
WP1 - RTOS State of the Art
Analysis

Deliverable D1.1 - RTOS Analysis

WP1 - RTOS State of the Art Analysis: Deliverable D1.1 - RTOS Analysis
by Ismael Ripoll, Pavel Pisa, Luca Abeni, Paolo Gai, Agnes Lanusse, Sergio Saez, and Bruno
Privat

Copyright © 2002 by OCERA

Table of Contents
..1
I. Introduction...1

1. Introduction...1
2. POSIX Standard..2

2.1. Introduction ...2
2.2. XSI System Interfaces and Extensions ..4

3. OSEK/VDX ..6
3.1. Introduction ...6
3.2. Architecture of the OSEK/VDX operating system.....................................7
3.3. Task Management ...7
3.4. Application modes and system startup ..8
3.5. Interrupt processing..9
3.6. Events ..9
3.7. Scheduling ...9
3.8. Resource Management ..10
3.9. Miscellaneous ..11
3.10. OSEK COM..11
3.11. OSEK NM ..12
3.12. OSEKTime ...12

4. Analyzed features ...14
5. Summary ...17

II. RTOS Analysis ...20
6. Realtime Support in Linux ...21

6.1. Scheduling ...21
6.2. Virtual Memory ...21
6.3. Shared Memory ...21
6.4. High Resolution POSIX Timers (HRT) ..22
6.5. Realtime Signals..22
6.6. POSIX Asynchronous I/O..22
6.7. POSIX Threads..23
6.8. Quality of Service ..23
6.9. Compatibility ...26

7. Low-Latency Patches for Linux..27
7.1. Kernel Latency ..27
7.2. Possible Solutions..27

7.2.1. Low-Latency Linux ..27
7.2.2. Preemptable Linux ..28

7.3. Evaluation..28
8. RTLinux/GPL ..33

8.1. Architecture overview ...33
8.2. Hardware characteristics..34
8.3. Process management...34
8.4. Memory management..35
8.5. Inter-Process communication ...36
8.6. Time and timers ..37
8.7. Driver programming ...38
8.8. Quality of Service ..39
8.9. Network..39
8.10. Filesystems ..39
8.11. Trace and debug ..39
8.12. Miscelanea ...40

9. RTAI...41
9.1. Architecture overview ...41

iii

9.2. Hardware characteristics..41
9.3. Process management...41
9.4. Memory management..42
9.5. Inter-Process communication ...42
9.6. Time and timers ..45
9.7. Driver programming ...45
9.8. Quality of Service ..46
9.9. Network..46
9.10. Filesystems ..46
9.11. Trace and debug ..46
9.12. Miscelanea ...47

10. RTEMS 4.5+ ..49
10.1. Hardware characteristics..49
10.2. Process management...49
10.3. Memory management..50
10.4. Inter-Process communication ...51
10.5. Time and timers ..53
10.6. Driver programming ...53
10.7. Quality of Service ..54
10.8. Network..54
10.9. Filesystems ..55
10.10. Trace and debug ..55
10.11. Miscellaneous ..55

11. QNX ...57
11.1. Architecture overview ...57
11.2. Hardware characteristics..58
11.3. Process management...58
11.4. Memory management..60
11.5. Inter-Process communication ...60
11.6. Time and timers ..65
11.7. Driver programming ...66
11.8. Quality of Service ..66
11.9. Network..67
11.10. Filesystems ..67
11.11. Trace and debug ..68
11.12. Miscelanea ...68

12. VxWorks 5.x...70
12.1. Hardware characteristics..70
12.2. Process management...70
12.3. Memory management..70
12.4. Inter-Process communication ...71
12.5. Time and timers ..72
12.6. Driver programming ...72
12.7. Quality of Service ..72
12.8. Network..73
12.9. Filesystems ..73
12.10. Trace and debug ..73
12.11. Miscelaneous..73

13. LynxOS ..75
13.1. Hardware characteristics..75
13.2. Process management...75
13.3. Memory management..76
13.4. Inter-Process communication ...77
13.5. Time and timers ..78
13.6. Driver programming ...78

OCERA. IST 35102 iv

13.7. Quality of Service ..78
13.8. Network..78
13.9. Filesystems ..79
13.10. Trace and debug ..79
13.11. Miscelanea ...79
13.12. Modularity ...80

Bibliography..81
A. GNU Free Documentation License..82

A.1. PREAMBLE...82
A.2. APPLICABILITY AND DEFINITIONS...82
A.3. VERBATIM COPYING ...83
A.4. COPYING IN QUANTITY ..83
A.5. MODIFICATIONS...84
A.6. COMBINING DOCUMENTS ...85
A.7. COLLECTIONS OF DOCUMENTS...85
A.8. AGGREGATION WITH INDEPENDENT WORKS..86
A.9. TRANSLATION...86
A.10. TERMINATION ..86
A.11. FUTURE REVISIONS OF THIS LICENSE..86
A.12. How to use this License for your documents..87

