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Abstract—An unconstrained end-to-end text localization and
recognition method is presented. The method detects initial text
hypothesis in a single pass by an efficient region-based method
and subsequently refines the text hypothesis using a more robust
local text model, which deviates from the common assumption
of region-based methods that all characters are detected as
connected components.

Additionally, a novel feature based on character stroke area
estimation is introduced. The feature is efficiently computed from
a region distance map, it is invariant to scaling and rotation
and allows to efficiently detect text regions regardless of what
fragment of text they capture.

The method runs in real time and achieves state-of-the-art text
localization and recognition results on the ICDAR 2013 Robust
Reading dataset.

I. INTRODUCTION

Scene text localization and recognition, also known as text-
in-the-wild or PhotoOCR, is an interesting problem with many
application areas such as translation, assistance to the visually
impaired or searching large image databases (e.g. Flickr or
Google Images) by their textual content. But unlike traditional
document OCR, none of the scene text recognition methods
has yet achieved sufficient accuracy and speed for practical
applications.

Text localization can be computationally very expensive
because in an image of NN pixels in general up to any of
the 2V subsets can correspond to text. Methods based on
the sliding-window localize individual characters [1], [22] or
whole words [5] by shifting a classification window of multiple
sizes across the image, drawing inspiration from other object
detection problems where this approach has been successfully
applied [21]. Such methods are robust to noise and blur,
since features aggregated over a larger area, but the crucial
disadvantage is that the number of windows that needs to be
classified grows rapidly when text with different scale, aspect,
rotation and other distortions has to be found.

Methods based on connected components [3], [14]-[16],
[19], [23] find individual characters as connected components
of a certain local property (color, intensity, stroke-width, etc.),
so that the complexity is unaffected by the text parameters
as characters of all scales and orientations can be detected in
one pass. Moreover, the connected component representation
provides a segmentation which can be exploited in a standard
OCR stage. The main drawback is the assumption that a
character is a single connected component, which is brittle - a
change in a single image pixel introduced by noise can cause
an unproportional change in the connected component size,
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Fig. 1. The method pipeline. Source image (a). Initial MSER detection and
classification (b) - character MSERs denoted green, multi-character MSERs
blue and background MSERs denoted red. Text lines formation (c) - bottom
line estimate in red. Local text refinement for the first text line - initialization
(d), first iteration (e), second iteration (f), the last iteration (g), definitive
foreground DF pixels in green, probable foreground PF pixels in blue,
background B pixels in red, ignored pixels in yellow. Final segmentation and
text recognition (h)

shape or other properties. The methods are also incapable of
detecting characters which consist of several connected com-
ponents or where text is present as characters joint together.

In the proposed method, we generalize the region-based
approach by detecting arbitrary fragments and groups of
characters alongside characters themselves in a single stage.
As previously suggested [3], we benefit the observation that
text consists of strokes and we propose an unified approach
to effectively detect and further segment regions which are
formed of strokes, regardless whether they represent a part
of a character, a whole character or a group of characters



joint together, thus dropping the common assumption of a one
to one correspondence between a character and its connected
component representation.

In the initial stage, candidate regions are effectively de-
tected as MSERs [10] with the “strokeness” property and
grouped into initial text line hypotheses, where each text line
hypothesis is then individually segmented or rejected using
an iterative and more robust segmentation approach, which is
capable of segmenting characters that cannot be obtained by
thresholding (and therefore neither as MSERs). In order to
estimate the “strokeness” of a region we introduce a novel
feature based on Stroke Support Pixels (SSPs) which exploits
the observation that one can draw any character by taking a
brush with a diameter of the stroke width and drawing through
certain points of the character (see Figure 3) - we refer to
such points as stroke support pixels (SSPs). The SSPs have
the property that they are in the middle of a character stroke,
which we refer to as the stroke axis, the distance to the region
boundary is half of the stroke width, but unlike skeletons they
do not necessary form a connected graph.

Since the area (i.e. the number of pixels) of an ideal
stroke is the product of the stroke width and the length of
the stroke, the “strokeness” can be estimated by the stroke
area ratio feature ¢ which compares the actual area of a
region with the ideal stroke area calculated from the SSPs.
The feature estimates the proportion of region pixels which are
part of a character stroke and therefore it allows to efficiently
differentiate between text regions (regardless of how many
characters they represent - see Figure 5) and the background
clutter. The feature is efficiently computed from a region
distance map, it is invariant to scaling and rotation and it is
more robust to noise than methods which aim to estimate a
single stroke width value [3] as small pixel changes do not
cause unproportional changes to the estimate. At last but not
least, the SSPs are also exploited in the subsequent supervised
segmentation stage to build a more accurate text color model,
as by definition the SSPs are placed inside the character where
the character color varies the least.

