
1Contemporary hardware and memory

Computation intensive tasks on contemporary
hardware and memory

Pavel Píša

Ver.1.10

Based on A0B36APO course materials by Pavel Píša, Michal Štepanovski
Other used sources and materials: Henessy-Patterson books,
Ulrich Drepper, Paul McKenney, Austin T. Clements, Benny Akesson,
Michal Sojka

Czech Technical University in Prague, Faculty of Electrical Engineering

2Contemporary hardware and memory

Lecture motivation

 A:
int matrix[M][N];

int i, j, sum = 0;

…

for(i=0; i<M; i++)

 for(j=0; j<N; j++)

 sum += matrix[i][j];

Quick Quiz 1.: Is the result of both code fragments a same?

Quick Quiz 2.: Which of the code fragments is processed faster and why?

 B:
int matrix[M][N];

int i, j, sum = 0;

…

for(j=0; j<N; j++)

 for(i=0; i<M; i++)

 sum += matrix[i][j];

Is there a rule how to iterate over matrix element efficiently?

3Contemporary hardware and memory

John von Neumann, Hungarian physicist

28. 12. 1903 - 8. 2. 1957

von Neumann's computer architecture

Memory

ALU
Unit

Control
Unit

Input Output

Processor

4Contemporary hardware and memory

Computer architecture (desktop x86 PC)

generic
example

5Contemporary hardware and memory

From UMA to NUMA development (even in PC segment)

CPU 1 CPU 2

Northbridge
MC

Southbridge

RAM

SATA

USB
PCI-E

MC - Memory controller – contains circuitry responsible for SDRAM read and
writes. It also takes care of refreshing each memory cell every 64 ms.

CPU 1 CPU 2

MC

Southbridge

RAM

SATA

USB
PCI-E

RAM

MC Northbridge

Southbridge
SATA

USB
PCI-E

CPU 1 CPU 2

MC MC

RAM RAM

Non-Uniform
Memory
Architecture

6Contemporary hardware and memory

Intel Core 2 generation

Northbridge became Graphics and Memory Controller Hub (GMCH)

7Contemporary hardware and memory

Intel i3/5/7 generation

8Contemporary hardware and memory

Memory and CPU speed – Moore's law

Processor-Memory
Performance Gap
Growing

Source: Hennesy, Patterson
CaaQA 4th ed. 2006

CPU
performance

25%
per year

52%
per year

20%
per year

Throughput of memory
only +7% per year

9Contemporary hardware and memory

Bubble sort – algorithm example from seminaries

int pole[5]={5,3,4,1,2};
int main()
{
 int N = 5,i,j,tmp;
 for(i=0; i<N; i++)
 for(j=0; j<N-1-i; j++)
 if(pole[j+1]<pole[j])
 {
 tmp = pole[j+1];
 pole[j+1] = pole[j];
 pole[j] = tmp;
 }
 return 0;
}

 What we can
consider and
expect from our
programs?

Think about
some typical
data access
patterns and
execution flow.

10Contemporary hardware and memory

Memory hierarchy – principle of locality

● Programs access a small proportion of their address
space at any time

● Temporal locality
● Items accessed recently are likely to be accessed again

soon
● e.g., instructions in a loop, induction variables

● Spatial locality
● Items near those accessed recently are likely to be

accessed soon
● E.g., sequential instruction access, array data

Source: Hennesy, Patterson

11Contemporary hardware and memory

Memory hierarchy introduced based on locality

● The solution to resolve capacity and speed requirements is
to build address space (data storage in general) as
hierarchy of different technologies.

● Store input/output data, program code and its runtime data
on large and cheaper secondary storage (hard disk)

● Copy recently accessed (and nearby) items from disk to
smaller DRAM based main memory (usually under
operating system control)

● Copy more recently accessed (and nearby) items from
DRAM to smaller SRAM memory (cache) attached to CPU
(hidden memory, transactions under HW control), optionally,
tightly coupled memory under program's control

● Move currently processed variables to CPU registers (under
machine program/compiler control)

