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Lecture motivation

              A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

  for(j=0; j<N; j++)

    sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

               B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

  for(i=0; i<M; i++)

    sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently? 
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John von Neumann, Hungarian physicist

28. 12. 1903 - 8. 2. 1957

von Neumann's computer architecture

Memory

ALU
Unit

Control
Unit

Input Output

Processor
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Computer architecture (desktop x86 PC)

generic
example
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From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and 
writes. It also takes care of refreshing each memory cell every 64 ms. 
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SATA

USB
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MC  Northbridge
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SATA
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CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform 
Memory 
Architecture
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Intel Core 2 generation

Northbridge became Graphics and Memory Controller Hub (GMCH)
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Intel i3/5/7 generation
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Memory and CPU speed – Moore's law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU
performance

25%
per year

52%
per year

20%
per year

Throughput of memory 
only +7% per year
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Bubble sort – algorithm example from seminaries

int pole[5]={5,3,4,1,2};
int main()
{
    int N = 5,i,j,tmp;
    for(i=0; i<N; i++)
        for(j=0; j<N-1-i; j++)
            if(pole[j+1]<pole[j])
            {
                tmp = pole[j+1];
                pole[j+1] = pole[j];
                pole[j] = tmp;
            }
    return 0;
}

   What we can 
consider and 
expect from our 
programs?

Think about 
some typical 
data access 
patterns and 
execution flow.
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Memory hierarchy – principle of locality

● Programs access a small proportion of their address 
space at any time

● Temporal locality
● Items accessed recently are likely to be accessed again 

soon
● e.g., instructions in a loop, induction variables

● Spatial locality
● Items near those accessed recently are likely to be 

accessed soon
● E.g., sequential instruction access, array data

Source: Hennesy, Patterson
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Memory hierarchy introduced based on locality

● The solution to resolve capacity and speed requirements is 
to build address space (data storage in general) as 
hierarchy of different technologies.

● Store input/output data, program code and its runtime data 
on large and cheaper secondary storage (hard disk)

● Copy recently accessed (and nearby) items from disk to 
smaller DRAM based main memory (usually under 
operating system control)

● Copy more recently accessed (and nearby) items from 
DRAM to smaller SRAM memory (cache) attached to CPU 
(hidden memory, transactions under HW control), optionally, 
tightly coupled memory under program's control

● Move currently processed variables to CPU registers (under 
machine program/compiler control) 
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Memory hierarchy – speed, capacity, price

Source: Wikipedia.org

small size
small capacity

small size
small capacity

medium size
medium capacity

small size
large capacity

large size
very large 

capacity

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory
fast, affordable

flash/USB memory
slower, cheap

hard drive
slow, very cheap

tape backup
very slow, affordable

power on

immediate term

power on
very short term

power off
short term

power off
mid term

power off
long term
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Memory/storage in computer system

Logic
unit

ALU/CU

registers

Cache

Main memory
random access

256 MB …
16 GB

Mass storage
Hard disk
120 GB …
many TB

Removable media
CD-RW, DVD-RW

Removable
medium

memory
bus

Robotic
access
system

Removable
medium

Removable
media
drive

Removable
medium

Input/output 
channels

Secondary storage Off-line storage

Tertiary storage Primary storage

Central Processing Unit

Source: Wikipedia.org
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Contemporary price/size examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync 
SRAM

DDR3
16 GB 

HDD 3TB

Price 10 kč/kB 300 
kč/MB

123 
kč/GB

1 kč/GB

Speed/ 
throughput

0.2...2ns 0.5...8 
ns/word

15 
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP ). 
Mechanisms to keep consistency required if data are modified.
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Mechanism to lookup demanded information?

● According to the address and other management 
information (data validity flags etc).

● The lookup starts at the most closely located memory 
level (local CPU L1 cache).

● Requirements:
● Memory consistency/coherency.

● Used means:
● Memory management unit to translate virtual address 

to physical and signal missing data on given level.
● Mechanisms to free (swap) memory locations and 

migrate data between hierarchy levels
● Hit (data located in upper level – fast), miss (copy from 

lower level required)
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Processor-memory performance gap solution – cache
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Performance gap between CPU and main memory

● Solution – cache memory
● Cache – component that (transparently) stores data so 

that future requests for that data can be served faster
● Transparent cache – hidden memory

● Placed between two subsystems with different data 
throughput. It speeds-up access to (recently) used data.