The rest of the paper is structured as follows: In Section
IL, an overview of previously published methods is presented,
in the Section III the proposed method is introduced and in
Section IV, the experimental evaluation is given. The paper is
concluded in the Section V.

II. PREVIOUS WORK

Numerous methods which focus solely on text localiza-
tion in real-world images have been published. The “sliding-
window” based methods [9] use a window which is moved
over the image and the presence of text is estimated on
the basis of local image features. The majority of recently
published methods for text localization however uses the
connected component approach [3], [6], [11], [14], [15], [23].
The methods differ in their approach to individual character
detection, which could be based on edge detection, character
energy calculation or extremal region detection, but they all
share the assumption that a single character is detected as
a single connected component. The winning method in text
localization of Yin et al. [25] at the latest ICDAR 2013
Robust Reading competition [7] also falls into this category
as individual characters are detected as MSERs [10].
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Fig. 2. Overview of the method. Initial text hypotheses efficiently generated
by a MSER detector are further refined using a local text model
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Fig. 3. Area A of an ideal stroke is a product of the stroke width s,, and the
length of the stroke s;. This is approximated by summing double the distances
d; of Stroke Support Pixels (SSPs) along the stroke axis S

Other methods focus only on text recognition, where the
text is manually localized by a human annotator. The text is
recognized on various levels, ranging from characters [4] to the
whole word level [1], [8], [24]. The winning method [1] was
able to correctly recognize 82.8% of the manually cropped-
words in the latest ICDAR Robust Reading competition [7].
Although the methods for cropped-word recognition give an
upper-bound on currently achievable text recognition perfor-
mance, they in fact assume there exists a text localization
method with a 100% accuracy, which currently is far from
being true. Moreover, since the text was localized by a human,
it is not clear that such text localization is even possible
without the recognition, because the human annotator could
have used the actual content of the text to create the annotation
for localization.

For an exhaustive survey of text localization and recogni-
tion methods refer to the ICDAR Robust Reading competition
results [7].

III. THE PROPOSED METHOD
A. Initial Candidates Detection

In the initial stage, candidate regions are detected as
MSERs [10]. The MSER detector is often exploited in the
literature [16], [25] to effectively detect individual characters,
however this assumption may not always hold - there are many
instances where individual characters cannot be detected as
MSERs because only a frament of a character is a MSER
(see Figure 1b) or a single MSER corresponds to multiple
characters or even whole words (see Figure 5, middle row).

In the proposed method, we significantly relax the as-
sumption of individual characters being detected as MSERs
(or even Extremal Regions [14]) by considering the MSER
detector as an efficient first stage in order to generate initial text
hypothesis, with no assumptions what level of text (i.e. part of
characters, characters or words) individual MSERs represent.
In other words, the proposed method assumes that at least
a small portion of the text in the image triggers the MSER
detector to generate an initial hypothesis, but it does require
that all characters are detected as MSERs, as the individual
characters are segmented at a later stage using a local text
model.

In order to build initial text hypotheses, all MSERs in an
image (detected in the intensity and hue channels) are first clas-



¢ Sy———> ——Sv—————>

3
AS:2*9*§*3.82:68.76

3
As=2%18% - «3.82=68.76

—Ss——

3 3 3 3
Ap =25 (7 #3824 243824 74234 -+ 2 +3.82) = 180.24
Ag 180.24
= — = = 0.96
*Ta 187

(© (d)

Fig. 4. Stroke area ratio ¢ calulation for a straight stroke of an odd (a)

and even (b) width and for a curved stroke - distance map d; (c) and Stroke
Support Pixel weights w; (d). Stroke Support Pixels (SSPs) denoted red
sified into 3 distinct classes: The character class represents a
single character (or a significant character fragment), the multi-
characters class represents an arbitrary group of characters
joint together as a single component (e.g. a fragment of a word,
a whole word or even several words) and the background class
represents all non-textual content (e.g. background textures).
The MSERs classified as characters and multi-characters are
used to initialize a local text model (see Section III-C), whilst
the MSERs classified as background are discarded.

For each region, the following features are calculated:

stroke area ratio ¢ = ‘?{, aspect ratio %, compactness @,

convex hull area ratio T and holes area ratio ﬁ—, where w
and h denote width and flelght of the region’s boundmg box,
A denotes the region area (i.e. number of pixels), P denotes
the length of the perimeter, A, denotes the convex hull area,
Ay, denotes the total area of region holes and A denotes the

character strokes area.