12Contemporary hardware and memory

Memory hierarchy – speed, capacity, price

Source: Wikipedia.org

small size
small capacity

small size
small capacity

medium size
medium capacity

small size
large capacity

large size
very large

capacity

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory
fast, affordable

flash/USB memory
slower, cheap

hard drive
slow, very cheap

tape backup
very slow, affordable

power on

immediate term

power on
very short term

power off
short term

power off
mid term

power off
long term

13Contemporary hardware and memory

Memory/storage in computer system

Logic
unit

ALU/CU

registers

Cache

Main memory
random access

256 MB …
16 GB

Mass storage
Hard disk
120 GB …
many TB

Removable media
CD-RW, DVD-RW

Removable
medium

memory
bus

Robotic
access
system

Removable
medium

Removable
media
drive

Removable
medium

Input/output
channels

Secondary storage Off-line storage

Tertiary storage Primary storage

Central Processing Unit

Source: Wikipedia.org

14Contemporary hardware and memory

Contemporary price/size examples

Data
path

Control unit

L1
cache

Level2
cache

(SRAM)

Main
memory
(DRAM)

Secondary
memory

(disc)

R
egiste rs

CPU

Type/
Size

L1 32kB Sync
SRAM

DDR3
16 GB

HDD 3TB

Price 10 kč/kB 300
kč/MB

123
kč/GB

1 kč/GB

Speed/
throughput

0.2...2ns 0.5...8
ns/word

15
GB/sec

100 MB/sec

Some data can be available in more copies (consider levels and/or SMP).
Mechanisms to keep consistency required if data are modified.

15Contemporary hardware and memory

Mechanism to lookup demanded information?

● According to the address and other management
information (data validity flags etc).

● The lookup starts at the most closely located memory
level (local CPU L1 cache).

● Requirements:
● Memory consistency/coherency.

● Used means:
● Memory management unit to translate virtual address

to physical and signal missing data on given level.
● Mechanisms to free (swap) memory locations and

migrate data between hierarchy levels
● Hit (data located in upper level – fast), miss (copy from

lower level required)

16Contemporary hardware and memory

Processor-memory performance gap solution – cache

17Contemporary hardware and memory

Performance gap between CPU and main memory

● Solution – cache memory
● Cache – component that (transparently) stores data so

that future requests for that data can be served faster
● Transparent cache – hidden memory

● Placed between two subsystems with different data
throughput. It speeds-up access to (recently) used data.

● This is achieved by maintaining copy of data on memory
device faster than the original storage

18Contemporary hardware and memory

Initial idea – fully associative cache
● Tag – the key to locate data (value) in the cache. The original

address in the main memory for fully associative case. Size of this
field is given by number of bits in an address – i.e. 32, 48 or 64

● Data – the stored information, basic unit – word – is usually 4 bytes
● Flags – additional bits to keep service information.

Tag Data Flags

Cache line of fully associative cache

Hit

comparator

comparator

comparator

Address

Tag Data Flags

Data

19Contemporary hardware and memory

Definitions for cache memory

● Cache line or cache block – basic unit
copied between levels

● May be multiple words
● Usual cache line size from 8B up to 1KB

● If accessed data is present in upper
level

● Hit: access satisfied by upper level
– Hit rate: hits/accesses

● If accessed data is absent
● Miss: block copied from lower level

– Time taken: miss penalty
– Miss rate: misses/accesses

= 1 – hit rate
● Then the accessed data is supplied

from upper level

20Contemporary hardware and memory

Example to illustrate base cache types

● The cache capacity 8 blocks. Where can be
block/address 12 placed for

● Fully associative
● Direct mapped
● N-way (set) associative – i.e. N=2 (2-way cache)

0 1 2 3 4 5 6 7

Only one set

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Set
0

Set
1

Set
2

Set
3

Block
number

Block
number

Block
number

Fully associative:
Address 12 can be
placed anywhere

Direct mapped:
Address 12 placed only
to block 4 (12 mod 8)

2-way associative:
Address 12 is placed
into set 0 (12 mod 4)

Set

21Contemporary hardware and memory

Direct mapped cache

Set = (Address/(4·b)) mod S

Set = (Address/4) mod 8

22Contemporary hardware and memory

4-way set associative cache

23Contemporary hardware and memory

Fully associative cache as special N-way case

● From the above, a fully associative cache can be
considered as N-way with only one set. N=B=C/(b·4)

● The same way we can define direct mapped cache as a special case
where the number of ways is one.