OCERA. IST 35102 v

List of Tables
1. Project Co-ordinator ..1
2. Participant List..1
3. Document Version..1
10-1. Thread Creation and Deletion calls...49
11-2. Synchronization Services ...60
11-3. Communication Services..61

List of Figures
7-1. Latency in the Standard Kernel ..29
7-2. Latency in the Low Latency Kernel ..29
7-3. Latency in the Preemptable Kernel ..29
7-4. Latency in the Preemptable Lock-Breaking Kernel ...30
7-5. PDF of the Latency in the Low-Latency Kernel ...31
7-6. PDF of the Latency in the Lock-Breaking Kernel ..31
8-1. RTLinux layer architecture ...33
11-1. QNX architecture ...57

vi

Document presentation
Table 1. Project Co-ordinator

Organisation: UPVLC
Responsible person: Alfons Crespo

Address: Camino Vera, 14. CP: 46022, Valencia, Spain
Phone: +34 9877576

Fax: +34 9877579
E-mail: alfons@disca.upv.es

Table 2. Participant List

Role Id. Name Acronym Country
CO 1 Universidad Politécnica de Valencia UPVLC E
CR 2 Scuola Superiore S. Anna SSSA I
CR 3 Czech Technical University in Prague CTU CZ
CR 4 CEA CEA FR
CR 5 UNICONTROLS UC CZ
CR 6 MNIS MNIS FR
CR 7 VISUAL TOOLS S.A. VT E

Table 3. Document Version

Release Date Reason of change
1.0 November, First Release

1

I. Introduction
Table of Contents

1. Introduction ..1
2. POSIX Standard ...2
3. OSEK/VDX..6
4. Analyzed features ..14
5. Summary ..17

Chapter 1. Introduction
The objective of this workpackage is to make a study of the state of the art of real-time
technology which is made available by the research community, and to determine what
types of mechanisms actually turn out to be most useful for real-time applications. In
concrete, this workpackage will analyse the real-time operating systems (RTOS) fea-
tures and extract the main characteristics that will be included in the OCERA develop-
ment.

The project is to produce and integrate prototypes of various innovative real-time tech-
niques, research areas of particular interest include scheduling, resource management,
fault-tolerance and communication with real-time constraints, which are identified as
the key elements to provide predictable and high performance distributed real-time op-
erating systems.

RTOS is a generic term for a set of operating systems that provide support for real-time
applications. There is a wide range of RTOS, from the small and simple enough to fit
in a few kilobytes of memory that can run on simple processors, to the high-end range
RTOS that provides full graphical user interface that require several megabytes of RAM
and powerful processors (MMU, protected mode, etc.).

Originally, Linux was designed to be used in a server or desktop environment. Since
then, Linux has evolved and grow to be used in almost all the computer areas, among
others, in embedded systems, parallel clusters, realtime systems, etc.

There is a large group of researchers, hackers and companies adding realtime capabili-
ties: reducing the memory requirement, porting Linux to embedded processors, improv-
ing the response time, etc. Real Time Linux is just another piece of software developed
in a Open-Source development methodology. There is not a single company or research
group that concentrates all the development of realtime Linux, but a set of not con-
nected, overlapped or even rival implementations are taking place simultaneously.

The two main contributions of this working package are:

1. A list of features that are available in commercial RTOS.

2. A detailed description of the real-time features already implemented in Linux. Fea-
tures that are included in the Linux kernel by default or that are distributed sepa-
rately.

To achieve these goals, we have focused our study in a small (compared with the large
amount to existing) number of RTOS: VxWorks, QNX, RTEMPS and LynxOS. And also
the main Linux kernel and all the extensions to improve the real-time capabilities of
Linux like RTLinux, RTAI and the preemptable patch are analysed and compared in
this paper.

The rest of this deliverable is organised as follows: In the first part a summary of the
POSIX and OSEK standard followed by the list of main features we are interested and
are taken into consideration in the RTOS analysis. Several summary tables are pre-
sented in the last section of the fist part. In the second part of the deliverable a study of
each RTOS is presented.

The conclusions of this deliverable can be found in the deliverable D3.2 "Functionality
Not Available in Open RTOS" of the Workpackage 3 "Market Analysis".

1

Chapter 2. POSIX Standard

2.1. Introduction
POSIX, that stands for Portable Operating System Interface, is a standard that is being
jointly developed by the IEEE and The Open Group. It defines a standard operating
system interface and environment, including a command interpreter (or "shell"), and
common utility programs to support applications portability at the source code level.
The current revision of POSIX is The Open Group Base Specifications Issue 6 and also
the IEEE Std 1003.1-2001.

This standard is composed by four major components:

• Base Definitions: This include general terms, concepts and interfaces common to en-
tire standard.

• System Interfaces: This comprises the definitions for system service functions for the C
programming language, function and portability issues, error handling and recovery.

• Shell and Utilities: It contains the definitions for a standard source code-level inter-
face to command interpretation services.

• Rationale: It contains information that does not fit well into the rest of the document
structure.

