = \frac{R(X, Y) \sqrt{n-2}}{\sqrt{1-R^2(X, Y)}}$, která má (za předpokladu nulové hypotézy $H_0 : \rho(X, Y) = 0$) Studentovo rozdělení $t(n-2)$, kde n je rozsah výběru. Realizaci $r(x, y)$ výběrového koeficientu korelace $R(X, Y)$ vypočteme ze vzorce

$$r(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \overline{x} \cdot \overline{y} \stackrel{\text{vzorce}}{=} \frac{150/20 - 5.7 \cdot 1.2}{\sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2\right) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} y_i^2 - \overline{y}^2\right)}} \approx 0.52.$$

$$t = \frac{r(x, y) \sqrt{n-2}}{\sqrt{1-r^2(x, y)}} \approx \frac{0.52 \sqrt{18}}{\sqrt{1 - 0.52^2}} \approx 2.58.$$

Z tabulek nalezneme kvantil

$$q_{t(n-2)}\left(1 - \frac{\alpha}{2}\right) = q_{t(18)}(0.975) \approx 2.1.$$

Protože

$$|t| \doteq 2.58 > 2.1 = q_{t(18)}(0.975),$$

hypotézu ZAMÍTÁME.

3. (15 bodů) Alice, Bob a Cyril hrají následující hru: Začíná Alice; hodí kostkou a výsledek je interpretován následovně:
• 6 ... hází znovu,
• 1 ... vyhrává,
• 2, 4 ... pokračuje Bob,
• 3, 5 ... pokračuje Cyril.

Vybraný chlapec (pokud Alice již nevyhrála) hodí kostkou a výsledek je interpretován následovně:
• 6 ... hází znovu,
• 2, 4 ... vyhrává,
• 1, 3, 5 ... hra končí nerozhodně.

Jaká je pravděpodobnost výsledků hry?

Řešení:
Absorpční stavy:
1 vyhrává Alice,
2 vyhrává Bob,
3 vyhrává Cyril,
4 nerozhodně;
přechodné stavy:
5 háží Alice,
6 háží Bob,
7 háží Cyril.
Matice přechodu, fundamentální matice a její použití:

\[P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \frac{1}{6} & 0 & 0 & 0 & \frac{1}{5} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{3} & 0 & \frac{1}{2} & 0 & \frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{2} & 0 & 0 & \frac{1}{6} \end{pmatrix} = \begin{pmatrix} I \\ R \\ Q \end{pmatrix}, \]

\[R = \begin{pmatrix} \frac{1}{6} & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{3} & \frac{1}{2} \end{pmatrix}, \quad Q = \begin{pmatrix} \frac{1}{6} & \frac{1}{3} & \frac{1}{3} \\ 0 & \frac{1}{6} & 0 \\ 0 & 0 & \frac{1}{6} \end{pmatrix}, \]

\[F = (I - Q)^{-1} = \begin{pmatrix} \frac{5}{6} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{5}{6} & 0 \\ 0 & 0 & \frac{5}{6} \end{pmatrix}^{-1} = \begin{pmatrix} \frac{6}{5} & \frac{12}{25} & \frac{12}{25} \\ 0 & \frac{6}{5} & 0 \\ 0 & 0 & \frac{6}{5} \end{pmatrix}, \]

\[FR = \begin{pmatrix} \frac{1}{5} & \frac{4}{25} & \frac{4}{25} & \frac{12}{25} \\ 0 & \frac{2}{5} & 0 & \frac{3}{25} \\ 0 & 0 & \frac{2}{5} & \frac{3}{25} \end{pmatrix}. \]

První řádek odpovídá počátečnímu stavu 5 a dává pravděpodobnosti výsledků \((\frac{1}{5}, \frac{4}{25}, \frac{4}{25}, \frac{12}{25})\) (výhra Alice, Boba, Cyril, nerozhodný výsledek).