24Contemporary hardware and memory

Important cache access statistical parameters

● Hit Rate – number of memory accesses satisfied by
given level of cache divided by number of all memory
accesses

● Miss Rate – same, but for requests resulting in

access to slower memory = 1 – Hit Rate
● Miss Penalty – time required to transfer block (data)

from lower/slower memory level
● Average Memory Access Time (AMAT)

 AMAT = Hit Time + Miss Rate × Miss Penalty

● Miss Penalty for multi-level cache can be computed by
recursive application of AMAT formula

25Contemporary hardware and memory

Comparison of different cache sizes and organizations

Remember: 1. miss rate is not cache parameter/feature!
2. miss rate is not parameter/feature of the program!

26Contemporary hardware and memory

What can be gained from spatial locality?

Miss rate of consecutive accesses can be reduced by increasing block size.
On the other hand, increased block size for same cache capacity results in
smaller number of sets and higher probability of conflicts (set number aliases)
and then to increase of miss rate.

27Contemporary hardware and memory

Multi-level cache organization

28Contemporary hardware and memory

Multiple cache levels – development directions

● Primary/L1 cache – tightly coupled to the CPU
● Fast but small. Main objective: minimal Hit Time/latency
● Usually separated caches for instruction and for data
● Size usually selected so that cache lines can be virtually tagged without

aliasing. (set/way size is smaller than page size)
● L2 cache resolves cache misses of the primary cache

● Much bigger and slower but still faster than main memory. Main goal: low
Miss Rate

● L2 cache misses are resolved by main memory
● Trend to introduce L3 caches, inclusive versus exclusive cache

Usual for L1 Usual for L2

Block count 250-2000 15 000-250 000

KB 16-64 2 000-3 000

Block size in bytes 16-64 64-128

Miss penalty (cycles) 10-25 100-1 000

Miss rates 2-5% 0,1-2%

29Contemporary hardware and memory

Intel Nehalem – example of Harvard three-level cache

• IMC: integrated memory
controller with 3 DDR3 memory
channels,

• QPI: Quick-Path Interconnect
ports

30Contemporary hardware and memory

Intel Nehalem – memory subsystem structure

31Contemporary hardware and memory

Notes for Intel Nehalem example

● Block size: 64B
● CPU reads whole cache line/block from

 main memory and each is 64B aligned
● (6 LS bits are zeros), partial line fills allowed
● L1 – Harvard. Shared by two (H)threads

instruction – 4-way 32kB, data 8-way 32kB
● L2 – unified, 8-way, non-inclusive, WB
● L3 – unified, 16-way, inclusive (each line stored in L1 or L2 has copy in L3),

WB
● Store Buffers – temporal data store for each write to eliminate wait for write to

the cache or main memory. Ensure that final stores are in original order and
solve “transaction” rollback or forced store for:

- exceptions, interrupts, serialization/barrier instructions, lock prefix,..
● TLBs (Translation Lookaside Buffers) are separated for the first level

Data L1 32kB/8-ways results in 4kB range (same as page) which allows to
use 12 LSBs of virtual address to select L1 set in parallel with MMU/TLB

32Contemporary hardware and memory

Virtual memory

33Contemporary hardware and memory

Multi-level page table – translation overhead

● Translation would take long time, even if entries for all levels were
present in cache. (One access per level, they cannot be done in
parallel.)

● The solution is to cache found/computed physical addresses
● Such cache is labeled as Translation Look-Aside Buffer
● Even multi-level translation caching are in use today

34Contemporary hardware and memory

Fast MMU/address translation using TLB

● Translation-Lookaside Buffer, or may it be, more descriptive name
– Translation-Cache

● Cache of frame numbers where key is page virtual addresses

35Contemporary hardware and memory

Typical sizes of today I/D and TLB caches comparison

Typical paged memory
parameters

Typical TLB

Size in blocks 16 000-250 000 40-1024

Size 500-1 000 MB 0,25-16 KB

Block sizes in B 4 000-64 000 4-32

Miss penalty
(clock cycles)

10 000 000 –
100 000 000

10-1 000

Miss rates 0,00001-0,0001% 0,01-2

Backing store Pages on the disk Page table in the
main memory

Fast access location Main memory frames TLB

36Contemporary hardware and memory

Hierarchical memory caveats

37Contemporary hardware and memory

Some problems to be aware of

● Memory coherence – definition on next slide
● Single processor (single core) systems

● Solution: D-bit and Write-back based data transactions
● Even in this case, consistency with DMA requited (SW or

HW)
● Multiprocessing (symmetric) SMP with common and

shared memory – more complicated. Solutions:
● Common memory bus: Snooping, MESI, MOESI protocol
● Broadcast
● Directories

● More about these advanced topics in A4M36PAP

38Contemporary hardware and memory

Coherency definition

● Memory coherence is an issue that affects the design of computer
systems in which two or more processors, cores or bus master
controllers share a common area of memory.