The IEEE Std 1003.1-2001 standard is a single common revision to IEEE Std 1003.1-
1996, IEEE Std 1003.2-1992, and the Base Specifications of The Open Group Single
UNIX Specification, Version 2. In order to develope the current revision several base
documents has been used. The base documents that are involved in the definition of
system interfaces are:

• IEEE Std 1003.1-1996 (POSIX-1) (incorporating IEEE Stds 1003.1-1990, 1003.1b-
1993, 1003.1c-1995, and 1003.1i-1995)

• The following amendments to the POSIX.1-1990 standard:

• IEEE P1003.1a draft standard (Additional System Services)

• IEEE Std 1003.1d-1999 (Additional Realtime Extensions)

• IEEE Std 1003.1g-2000 (Protocol-Independent Interfaces (PII))

• IEEE Std 1003.1j-2000 (Advanced Realtime Extensions)

• IEEE Std 1003.1q-2000 (Tracing)

• Open Group Technical Standard, February 1997, System Interface Definitions, Issue
5 (XBD5)

• Open Group Technical Standard, February 1997, System Interfaces and Headers,
Issue 5 (XSH5)

• Open Group Technical Standard, January 2000, Networking Services, Issue 5.2
(XNS5.2)

• ISO/IEC 9899:1999, Programming Languages - C.

As it can be observed this standard includes support for source portability of applications
with realtime requirements, but this support is maintly optional for POSIX-conforming
implementations. The specific functional areas included for realtime support and their
definitions1 are basically the following:

2

Chapter 2. POSIX Standard

• Semaphores.

A minimum synchronization primitive to serve as a basis for more complex synchro-
nization mechanisms to be defined by the application program.

• Process Memory Locking.

A performance improvement facility to bind application programs into the
high-performance random access memory of a computer system. This avoids
potential latencies introduced by the operating system in storing parts of a program
that were not recently referenced on secondary memory devices.

• Memory Mapped Files.

A facility to allow applications to access files as part of the address space.

• Shared Memory Objects

An object that represents memory that can be mapped concurrently into the address
space of more than one process.

• Priority Scheduling.

A performance and determinism improvement facility to allow applications to deter-
mine the order in which threads that are ready to run are granted access to processor
resources.

• Realtime Signal Extension.

A determinism improvement facility to enable asynchronous signal notifications to
an application to be queued without impacting compatibility with the existing signal
functions.

• Timers.

A mechanism that can notify a thread when the time as measured by a particular
clock has reached or passed a specified value, or when a specified amount of time has
passed.

• Interprocess Communication.

A functionality enhancement to add a high-performance, deterministic interprocess
communication facility for local communication.

• Synchronized Input and Output.

A determinism and robustness improvement mechanism to enhance the data input
and output mechanisms, so that an application can ensure that the data being manip-
ulated is physically present on secondary mass storage devices.

• Asynchronous Input and Output.

A functionality enhancement to allow an application process to queue data input and
output commands with asynchronous notification of completion.

OCERA. IST 35102 3

Chapter 2. POSIX Standard

Another optional support that can be interesting for the developemnt of embedded appli-
cations is the Threads support. This extension to POSIX defines functionality to support
multiple flows of control within a process. These flows of control are called threads and
they share their address space and most of the resources and attributes defined in the
operating system for the owner process.

The specific functional areas included in threads support are:

• Thread management: the creation, control, and termination of multiple flows of con-
trol that share a common address space.

• Synchronization primitives optimized for tightly coupled operation of multiple control
flows in a common, shared address space.

Finally, the IEEE Std 1003.1-2001 standard also proposes a set of tracing facilities that
can be quite useful at the development stage of a embedded real-time application. The
tracing facilities defined in the standard allow a process to select a set of trace event
types, to activate a trace stream of the selected trace events as they occur in the flow of
execution, and to retrieve the recorded trace events. A trace event is a data object that
represents an action executed by the system, and that is recorded in a trace stream. The
trace events can be retrieved later from the trace stream, allowing the system behaviour
analysis.

All these functionalities are not mandotory in a POSIX-conforming implementation, but
defined as a set of options that may be supported by that system. In this line, the IEEE
Std 1003.1-2001 standard defines several XSI extensions that groups together several of
these options in so-called XSI Option Groups. The option groups that can be of interest
for embedded real-time applications are described in the next section.

2.2. XSI System Interfaces and Extensions
The X/Open System Interface is the core application programming interface for systems
conforming to the Single UNIX Specification. This is a superset of the mandatory re-
quirements for conformance to IEEE Std 1003.1-2001.

A system that wants to be a XSI-conforming implementation shall meet the criteria for
POSIX conformance and support all functions and headers defined in IEEE Std 1003.1-
2001 as part of the XSI extension. Additionally, it shall support the following options
defined in the standard: File Synchronization, Memory Mapped Files, Memory Protec-
tion, Threads, Thread Process-Shared Synchronization, Thread Stack Address Attribute
and Thread Stack Address Size.