In order to estimate the character strokes area, a distance
transform map is calculated for the region binary mask and
only pixels corresponding to local distance maxima are consid-
ered (see Figure 4) - we refer to these pixels as Stroke Support
Pixels (SSPs), because the pixels determine the position of a
latent character stroke axis. In order to estimate the area of
the character strokes Ag, one could simply sum the distances
associated with the SSPs

A, =2 d; (1
i€S
where S are the SSPs and d; is the distance of the pixel ¢ from
the boundary.
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Fig. 5. Examples of stroke area ratio ¢ values for character (top row), multi-
character (middle row) and background (bottom row) connected components.
Distance map denoted by pixel intensity, Stroke Support Pixels (SSPs) denoted
red

Such an estimate is correct for an straight stroke of an
odd width, however it becomes inaccurate for strokes of an
even width (because there are two support pixels for a unitary
stroke length) or when the support pixels are not connected
to each other as a result of stroke curvature, noise at the
region boundary or changing stroke width (see Figure 4). We
therefore propose to compensate the estimate by introducing
a weight w; for each SSP, which ensures normalization to a
unitary stroke length by counting the number of pixels in a
3 x 3 neighborhood
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where |N;| denotes the number of SSPs within the 3 x 3

neighborhood of the pixel of 7 (including the pixel ¢ itself). The

numerator value is given by the observation that for a straight

stroke, there are 3 support pixels in the 3 x 3 neighborhood
(see Figure 4a).

To generate the training data, all MSERs from the ICDAR
2013 Training Set [7] dataset images were labeled using the
ground truth segmentation masks - if the MSER overlaps
sufficiently (more than 70% of pixels) with a ground truth
character segmentation it is labeled as a character, if it overlaps
with multiple ground truth character segmentations it is labeled
as a multi-character and if it does not overlap with any
segmentation it is labeled as background. MSERs which do
not fall into any of the above categories were not used in
the training. Using the aforementioned procedure, a dataset
of 121,000 background MSERs, 14,000 character MSERs and
1,200 multi-character MSERs was obtained. A random subset
of 20,000 samples was then used to train an SVM classifier [2]
with a RBF [12] kernel using a one-against-all strategy, where
each class was assigned a weight inversely proportional to its
ratio in the training dataset in order to deal with the unbalanced
number of samples for each class.

B. Text Line Hypotheses

Given the initial set of text hypothesis in the form of
detected character and multi-character regions, the proposed
method proceeds to build a local text model. The model is
inferred for each text line individually, where we consider a
text line as a sequence of characters which can be fitted by



a line and which has the same typographic and appearance
properties.

The character and multi-character regions are first clustered
into initial text line hypotheses using an efficient exhaustive
search strategy adapted from [13], where each neighboring
character triplet and each multi-character region is assigned a
bottom line estimate (see Figure 1c¢), which serves as a distance
measure for a standard agglomerative clustering approach. In
order to enforce that one region is present only in one text
line, initial text lines are simply grouped into clusters based
on presence of identical regions (two text lines are a member
of the same cluster if they have at least one region in common)
and then in each cluster only the longest text line is kept; this
can be viewed as a voting process, where in each cluster text
lines vote for the text direction and the longest text line wins.

C. Local Iterative Segmentation

Each text line hypothesis is further refined using a local text
model, individual for each text line. We formulate the problem
of finding the local text model as a energy minimization task
in a standard graph cut framework by adapting the iterative
segmentation approach of GrabCut [17] by exploiting the SSPs
for text color model training and by iteratively changing the
processed image area based on the current segmentation.

Let us recall that in the graph cuts framework the objective
is a minimization of a the Gibbs energy

E(a,0,2) = U, 0,2) + V(e, 2) ©)

where U(a, 8, z) is the data term, V' («, 2) is the smoothness
term, « is the vector of labels for each pixel, 6 represents the
image color distributions for background and foreground and
z is the image.