● Intuitive definition: The memory subsystem is coherent if the value
returned by each read operation is always the same as the value
written by the most recent write operation to the same address.

● More formal: P – set of CPU's. xm∈X locations. ∀pi,pk∈P: pi≠pk.
Memory system is coherent if

1. pi read after pi write value a to xm returns a if there is no pi or pk

write between these read and write operations

2. if pi reads xm after pk write b to xm and there is no other pi or pk write
to xm then pi reads b if operations are separated by enough time (in
other case previous value of xm can be read) or architecture
specified operations are inserted after write and before read.

3. writes by multiple CPU's to the given location are serialized such
than no CPU reads older value when it already read recent one

39Contemporary hardware and memory

Comparison of virtual memory and cache memory

● Remarks.: TLB for address translation can be fully
associative, but for bigger sizes is 4-way.

● Do you understand the terms?
● What does victim represent?

● Important: adjectives cache and virtual mean different things.

Virtual memory Cache memory

Page Block/cache line

Page Fault Read/Write Miss

Page size: 512 B – 8 KB Block size: 8 – 128 B

Fully associative DM, N-way set associative

Victim selection: LRU LRU/Random

Write Back Write Thru/Write Back

40Contemporary hardware and memory

Inclusive versus exclusive cache/data backing store

● Mapping of contents of the main memory to the cache
memory is inclusive, i.e. main memory location cannot
be reused for other data when corresponding or updated
contents is held in the cache

● If there are more cache levels it can be waste of the
space to keep stale/old data in the previous cache level.
Snoop cycle is required anyway. The exclusive
mechanism is sometimes used in such situation.

● Inclusive mapping is the rule for secondary storage files
mapped into main memory.

● But for swapping of physical contents to swap device/file
exclusive or mixed approach is quite common.

41Contemporary hardware and memory

Memory realization – memory chips

42Contemporary hardware and memory

Phases of DRAM memory read

43Contemporary hardware and memory

SDRAM – end of 90-ties – synchronous DRAM

● SDRAM chip is equipped by counter that can be used to
define continuous block length (burst) which is read together

44Contemporary hardware and memory

DDR2 Example and Timing

45Contemporary hardware and memory

SDRAM – the most widely used main memory technology

● SDRAM – clock frequency up to 100 MHz, 2.5V.
● DDR SDRAM – data transfer at both CLK edges, 2.5V.
● DDR2 SDRAM – lower power consumption 1.8V,

frequency up to 400 MHz.
● DDR3 SDRAM – even lower power consumption at 1.5V,

frequency up to 800 MHz.
● DDR4 SDRAM …
● There are also other dynamic memory types, I.e.

RAMBUS, that use entirely different concept
● All these innovations are focused mainly on throughput,

not on the random access latency.

46Contemporary hardware and memory

Real Memory Access Time Impact

47Contemporary hardware and memory

Benchmark on Real System with L1+L2+L3 Cache

● Inc benchmark,

128 bytes per element,

sequential access
● 32kB L1d,

1MB L2
● 16kB L1d, 512kBL2,

2M L3
● 32kB L1d,

4M L2

48Contemporary hardware and memory

Single Thread Random Access

● Prefetching cannot help
here

● We have seen that data
can be accessed from
main memory in 200
cycles. High numbers
(400) are here because
automatic prefetching if
now working against us.

● The curve is not flattening
at various plateaus:
cache miss ratio
increases

49Contemporary hardware and memory

Example: Matrix multiplication

● Naive implementation
for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 for (k = 0; k < N; ++k)
 res[i][j] += mul1[i][k] * mul2[k][j];

● With transposition
double tmp[N][N];
for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 tmp[i][j] = mul2[j][i];
for (i = 0; i < N; ++i)
 for (j = 0; j < N; ++j)
 for (k = 0; k < N; ++k)
 res[i][j] += mul1[i][k] * tmp[j][k];

● Performance: naive: 100%, transposed: 23,4%

50Contemporary hardware and memory

Single Pass Data Access Optimization

● If you know the data will be used only once, bypass the
cache when writing. Hopefully, write-combining will be
used.