Despite of these options that are mandatory to be a XSI-conforming system, the system
may also support one or more of the following XSI Option Groups: Encryption, Real-
time, Advanced Realtime, Realtime Threads, Advanced Realtime Threads, Tracing, XSI
STREAMS and Legacy. All the realtime option groups jointly with the tracing option
group are clearly of great interest for developing embedded real-time applications. The
options each option groups requires are detailed next:

Realtime

The options of IEEE Std 1003.1-2001 that are grouped together in this option group
are: Asynchronous, Synchronized and Prioritized Input and Output, File Synchro-
nization, Memory Mapped Files, Shared Memory Objects, Process and Range Mem-
ory Locking, Memory Protection, Semaphores, Timers, Realtime Signals Extension,
Message Passing and Process Scheduling.

OCERA. IST 35102 4

Chapter 2. POSIX Standard

Advanced Realtime

The options of the standard that are grouped together in the Advanced Realtime
option group are: Advisory Information, Clock Selection, Process CPU-Time Clocks,
Monotonic Clock, Timeouts, Typed Memory Objects, Spawn and Process Sporadic
Server.

Realtime Threads

This option group includes the following options: Thread Priority Inheritance and
Protection, and Thread Execution Scheduling.

Advanced Realtime Threads

The Advanced Realtime Threads option group requires the following POSIX options:
Thread CPU-Time Clocks, Thread Sporadic Server, Spin Locks and Barriers.

Tracing

This option group includes the following tracing facility options: Trace, Trace Event
Filter, Trace Inherit and Trace Log.

Notes
1. This definitionas are extracted from the IEEE Std 1003.1-2001 standard.

OCERA. IST 35102 5

Chapter 3. OSEK/VDX

3.1. Introduction
OSEK/VDX 1 is a joint project of the automotive industry that aims to the definition
of an industry standard for an open-ended architecture for distributed control units in
vehicles.

The objective of the standard is to describe an environment which supports efficient
utilization of resources for automotive control unit application software. This standard
can be viewed as a set of API for real-time operating system (OSEK) integrated on
a network management system (VDX) that together describes the characteristics of a
distributed environment that can be used for developing automotive applications.

The typical applications that have to be implemented have tight real-time constraints
and an high criticality (for example, a power-train application). Moreover, these applica-
tions have to be made in a huge number of unit, therefore there is a need to reduce the
memory footprint to a minimum enhancing as possible the OS performance.

Here are some keywords that helps to better characterize the philosophy that drove the
main architectural choices of the OSEK Operating System:

Scalability.

The operating system is intended for use on a wide range control units (either sys-
tem with minimal hardware resources like RAM, ROM, CPU time, i.e. 8 bit micro-
controllers). To support a wide range of systems the standard defines four confor-
mance classes that tightly specifies the main features of an OS. Note that memory
protection is not supported at all.

Portability of software.

The standard specifies an ISO/ANSI-C interface between the application and the
operating system that is identical in all the implementations of the OS. The aim of
this interface is to give the ability to transfer an application software from one ECU
to another ECU without bigger changes inside the application. Due to the wide va-
riety of hardware where the OS has to work in, the standard does not specify any
interface for the Input/Output subsystem. Note that this fact reduces (if not pro-
hibits) the portability of the application source code, since the I/O system is one of
the main software part that impacts on the architecture of the software. We can say
that the prime focus is not to achieve 100% compatibility between the application
modules, but to ease their direct portability between compliant operating systems.

Configurability.

Another prerequisite needed to adapt the OS to a wide range of hardware is a
high degree of modularity and configurability. This configurability is reflected by
the toolchain proposed by the OSEK standard, where some configuration tools help
the designer in tuning the system services and the system footprint. Moreover, a
language called OIL (OSEK Implementation Language) is proposed to help the def-
inition of a standardized configuration information.

Statically allocated OS.

All the OS objects and features are statically allocated. This fact allow to simplify
all the OS: the number of application tasks, resources and services requested are
defined at compile time. Note that this approach ease the implementation of an OS
capable of running on ROM, and moreover it is completely different from a dynamic
approach followed in other OS standards like for example POSIX.

6

Chapter 3. OSEK/VDX

Support for time triggered architectures.

The OSEK Standard provides the specification of OSEKTime OS, a time triggered
OS that can be fully integrated in the OSEK/VDX framework.

In the following sections the main features of the OSEK/VDX standard will be analyzed
in detail.

3.2. Architecture of the OSEK/VDX operating
system

The architecture on which an OSEK Operating System is based can be viewed as a
traditional fixed priority approach.

Each task in the system can be a basic task (BT) or an extended task (ET) (extended
tasks are basic tasks that can react to external asynchronous events).

Every task in the system has assigned a fixed priority (statically assigned at compile
time), and the scheduler always selects the higher priority task from the ready task
queue. Interrupt service routines typically preempt the running task (except in case the
running task uses resources).

To provide support for different features in the Operating system, the various require-
ments of the application in terms of number of tasks, memory consumption and like are
listed in four conformance classes. The compliance of an OSEK OS is always stated with
respect to one conformance class. Basically, conformance classes exist to allow partial
implementations of the standard along pre-defined lines, creating an upgrade path from
classes of lesser functionality to classes of higher functionality with no change to the
application tasks.