Jiný postup: Jelikož role Boba a Cyril jsou stejné, můžeme je sloučit a výslednou pravděpodobnost jejich výhry vydělit pro každé dvěma. Dostaneme jednodušší Markov řetězec:
Absorpční stavy:
1 vyhrává Alice,
2 vyhrává Bob nebo Cyril,
4 nerozhodně;
přechodné stavy:
5 hází Alice,
6 hází Bob nebo Cyril.

\[
P = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & 0 & \frac{2}{3} & 0 & \frac{1}{6} \\
0 & \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{6} & 0
\end{pmatrix}
= \begin{pmatrix}
\begin{array}{c}
I \\
R \\
Q
\end{array}
\end{pmatrix},
\]
\[
R = \begin{pmatrix}
\frac{1}{6} & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{2}
\end{pmatrix},
\quad Q = \begin{pmatrix}
\frac{1}{6} & \frac{2}{3} \\
0 & \frac{1}{6}
\end{pmatrix},
\]
\[
F = (I - Q)^{-1} = \begin{pmatrix}
\frac{5}{6} & -\frac{2}{3} \\
0 & \frac{5}{6}
\end{pmatrix}^{-1}
= \begin{pmatrix}
\frac{6}{5} & \frac{12}{25} \\
0 & \frac{6}{5}
\end{pmatrix},
\]
\[
FR = \begin{pmatrix}
\frac{1}{6} & \frac{8}{25} & \frac{12}{25} \\
0 & \frac{2}{5} & \frac{3}{5}
\end{pmatrix}.
\]

První řádek odpovídá počátečnímu stavu 5 a dává pravděpodobnosti výsledku (výhra Alice, Boba nebo Cyrila, nerozhodný výsledek); Bob, stejně jako Cyril, vyhrává s pravděpodobností \(\frac{1}{2}\cdot\frac{8}{25} = \frac{4}{25}\).

Jiný postup: Z pohledu Alice vypadá hra následovně (0 značí jakýkoli jiný výsledek než výhra Alice):

Snadno zjistíme (i součtem geometrické řady nebo z poměru pravděpodobností přechodu z 5 do 1, resp. 0), že končíme v 1 s pravděpodobností \(\frac{1}{5}\).

S pravděpodobností \(\frac{4}{5}\) ve hře pokračuje Bob nebo Cyril a jejich podmínky (tedy i pravděpodobnosti výsledků) jsou stejné. Z pohledu Boba, pokud dostane přiležitost (což nastane s pravděpodobností \(\frac{2}{5}\)), vypadá hra následovně:
Ze stavu 6 končí ve stavu 2 s pravděpodobností 2/5, ve stavu 4 s pravděpodobností 3/5. Celkově to znamená výsledek 2 (výhra Boba) s pravděpodobností $\frac{2}{5} \cdot \frac{2}{5} = \frac{4}{25}$, totéž pro stav 3 (výhra Cyrila), stav 4 (remíza) s pravděpodobností $2 \cdot \frac{2}{5} \cdot \frac{3}{5} = \frac{12}{25}$.

Mohli jsme také využít jednotkový součet všech asymptotických pravděpodobností.

4. (5 bodů) Vystrašenému cestovateli se zdá příliš velká pravděpodobnost $1 : 10^6$, že v letadle, kterým poletí, by mohla být bomba. Někdo mu poradil, ať si tam vezme bombu, že pravděpodobnost dvou bomb v jednom letadle je jen $1 : 10^{12}$. Odhlédněme od problémů realizace této rady a vysvětlete pomocí teorie pravděpodobnosti, v čem je rada chybná.

Řešení:
Stejně jako autor rady, výskyty obou bomb považuji za nezávislé (pomíjíme možnost, že náš cestovatel je sám terorista). Podmíněná pravděpodobnost výskytu druhé bomby za předpokladu, že jedna už v letadle je, je stále $1 : 10^6$. A to je také správný odhad, když víme, že jev, kterým podmiňujeme, nastal.

Pozor! Nesprávné je vysvětlení, že v nynějším modelu s podmíněnou pravděpodobností nejsou výskyty bomb nezávislé. Nezávislé jsou už proto, že v tomto modelu je výskyt jedné z bomb jev jistý, a ten je nezávislý na všech ostatních jevech.