● Non-temporal write operations (gcc)
#include <emmintrin.h>
void _mm_stream_si32(int *p, int a);
void _mm_stream_si128(int *p, __m128i a);
void _mm_stream_pd(double *p, __m128d a);
#include <xmmintrin.h>
void _mm_stream_pi(__m64 *p, __m64 a);
void _mm_stream_ps(float *p, __m128 a);
#include <ammintrin.h>
void _mm_stream_sd(double *p, __m128d a);
void _mm_stream_ss(float *p, __m128 a);

51Contemporary hardware and memory

Vectorized Operations with GCC

●

typedef int v4si __attribute__ ((vector_size (16)));

 v4si a, b, c;

 long l;

 c = a + b;

 a = b + 1; /* a = b + {1,1,1,1}; */

 a = 2 * b; /* a = {2,2,2,2} * b; */

 a = l + a; /* Error, cannot convert long to int. */

52Contemporary hardware and memory

The Basic Linear Algebra Subprograms (BLAS)

● Specifications for the computational kernels that form the
basic operations of numerical linear algebra

● Building blocks for higher level linear algebra
● Implemented efficiently by vendors (and others) on most

machines

53Contemporary hardware and memory

The Three Levels of BLAS

● The Level 1 BLAS are concerned with scalar and vector
operations, such as

● the Level 2 BLAS with matrix-vector operations such as

● and the Level 3 BLAS with matrix-matrix operations such
as

54Contemporary hardware and memory

LAPACK

Linear Algebra PACKage for high-performance computers
● Systems of linear equations
● Linear least squares problems
● Eigenvalue and singular value problems, including

generalized problems
● Matrix factorizations
● Condition and error estimates
● The BLAS as a portability layer

Dense and banded linear algebra for Shared Memory

55Contemporary hardware and memory

A scalability bottleneck for Multicore Memory Access

0

5

10

15

20

25

30

35

40

1 6 12 18 24 30 36 42 48

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Cores

gmake
Exim

A single contended cache line can wreck scalability

56Contemporary hardware and memory

Cost of a contended cache line

0

5k

10k

15k

20k

25k

1 10 20 30 40 50 60 70 80

C
yc

le
s

to
 r

ea
d

1 writer + N readers

57Contemporary hardware and memory

What scales on today's multicores?

✗

✗

Core X

C
o

re
 Y

W -

W

R

-
✓

✓

✓
-

✓

✓

R

✗

Source
The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors by Austin T. Clements

58Contemporary hardware and memory

Multicore Scalable Patterns

● Layer scalability: use scalable data structures
● Linear and radix arrays
● Hash tables
● Not balanced trees

● Defer work (reference tracking)
● Precede pessimism with optimism

● Optimistic check stage followed by pessimistic update
stage

● Don't read unless necessary
● access(F_OK)

59Contemporary hardware and memory

GCC Functions for Atomic Memory Access

● Legacy __sync – Intel Itanium Processor-specific
Application Binary Interface

● type __sync_fetch_and_add (type *ptr, type value, …)
{ tmp = *ptr; *ptr += value; return tmp; }

● Operations: add sub or and and xor nand
● type __sync_add_and_fetch (type *ptr, type value, …)
● bool __sync_bool_compare_and_swap (type *ptr, type

oldval, type newval, ...)
● type __sync_val_compare_and_swap (type *ptr, type

oldval, type newval, …)
● __sync_synchronize (…)
● type __sync_lock_test_and_set (type *ptr, type value, …)
● void __sync_lock_release (type *ptr, ...)

60Contemporary hardware and memory

C++11 Memory Model Based Atomic Operations

C++11 memory models
● __ATOMIC_RELAXED – No barriers or synchronization.
● __ATOMIC_CONSUME – Data dependency only for both barrier

and synchronization with another thread.
● __ATOMIC_ACQUIRE – Barrier to hoisting of code and

synchronizes with release (or stronger) semantic stores from
another thread.