The conformance classes specifies different requirements for the following attributes:

• Multiple requesting task activations (only one activation or more than one)

• Task types (basic tasks only or basic and extended tasks)

• Number of tasks per priority (one or more than one)

The following conformance classes are defined by the standard :

BCC1

Only basic tasks limited to one activation request per task and one task per priority,
while all tasks have different priorities.

BCC2

Like BCC1, plus more than one activation request per task and more than one task
per priority.

ECC1

Like BCC1, plus extended tasks.
ECC2

Like ECC1, plus more than one task per priority and multiple requesting of task
activation allowed for basic tasks.

3.3. Task Management
In the OSEK OS, a task provides the framework for the concurrent and asynchronous
execution of functions. The Scheduler is then responsible for scheduling tasks following
a well defined scheduling algorithm.

OCERA. IST 35102 7

Chapter 3. OSEK/VDX

The OSEK operating system provides two kind of tasks: basic tasks and extended tasks.
The only difference between the two concepts is that extended tasks are allowed to use
the operating system call WaitEvent() . Basically that call allow an extended task to
release the CPU waiting for an asynchronous event without terminating the current
instance.

Each task in the system has assigned a fixed priority (statically assigned at compile
time; the value 0 is defined as the lowest priority of a task), and it can be preemptive
or non-preemptive. If the running task is preemptive the scheduler always made a pre-
emption when needed, otherwise it reschedules the system at the end of the running
task instance. A preemptive task can disable preemption for a while locking a resource
called RES_SCHEDULER.

In any moment of its life a task is characterized by its state. The OSEK standard defines
four task states:

running

In the running state, the CPU is assigned to the task, so that its instructions can
be executed. Only one task can be in this state at any point in time, while all the
other states can be adopted simultaneously by several tasks.

ready

All functional prerequisites for a transition into the running state exist, and the
task only waits for allocation of the processor. The scheduler decides which ready
task is executed next.

waiting

A task cannot continue execution because it has to wait for at least one event. Only
Extended tasks can jump into this state (because they are the only that can use
events).

suspended

In the suspended state the task is passive and can be activated.

Note that basic tasks have no waiting state: a basic task can only represent a syn-
chronization point at the beginning and at the end of the task. Application parts with
internal synchronization points have to be implemented by more than one basic task.
An advantage of extended tasks is that they can handle a coherent job in a single task,
no matter which synchronization requests are active. Whenever current information for
further processing is missing, the extended task switches over into the waiting state. It
exits this state whenever corresponding events signal the receipt or the update of the
desired data or events.

Depending on the conformance class a basic task can be activated once or multiple times.
The latter means that an activation issued when a task is not in the suspended state
will be recorded and then executed when the task will finish the current instance.

The termination of a task instance only happen when a task terminates itself (to simplify
the OS, no explicit task kill primitives are provided).

3.4. Application modes and system startup
The OSEK Operating system gives a support for Application Modes. In real applications,
an embedded system may execute different applications in a mutually exclusive way
(for example, the normal operation, a factory test, and like). The application mode is
a means to structure the software running in the system according to those different
conditions and are a clean mechanism for development of totally separate systems. Once
the operating system has been started, it is not allowed to change the application mode.

OCERA. IST 35102 8

Chapter 3. OSEK/VDX

Typically each application mode uses its own subset of tasks, ISRs, alarms and timing
conditions, although if some kind of sharing between modes is possible.

The start up performance is another safety critical issue for embedded system in auto-
motive applications since reset conditions may occur during normal operation (for exam-
ple, a power-train application should be capable of rebooting the whole system in a few
microseconds, because the system must safely control the spark on the engine cylinders).
The system startup is completely left to the particular implementation, although if some
hint is given on how design the boot-up sequence. In any case the standard suggest the
avoidance of lengthy or complicated starting procedures.

3.5. Interrupt processing
Since the standard must be suitable for different microcontrollers, the specification of
interrupt handling routines only cover the general approach that a compliant OS should
follow, without coping with any hardware related issues.

In particular, the standard provides two kind of ISR handlers:

ISR category 1

The ISR does not use an operating system service. In practice, the OS does not
handle these interrupts, and the designer is free to write his handler, with the only
restriction that he can not call any OS service. Typically, these are the fastest high-
est priority interrupts.

ISR category 2

The ISR is handled by the system, so OS calls can be called from the handler.

Inside any ISR no rescheduling will take place. Rescheduling takes place on termination
of the ISR category 2 if a preemptable task has been interrupted and if no other interrupt
is active. At the end of the ISR category 1 no rescheduling takes place too, and this is
the reason because ISR category 1 should have the highest priority in a correct design.

3.6. Events
The event mechanism is only provided for extended tasks and can be used to commu-
nicate binary information that synchronize these tasks on asynchronous events. Each
extended task owns a set of events, that can be triggered by other (basic and extended)
tasks or by ISR of category 2.

The typical behavior of an extended task is to wait for asynchronous events calling the
OS service WaitEvent() . This service usually blocks the task until an event arrives.
After servicing the event, the task calls again WaitEvent() to wait other events.