● This is achieved by maintaining copy of data on memory 
device faster than the original storage



18Contemporary hardware and memory

Initial idea – fully associative cache
● Tag – the key to locate data (value) in the cache. The original 

address in the main memory for fully associative case. Size of this 
field is given by number of bits in an address  – i.e. 32, 48 or 64

● Data – the stored information, basic unit – word – is usually 4 bytes
● Flags – additional bits to keep service information.

Tag Data Flags

Cache line of fully associative cache

Hit

comparator

comparator

comparator

Address

Tag Data Flags

Data
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Definitions for cache memory

● Cache line or cache block – basic unit 
copied between levels

● May be multiple words
● Usual cache line size from 8B up to 1KB

● If accessed data is present in upper 
level

● Hit: access satisfied by upper level
– Hit rate: hits/accesses

● If accessed data is absent
● Miss: block copied from lower level

– Time taken: miss penalty
– Miss rate: misses/accesses

= 1 – hit rate
● Then the accessed data is supplied 

from upper level
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Example to illustrate base cache types

● The cache capacity 8 blocks. Where can be 
block/address 12 placed for

● Fully associative
● Direct mapped
● N-way (set) associative – i.e. N=2 (2-way cache)

0 1 2 3 4 5 6 7

Only one set

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Set
0

Set 
1

Set
2

Set
3

Block
number

Block
number

Block
number

Fully associative:
Address 12 can be 
placed anywhere

Direct mapped:
Address 12 placed only 
to block 4 (12 mod 8)

2-way associative:
Address 12 is placed 
into set 0 (12 mod 4)

Set
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Direct mapped cache

Set = (Address/(4·b)) mod S

Set = (Address/4) mod 8
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4-way set associative cache
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Fully associative cache as special N-way case

● From the above, a fully associative cache can be 
considered as N-way with only one set. N=B=C/(b·4)

● The same way we can define direct mapped cache as a special case 
where the number of ways is one.
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Important cache access statistical parameters

● Hit Rate – number of memory accesses satisfied by 
given level of cache divided by number of all memory 
accesses

● Miss Rate – same, but for requests resulting in 

access to slower memory = 1 – Hit Rate
● Miss Penalty – time required to transfer block (data) 

from lower/slower memory level 
● Average Memory Access Time (AMAT)

         AMAT = Hit Time + Miss Rate × Miss Penalty

● Miss Penalty for multi-level cache can be computed by 
recursive application of AMAT formula
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Comparison of different cache sizes and organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!
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What can be gained from spatial locality?

Miss rate of consecutive accesses can be reduced by increasing block size. 
On the other hand, increased block size for same cache capacity results in 
smaller number of sets and higher probability of conflicts (set number aliases) 
and then to increase of miss rate.
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Multi-level cache organization
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Multiple cache levels – development directions

● Primary/L1 cache – tightly coupled to the CPU
● Fast but small. Main objective: minimal Hit Time/latency
● Usually separated caches for instruction and for data
● Size usually selected so that cache lines can be virtually tagged without 

aliasing. (set/way size is smaller than page size)
● L2 cache resolves cache misses of the primary cache

● Much bigger and slower but still faster than main memory. Main goal: low 
Miss Rate

● L2 cache misses are resolved by main memory
● Trend to introduce L3 caches, inclusive versus exclusive cache

Usual for L1 Usual for L2

Block count 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Block size in bytes 16-64 64-128

Miss penalty (cycles) 10-25 100-1 000

Miss rates 2-5% 0,1-2%
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Intel Nehalem – example of Harvard three-level cache

• IMC:  integrated memory 
controller with 3 DDR3 memory 
channels,

• QPI: Quick-Path Interconnect 
ports
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Intel Nehalem – memory subsystem structure
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Notes for Intel Nehalem example

● Block size: 64B
● CPU reads whole cache line/block from

 main memory and each is 64B aligned
● (6 LS bits are zeros), partial line fills allowed
● L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
● L2 – unified, 8-way, non-inclusive, WB
● L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3), 

WB
● Store Buffers – temporal data store for each write to eliminate wait for write to 

the cache or main memory. Ensure that final stores are in original order and 
solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
● TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to 
use 12 LSBs of virtual address to select L1 set in parallel with MMU/TLB
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Virtual memory
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Multi-level page table – translation overhead

● Translation would take long time, even if entries for all levels were 
present in cache. (One access per level, they cannot be done in 
parallel.) 