● __ATOMIC_RELEASE – Barrier to sinking of code and
synchronizes with acquire (or stronger) semantic loads from
another thread.

● __ATOMIC_ACQ_REL – Full barrier in both directions and
synchronizes with acquire loads and release stores in another
thread.

● __ATOMIC_SEQ_CST – Full barrier in both directions and
synchronizes with acquire loads and release stores in all threads.

61Contemporary hardware and memory

C++11 Atomic Operations

● type __atomic_load_n (type *ptr, int memmodel)
RELAXED, SEQ_CST, ACQUIRE and CONSUME

● void __atomic_load (type *ptr, type *ret, int memmodel)
● __atomic_store_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, RELEASE
● void __atomic_store (type *ptr, type *val, int memmodel)
● __atomic_exchange_n (type *ptr, type val, int memmodel)

RELAXED, SEQ_CST, ACQUIRE, RELEASE and
ACQ_REL

● void __atomic_exchange (type *ptr, type *val, type *ret,
int memmodel)

62Contemporary hardware and memory

C++11 Compare and Swap

● bool __atomic_compare_exchange_n (type *ptr, type
*expected, type desired, bool weak, int
success_memmodel, int failure_memmodel)

● bool __atomic_compare_exchange (type *ptr, type
*expected, type *desired, bool weak, int
success_memmodel, int failure_memmodel)

63Contemporary hardware and memory

C++11 Arithmetic and Logic Operations

● type __atomic_add_fetch (type *ptr, type val, int
memmodel)

add, sub, and, xor, or, nand
● type __atomic_fetch_add (type *ptr, type val, int

memmodel)
● bool __atomic_test_and_set (void *ptr, int memmodel)
● void __atomic_clear (bool *ptr, int memmodel)
● void __atomic_thread_fence (int memmodel)
● void __atomic_signal_fence (int memmodel)
● bool __atomic_always_lock_free (size_t size, void *ptr)
● bool __atomic_is_lock_free (size_t size, void *ptr)

64Contemporary hardware and memory

Other Source of Slowdown – Branch

PCMPEQW

X4 !=greenX2 != greenX1=green X3=green

greengreengreen green

PANDN

 0x0000 0xFFFF 0xFFFF 0x0000

X1 X2 X4X3 PAND

 0x0000 0xFFFF 0xFFFF 0x0000

Y1 Y2 Y4Y3

POR 0x0000 0x0000

finished pixels

0x0000 0x0000

Y1

X2

Y3

X4

Y1 X
2

X
4

Y3

if (X[i] != green) then
 new_image[i] = X[i]
 else
 new_image[i] = Y[i]

+ =

Packed Comparison
(PCMPCC) and the logical
instructions enable
conditional select
operations in parallel and
without data dependent
branches.

X Y new_image

MOVQ MM1, X
PCMPEQW MM1, GREEN
MOVQ MM2, MM1
PANDN MM1, X
PAND MM2, Y
POR MM1, MM2
MOVQ New, MM1

65Contemporary hardware and memory

Literature to read

More materials:
● What Every Programmer Should Know About Memory by Ulrich Drepper, Red

Hat, Inc.
http://www.akkadia.org/drepper/cpumemory.pdf
http://lwn.net/Articles/250967/
http://people.redhat.com/drepper/cpumemory.pdf

● Ulrich Drepper: Parallel Programming with Transactional Memory.
http://mags.acm.org/queue/200809/data/queue200809-dl.pdf

● Chapter 5 (Large and Fast: Exploiting memory hierarchy) from Hennesy,
Patterson CaaQA

●Memory Ordering in Modern Microprocessors by Paul McKenney
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf

● Is Parallel Programming Hard, And, If So, What Can You Do About It?
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

● The Scalable Commutativity Rule: Designing Scalable Software for Multicore
Processors by Austin T. Clements
http://dl.acm.org/citation.cfm?doid=2517349.2522712

● Memory Controllers for Real - Time Embedded Systems: Benny Akesson

http://www.akkadia.org/drepper/cpumemory.pdf
http://lwn.net/Articles/250967/
http://people.redhat.com/drepper/cpumemory.pdf
http://mags.acm.org/queue/200809/data/queue200809-dl.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/ordering.2007.09.19a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://dl.acm.org/citation.cfm?doid=2517349.2522712

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