Events can be set only if the task is not in the suspended state. This seems to suggest
that an extended task should never be in the suspended state.

3.7. Scheduling
The scheduler decides on the basis of the task priority which is the next of the ready
tasks to be transferred into the running state (dynamic priority management is not
supported). Tasks on the same priority level are started depending on their order of
activation.

The OSEK standard provides four flavors of fixed priority scheduling, outlined below:

OCERA. IST 35102 9

Chapter 3. OSEK/VDX

Full Preemptive Scheduling

Full preemptive scheduling means that the running task may be rescheduled at
any instruction by the arrival of high priority tasks.

Non Preemptive Scheduling

Non preemptive scheduling means that task switching is only performed via one of
a selection of explicitly defined system services (like task termination, explicit call
to the scheduler and arrival of an event that wakes up an extended task).

Mixed Preemptive Scheduling

Since preemptiveness is a task attribute, preemptive and non-preemptive tasks can
be mixed in the same application. The running task will influence the policy really
used.

Task Grouping Using Internal Resources

This scheduling policy is very similar to the preemption threshold technology,
where threshold values are implemented using the OSEK Priority Ceiling proto-
col together with internal resources locked and unlocked at the start and at the end
of every task instance.

3.8. Resource Management
The standard provides support for binary resources that can be used to implement crit-
ical sections. Priority inversion and deadlock are avoided using a variant of the SRP
called OSEK Priority Ceiling.

The protocol in fact is a version of SRP adapted to fixed priority:

• every resource as assigned a ceiling that is the maximum priority of the tasks (and
ISRs) that use the resource;

• when a task requires a resource, its current priority is raised to the ceiling of the
resource;

• when a task releases a resource, the priority of this task is reset to the priority which
was dynamically assigned before requiring that resource.

The normal properties of SRP applies to the protocol. In particular, Priority inversion,
chained blocking and deadlocks are avoided. Moreover, there is no need for waiting
queues, since a task can be scheduled only when all the resources it needs are free.

Resources are typically used by task only. In the OSEK standard, resources can be used
either by a task or by an ISR of category 2. An ISR that use a resource can be thought as
an high priority task: its execution can be delayed due to lower ISRs or tasks accessing
resources with ceiling greater or equal than the IRS priority. This is the natural behav-
ior in those systems where tasks activations and priorities are mapped on interrupts,
and the raising of task’s priorities is done with a proper programming of the interrupt
controller.

The OSEK standard also provides a support for Preemption Thresholds through the use
of internal resources. An internal resource is simply a resource that is locked when a
task instance starts, and is unlocked when the task instance ends. The ceiling of the
internal resources can be thought as the Preemption Threshold of the tasks.

In the same way the standard provides a special resource called RES_SCHEDULERthat
can be used to disable preemption. In practice, the RES_SCHEDULERis a resource with
ceiling equal to the maximum priority in the system. In the same way a non preemptive
task can be thought as a task that use an internal resource with the same ceiling of
RES_SCHEDULER.

OCERA. IST 35102 10

Chapter 3. OSEK/VDX

Finally note that, although a technique similar to Preemption Threshold is used, stack
sharing between tasks of a same Non Preemption Group can not be exploited due of
the OS calls WaitEvent() and Schedule() 2. In fact, these calls releases the internal
resource taken by a task, letting execution to more than one task in the same Non
Preemption Group.

3.9. Miscellaneous
The OSEK operating system provides services for processing recurring events (for exam-
ple, timers that provide an interrupt at regular intervals, or encoders at axles that gen-
erate an interrupt in case of a constant change of an angle). These events are recorded
into implementation dependent counters, then used by software alarms. When an alarm
(that can be one-shot or periodic) fires, a task can be activated, or an event can be set, or
finally an alarm-callback routine can be called. Alarms and counters are statically de-
fined at compile time. The only dynamic parameters that can be set are when an alarm
has to expire and the period of a cyclic alarm.

To ease the tracing and the debugging of the system the OSEK standard provides system
specific hook routines to allow user-defined actions within the OS internal processing.
These hook routines are called by the operating system and they are composed by user
code that is executed into an OS primitive, usually with ISR of category 2 disabled.
These routines are only allowed to use a subset of API functions (mainly they can use
functions for get internal OS states, to ease the tracing of the application). They are
called at system startup, at system shutdown, before and after a preemption, and in
case of an error. In particular, two different kinds of errors are distinguished:

Application errors

The operating system could not execute the requested service correctly, but assumes
the correctness of its internal data.

Fatal errors

The operating system can no longer assume correctness of its internal data. In this
case the operating system calls the centralized system shutdown.

The standard gives two ways of handling errors: a centralized way (using an Error Hook
that is called every time an error occurs in a system primitive), and a decentralized way
(where the application code must check itself for the correctness of the return value of
every primitive).