● The solution is to cache found/computed physical addresses
● Such cache is labeled as Translation Look-Aside Buffer
● Even multi-level translation caching are in use today
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Fast MMU/address translation using TLB

● Translation-Lookaside Buffer, or may it be, more descriptive name 
– Translation-Cache

● Cache of frame numbers where key is page virtual addresses 
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Typical sizes of today I/D and TLB caches comparison

Typical paged memory 
parameters

Typical  TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty 
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the 
main memory

Fast access location Main memory frames TLB
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Hierarchical memory caveats
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Some problems to be aware of

● Memory coherence – definition on next slide
● Single processor (single core) systems 

● Solution: D-bit and Write-back based data transactions
● Even in this case, consistency with DMA requited (SW or 

HW)
● Multiprocessing (symmetric) SMP with common and 

shared memory – more complicated. Solutions:
● Common memory bus: Snooping, MESI, MOESI protocol
● Broadcast
● Directories

● More about these advanced topics in A4M36PAP
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Coherency definition

● Memory coherence is an issue that affects the design of computer 
systems in which two or more processors, cores or bus master 
controllers share a common area of memory.

● Intuitive definition: The memory subsystem is coherent if the value 
returned by each read operation is always the same as the value 
written by the most recent write operation to the same address.

● More formal: P – set of CPU's. xm∈X locations. ∀pi,pk∈P: pi≠pk. 
Memory system is coherent if

1.  pi read after pi write value a to xm returns a if there is no pi or pk 

write between these read and write operations

2. if pi reads xm after pk write b to xm and there is no other pi or pk write 
to xm then pi reads b if operations are separated by enough time (in 
other case previous value of xm can be read) or architecture 
specified operations are inserted after write and before read.

3. writes by multiple CPU's to the given location are serialized such 
than no CPU reads older value when it already read recent one
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Comparison of virtual memory and cache memory

● Remarks.: TLB for address translation can be fully 
associative, but for bigger sizes is 4-way.

● Do you understand the terms?
● What does victim represent?

● Important: adjectives cache and virtual mean different things.

Virtual memory Cache memory

Page Block/cache line

Page Fault Read/Write Miss

Page size: 512 B – 8 KB Block size: 8 – 128 B

Fully associative DM, N-way set associative

Victim selection: LRU LRU/Random

Write Back Write Thru/Write Back
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Inclusive versus exclusive cache/data backing store

● Mapping of contents of the main memory to the cache 
memory is inclusive, i.e. main memory location cannot 
be reused for other data when corresponding or updated 
contents is held in the cache

● If there are more cache levels it can be waste of the 
space to keep stale/old data in the previous cache level. 
Snoop cycle is required anyway. The exclusive 
mechanism is sometimes used in such situation.

● Inclusive mapping is the rule for secondary storage files 
mapped into main memory.

● But for swapping of physical contents to swap device/file 
exclusive or mixed approach is quite common.
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Memory realization – memory chips
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Phases of DRAM memory read
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SDRAM – end of 90-ties – synchronous DRAM

● SDRAM chip is equipped by counter that can be used to 
define continuous block length (burst) which is read together
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DDR2 Example and Timing
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SDRAM – the most widely used main memory technology

● SDRAM – clock frequency up to 100 MHz, 2.5V.
● DDR SDRAM – data transfer at both CLK edges, 2.5V.
● DDR2 SDRAM – lower power consumption 1.8V, 

frequency up to 400 MHz.
● DDR3 SDRAM – even lower power consumption at 1.5V, 

frequency up to 800 MHz.
● DDR4 SDRAM …
● There are also other dynamic memory types, I.e. 

RAMBUS, that use entirely different concept 
● All these innovations are focused mainly on throughput, 

not on the random access latency.