Following [17], the data term is a Gaussian Mixture Model
(one GMM for foreground and one for background) and the
smoothness term is the based on the Euclidean distance in the
RGB color space. Each pixel within the text line bounding-
box is then labeled as definitive foreground DF, probable
foreground PF or background B in the following iterative
process (see Figure 1d-g):

1) Initialize all pixels belonging to a character or a
multi-character region as PF, others as B

2)  Calculate a new text line bounding-box by encapsu-
lating all PF pixels and expand it by v, and -, pixels
in the horizontal resp. vertical direction

3) Find SSPs amongst PF pixels and mark them as DF

4) Learn GMM parameters, using the DF pixels to
train the foreground model and B pixels to train the
background model

5)  Create edges from the source to the DF and PF pixels,
and from the B pixels to the sink

6) Estimate the segmentation by finding the minimal cut
- mark pixels in the source subgraph as PF, pixels in
the sink subgraph as B

7)  Repeat from Step 2, until convergence

The value ~; is set to the average region width in the
text line and the ~y, is one third of the text line bounding-box
height.

Fig. 6.
dataset

Text localization and recognition examples on the ICDAR 2013

The final segmentation of the text line is a obtained by
taking the connected components of the PF pixels. If all pixels
in the text line bounding-box converged to the same label (e.g.
all are labeled as PF), the whole text line is discarded as it
most likely represents a false positive. Pixels with the PF label
which do not fit the bottom line estimate (see Figure le) or
which are located at the boundary of the text line bounding-
box are ignored in the Steps 2-4 as they typically represent
interpunction or character fragments in neighboring text lines.

D. Text Recognition

Given the segmentations obtained in the previous stage,
each connected component is assigned a Unicode label(s) by an
OCR module, which is trained on synthetic data [16]. Follow-
ing the standard approach of printed document OCR [20], the
connected components with the aspect ratio above a predefined
threshold are chopped to generate more region hypotheses in
order to cater for joint characters. Each connected component
with a label then represents a node in a direct acyclic graph,
where the edges represent a “is-a-predecessor” relation. The
final sequence of labels is then found as an optimal path in
such a graph [15].

Because the graph is relatively small (when compared to
[15], where there are several segmentations for each character),
second order language model features were added in order to
improve recognition accuracy without any significant impact
on memory complexity.

The whole pipeline runs independently over multiple scales
for each image and in the final stage the detected words are
aggregated into a single output, while eliminating overlapping
words (which typically represent the same word detected in



TABLE 1. COMPARISON WITH MOST RECENT RESULTS ON THE

ICDAR 2013 DATASET.

method recall  precision f published
proposed method 72.4 81.8 771
Yin et al. [25] 68.3 86.3 76.2 2014
TexStar (ICDAR’13 winner) [7] 66.4 88.5 75.9 2013
our previous method [15] 64.8 87.5 74.5 2013
Kim (ICDAR’11 winner) [18] 62.5 83.0 71.3 N/A

multiple scales) by keeping only the word whose correspond-
ing path in the graph has the lowest cost.

IV. EXPERIMENTS

The proposed method was evaluated using the ICDAR 2013
Robust Reading competition dataset [7], which contains 1189
words and 6393 letters in 255 images.

Using the ICDAR 2013 competition evaluation scheme [7],
the method achieves recall 72.4%, precision 81.8% and f-
measure 77.1% in text localization (see Figure 6 for sample
outputs). The method achieves significantly better recall than
the winner of ICDAR 2013 Robust Reading competition (66%)
and the method of Yin et al. [25] (68%). The precision is worse
than some of the previous methods, but the overall f-measure
represents the state-of-the-art performance - see Table 1.

In end-to-end text recognition, the method correctly lo-
calized and recognized 543 words (45%), where a word is
considered correctly recognized if all its characters match the
ground truth (using case-sensitive comparison). On the other
hand, the method “hallucinated” 79 words in total which do
not have any overlap with the ground truth.

The main reasons for method failure are character-like
objects near the text (e.g. pictographs, arrows, etc.) and low-
contrast characters which are not picked up in the initial stage.
The average run time on a standard 2.7GHz PC is 800ms per
image.

V. CONCLUSION

An end-to-end real-time text localization and recognition
method was presented. The method detects initial text hypoth-
esis in a single pass by an efficient region-based method and
subsequently refines the text hypothesis using a more robust
local text model, which deviates from the common assumption
of region-based methods that all characters are detected as
connected components.

Additionally, a novel feature based on Stroke Support
Pixels (SSPs) is introduced. The feature is based on an obser-
vation, that one can draw any character by taking a brush with
a diameter of the stroke width and drawing through certain
points of the character. The feature is efficiently computed
from a region distance map, it is invariant to scaling and
rotations and allows to efficiently detect text regions regardless
of what portion of text they capture.

On the standard ICDAR 2013 dataset [7], the method
achieves state-of-the-art results in text localization (f-measure
77.1%) and improves previously published results for end-to-
end text recognition, with the average run time of 800ms per
image.
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