3.10. OSEK COM
The OSEK standard comprises also an agreement on interfaces and protocols for in-
vehicle communication called OSEK COM. The term in-vehicle communication means
both communication between nodes and internal communication in a node of the whole
vehicle. The basic idea is to provide a standardized API for software communication that
is independed from the particular communication media used in a way to ease porting
of applications between different hardwares.

The OSEK COM standard is composed by:

• An Interaction layer which provides communication services for the transfer of appli-
cation messages.

• A Network layer which provides services for the unacknowledged and segmented
transfer of application messages. The network layer provides flow control mechanisms

OCERA. IST 35102 11

Chapter 3. OSEK/VDX

to enable interfacing of communication peers featuring different level of performance
and capabilities.

• A Data link layer interface which provides services for the unacknowledged transfer
of individual data packets over a network to the layers above.

OSEK COM provides a rich set of communication facilities but it is likely that many
applications will only require a subset of this functionality. For that reason, the standard
defines a set of conformance classes to enable the integration of OSEK COM in systems
featuring various levels of capabilities in a scalable way, enabling the car producer to
integrate software parts produced by different suppliers.

OSEK COM defines these levels as Communication Conformance Classes (CCCs). The
main purpose of the conformance classes is to ensure that applications which have been
for a particular conformance class are portable across different OSEK implementations
and ECUs featuring that same or higher level of communication functionality. OSEK
COM defines five communication conformance classes to provide support from ECU in-
ternal communication only (CCCA) up to inter-ECU external communication (CCC2).

For an OSEK implementation to be compliant, message handling for intra processor
communication has to be offered. The minimum functionality required is CCCA as de-
scribed in the OSEK COM specification.

3.11. OSEK NM
The OSEK standard also cover a standardization of basic and non-competitive infras-
tructure between the various embedded systems that can be present in a vehicle. In
fact, very often electronic control units made by different manufacturers are networked
within vehicles by serial data communication links.

For that reason the standard propose a Network Management system (OSEK NM) that
provides standardised features which ensure the functionality of inter-networking by
standardised interfaces.

The essential task of NM is to ensure the safety and the reliability of a communication
network. This is obtained implementing access restriction to each node (access must be
restricted only from authorized entities), keeping the whole network tolerant to faults,
and implementing diagnostic features capable of monitoring the status of the network
in an indirect (monitoring application messages) or in a direct way (monitoring by dedi-
cated NM communication using token principle).

Moreover, the network management also cover the initialization of network resources,
network configuration the co-ordination of global operation modes (e.g. network wide
sleep mode), and a support for diagnosis.

3.12. OSEKTime
The OSEK Standard produced a specification for a Time Triggered Operating System
(OSEKtime OS) that aims to represent a uniform functioning environment for single
processor distributed embedded control units with a fault-tolerant communication layer.

The OSEKtime operating system supports static scheduling and offers all basic services
for real-time applications, i.e., interrupt handling, dispatching, system time and clock
synchronization, local message handling, and error detection mechanisms.

The OSEKtime operating system serves as a basis for application programs which are
independent of each other, and provides their environment on a processor. The are two
types of entities: interrupt services routines managed by the operating system and time
triggered tasks.

OCERA. IST 35102 12

Chapter 3. OSEK/VDX

The Osek Operating system can coexist with a OSEKTime OS, for handling both time
triggered and event-driven computations on the same Embedded Control Unit. Basi-
cally, the interface of the OSEK OS remains the same (apart from some small changes
in the startup/shutdown procedures). The main concept is that the OSEKTime OS as-
signs its idle time to the OSEK OS.

The OSEK OS, its tasks and its interrupts have always a lower priority than the similar
entities in the OSEKTime OS. Non-preemptive tasks remains non-preemptive only in
the OSEK/VDX domain, and they can be preempted bt the Time Triggered dispatcher
and by the Time Triggered Tasks.

Notes
1. The term OSEK means “Offene Systeme und deren Schnittstellen für die Elek-

tronik im Kraftfahrzeug” (Open systems and the corresponding interfaces for auto-
motive electronics); the term VDX means Vehicle Distributed eXecutive. This chapter
shortly describe the specification of the Operating System Specification, release 2.2,
and recalls some other OSEK documents.

2. Schedule() is a point of rescheduling that can be used in both preemptive and
non-preemptive tasks.

OCERA. IST 35102 13

Chapter 4. Analyzed features
One of the first conclusions achieved in the first project meeting was then importance of
the standards, and in particular the realtime extensions defined in the POSIX standard.
POSIX is a mature, well developed, independent set of standards then are followed by
most of the UNIX industry. Also the use of already existing standards in the open source
community is a must.

OSEK is a RTOS specification designed to fulfil the requirement of the automotive in-
dustry. It was designed for systems with small hardware resources like 8 bit processes
with no MMU. Although there are some ports of Linux to small processors like MC68000
family, Linux and RTLinux are specially designed for mid-range to high range proces-
sors. This is why we decided to select POSIX as the reference standard used in this
analysis.