46Contemporary hardware and memory

Real Memory Access Time Impact
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Benchmark on Real System with L1+L2+L3 Cache

● Inc benchmark,

128 bytes per element,

sequential access
● 32kB L1d,

1MB L2
● 16kB L1d, 512kBL2,

2M L3
● 32kB L1d,

4M L2
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Single Thread Random Access

● Prefetching cannot help 
here

● We have seen that data 
can be accessed from 
main memory in 200 
cycles. High numbers 
(400) are here because 
automatic prefetching if 
now working against us.

● The curve is not flattening 
at various plateaus: 
cache miss ratio 
increases
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Example: Matrix multiplication

● Naive implementation
for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j)
    for (k = 0; k < N; ++k)
      res[i][j] += mul1[i][k] * mul2[k][j];

● With transposition
double tmp[N][N];
for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j)
    tmp[i][j] = mul2[j][i];
for (i = 0; i < N; ++i)
  for (j = 0; j < N; ++j)
    for (k = 0; k < N; ++k)
      res[i][j] += mul1[i][k] * tmp[j][k];

● Performance: naive: 100%, transposed: 23,4%
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Single Pass Data Access Optimization

● If you know the data will be used only once, bypass the 
cache when writing. Hopefully, write-combining will be 
used.

● Non-temporal write operations (gcc)
#include <emmintrin.h>
void _mm_stream_si32(int *p, int a);
void _mm_stream_si128(int *p, __m128i a);
void _mm_stream_pd(double *p, __m128d a);
#include <xmmintrin.h>
void _mm_stream_pi(__m64 *p, __m64 a);
void _mm_stream_ps(float *p, __m128 a);
#include <ammintrin.h>
void _mm_stream_sd(double *p, __m128d a);
void _mm_stream_ss(float *p, __m128 a);
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Vectorized Operations with GCC 

●

typedef int v4si __attribute__ ((vector_size (16)));    

     v4si a, b, c;

     long l;

     c = a + b;

     a = b + 1;    /* a = b + {1,1,1,1}; */

     a = 2 * b;    /* a = {2,2,2,2} * b; */     

     a = l + a;    /* Error, cannot convert long to int. */



52Contemporary hardware and memory

The Basic Linear Algebra Subprograms (BLAS)

● Specifications for the computational kernels that form the 
basic operations of numerical linear algebra

● Building blocks for higher level linear algebra
● Implemented efficiently by vendors (and others) on most 

machines
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The Three Levels of BLAS

● The Level 1 BLAS are concerned with scalar and vector 
operations, such as

● the Level 2 BLAS with matrix-vector operations such as

● and the Level 3 BLAS with matrix-matrix operations such 
as
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LAPACK

Linear Algebra PACKage for high-performance computers
● Systems of linear equations
● Linear least squares problems
● Eigenvalue and singular value problems, including 

generalized problems
● Matrix factorizations
● Condition and error estimates
● The BLAS as a portability layer

Dense and banded linear algebra for Shared Memory
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A scalability bottleneck for Multicore Memory Access 
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Cost of a contended cache line
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What scales on today's multicores?

✗

✗
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Source
The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors by Austin T. Clements
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Multicore Scalable Patterns

● Layer scalability: use scalable data structures
● Linear and radix arrays
● Hash tables
● Not balanced trees

● Defer work (reference tracking)
● Precede pessimism with optimism

● Optimistic check stage followed by pessimistic update 
stage

● Don't read unless necessary
● access(F_OK)
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GCC Functions for Atomic Memory Access

● Legacy __sync – Intel Itanium Processor-specific 
Application Binary Interface

● type __sync_fetch_and_add (type *ptr, type value, …)
{ tmp = *ptr; *ptr += value; return tmp; }

● Operations: add sub or and and xor nand
● type __sync_add_and_fetch (type *ptr, type value, …)
● bool __sync_bool_compare_and_swap (type *ptr, type 

oldval, type newval, ...)
● type __sync_val_compare_and_swap (type *ptr, type 

oldval, type newval, …)
● __sync_synchronize (…)
● type __sync_lock_test_and_set (type *ptr, type value, …)
● void __sync_lock_release (type *ptr, ...)



60Contemporary hardware and memory

C++11 Memory Model Based Atomic Operations

C++11 memory models
● __ATOMIC_RELAXED –  No barriers or synchronization.
● __ATOMIC_CONSUME – Data dependency only for both barrier 

and synchronization with another thread.
● __ATOMIC_ACQUIRE – Barrier to hoisting of code and 

synchronizes with release (or stronger) semantic stores from 
another thread.

● __ATOMIC_RELEASE – Barrier to sinking of code and 
synchronizes with acquire (or stronger) semantic loads from 
another thread.

● __ATOMIC_ACQ_REL – Full barrier in both directions and 
synchronizes with acquire loads and release stores in another 
thread.

● __ATOMIC_SEQ_CST –  Full barrier in both directions and 
synchronizes with acquire loads and release stores in all threads. 
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C++11 Atomic Operations

● type __atomic_load_n (type *ptr, int memmodel)
RELAXED, SEQ_CST, ACQUIRE and CONSUME

● void __atomic_load (type *ptr, type *ret, int memmodel)
● __atomic_store_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, RELEASE
● void __atomic_store (type *ptr, type *val, int memmodel)
● __atomic_exchange_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, ACQUIRE, RELEASE and 
ACQ_REL

● void __atomic_exchange (type *ptr, type *val, type *ret, 
int memmodel)
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C++11 Compare and Swap

● bool __atomic_compare_exchange_n (type *ptr, type 
*expected, type desired, bool weak, int 
success_memmodel, int failure_memmodel)

● bool __atomic_compare_exchange (type *ptr, type 
*expected, type *desired, bool weak, int 
success_memmodel, int failure_memmodel)
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C++11 Arithmetic and Logic Operations

● type __atomic_add_fetch (type *ptr, type val, int 
memmodel)

add, sub, and, xor, or, nand
● type __atomic_fetch_add (type *ptr, type val, int 

memmodel)
● bool __atomic_test_and_set (void *ptr, int memmodel)
● void __atomic_clear (bool *ptr, int memmodel)
● void __atomic_thread_fence (int memmodel)
● void __atomic_signal_fence (int memmodel)
● bool __atomic_always_lock_free (size_t size, void *ptr)
● bool __atomic_is_lock_free (size_t size, void *ptr)
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Other Source of Slowdown – Branch

PCMPEQW

X4 !=greenX2 != greenX1=green X3=green

greengreengreen green

PANDN

  0x0000  0xFFFF 0xFFFF   0x0000

X1 X2 X4X3 PAND

  0x0000  0xFFFF 0xFFFF   0x0000

Y1 Y2 Y4Y3

POR   0x0000   0x0000

finished  pixels

0x0000 0x0000

Y1

X2

Y3

X4

Y1 X
2

X
4

Y3

if (X[i] != green) then 
       new_image[i] = X[i]
  else
       new_image[i] = Y[i]

+ =

Packed Comparison 
(PCMPCC) and the logical 
instructions enable 
conditional select 
operations in parallel and 
without data dependent 
branches.

X Y new_image

MOVQ MM1, X
PCMPEQW MM1, GREEN
MOVQ MM2, MM1
PANDN MM1, X
PAND MM2, Y
POR MM1, MM2
MOVQ New, MM1 
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Literature to read

More materials:
● What Every Programmer Should Know About Memory by Ulrich Drepper, Red 

Hat, Inc.
http://www.akkadia.org/drepper/cpumemory.pdf
http://lwn.net/Articles/250967/
http://people.redhat.com/drepper/cpumemory.pdf

● Ulrich Drepper: Parallel Programming with Transactional Memory. 
http://mags.acm.org/queue/200809/data/queue200809-dl.pdf

● Chapter 5 (Large and Fast: Exploiting memory hierarchy) from Hennesy, 
Patterson CaaQA

●Memory Ordering in Modern Microprocessors by Paul McKenney
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf

● Is Parallel Programming Hard, And, If So, What Can You Do About It?
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

● The Scalable Commutativity Rule: Designing Scalable Software for Multicore 
Processors by Austin T. Clements
http://dl.acm.org/citation.cfm?doid=2517349.2522712

● Memory Controllers for Real - Time Embedded Systems: Benny Akesson

http://www.akkadia.org/drepper/cpumemory.pdf
http://lwn.net/Articles/250967/
http://people.redhat.com/drepper/cpumemory.pdf
http://mags.acm.org/queue/200809/data/queue200809-dl.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://dl.acm.org/citation.cfm?doid=2517349.2522712
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