POSIX stands for stands for Portable Operating System Interface, and is an IEEE stan-
dard designed to facilitate application portability. It is the codification and standardisa-
tion of the common core of UNIX™ APIs, and realtime OS. A detailed list and status of
all the sub-standards that are part of POSIX can be found in the PACS web page. The
subset of POSIX standards that are related to real time or embedded systems are listed
below:

• 1003.1b: Realtime Extensions (IEEE Approved)

• 1003.1c: Threads (IEEE Approved)

• 1003.1d: Additional Realtime Extensions (IEEE Approved)

• 1003.1j: Advanced Realtime Extensions (IEEE Approved)

• 1003.1q: Tracing (IEEE Approved)

• 1003.5: Ada binding to 1003.1 (IEEE Approved)

• 1003.5a: Ada Update (IEEE Reaffirmed)

• 1003.5b: Ada Realtime (IEEE Reaffirmed)

Following is the list of features that has been studied in every analyzed RTOS:

• General overview and architecture. The internal architecture of the RTOS determines
the overall performance and the type of environments where it can be applied. For
example, a RTOS with protected address space for processes will have longer context
switches times than that with a flat memory space.

• Hardware support

• Processors supported.

• Multiprocessor support.

• Process management

• Weighted and/or lightweight processes. Lightweight processes (threads) is an effi-
cient method to implement concurrent systems due to the efficient resource manage-
ment and fast context switching. The POSIX thread standard define many realtime
features.

• Scheduling policy. POSIX define four scheduling policies: SCHED_FIFO, SCHED_RR,
SCHED_SPORADICand SCHED_OTHER. What kind of scheduling policies provide for
hard and soft tasks?

14

Chapter 4. Analyzed features

• Periodic tasks. Most of the scheduling theory was developed to provide support to
periodic tasks. POSIX do not provide specific system calls to implement periodic
activities; it has to be implemented by mean of timers and signals. Do the system
provide any method to implement periodic tasks?

• Range of priorities. POSIX require at least 32 priorities.

• Thread creation and cancellation. POSIX standard provides a lot of facilities to deal
the concurrency problems related to the termination of the running tasks. Do the
RTOS provide a way to start and terminate threads in a safe way?

• Memory management

• Memory protection. This is a mayor issue in realtime, since it is a key feature to
provide fault tolerance.

• Dynamic memory allocation. Fixed block size memory allocation? do provide the
standard malloc() and free() functions?

• Inter-process communication

• Semaphores. The most common and versatile synchronisation primitive.

• Mutex. Mutexes are a special type of semaphore used to protect critical sections.
The main difference with normal semaphores is that the thread that locks the mu-
tex becomes the owner of the mutex, and this thread is the only one that can unlock
it. Which type of mutex are available (spin-lock, recursive, etc.)?

• Priority inversion control. Do provide some type of priority inversion control in
concurrency control primitives?

• Message queues. Real time extensions of POSIX include a message queue interface.

• Mailboxes

• Shared memory Since normal weight processes are executed in a protected memory
space and threads (lightweight processes) are executed in a single common memory
space. This functionality is only applicable to systems with separate memory spaces.

• Signals (POSIX signals)

• Time and timers

• Time facilities. How the time is handled is one of the most important issues in a
RTOS: Absolute/relative delays, time resolution, how timers are managed, config-
urable timer resolution, types of clocks, etc.

• Facilities to add new hardware timers. Embedded boards are usually equipped with
special timer and watchdog hardware. Do the RTOS provide some utility to use it?

• Driver programming (low level programming)

• Interrupts. How interrupts are handled? What facilities provide the RTOS to write
interrupt handlers?

• System facilities to do IO. Embedded systems usually have some custom devices.
The RTOS has to provide some facilities to allow the engineer to write its own device
drivers.

• Quality of Service

• Network

• Available protocols.

• Filesystems

• Filesystem support.

OCERA. IST 35102 15

Chapter 4. Analyzed features

• Reservation features.

• Trace and debug

• Program debugging. Debugging and trace utilities are fundamental features that
a RTOS must provide. There are two characteristics that stress the need of these
type of tools: on one hand, embedded systems use to have limited communication
capabilities (sometime only a serial line); on the other hand realtime systems should
contain no bugs, this is achieved by means of a careful design and extensive debug-
ging.

• Event/timing debugging. Timing correctness is as important as logical correctness
in realtime systems. The RTOS must provide timing information about the execu-
tion of the application. Recently, POSIX.1q added tracing facilities that allow the
user to trace system and user events.

• Miscelanea

• Graphic support.

• Development environment. Most RTOS, commercial and open source, use GNU de-
velopment utilities: gcc, binutils, gdb, etc.

• Programming languages. The "C" language is available in all the RTOS, but more
and more other languages like ADA or C++ are also used.

• Compatibility with other RTOS APIS. Like pSOS, VxWorks, OSEK, self propietary
API.

OCERA. IST 35102 16

Chapter 5. Summary
Hardware Multi-

processor
Scheduling Concurrency

Linux Alpha, ARM, i386,
MIPS, PowerPC, Sparc,
SuperH, Etrax, m68k,
PA-RISC

Yes SCHED_FIFO,
SCHED_RR,
SCHED_OTHER

UNIX-processes &
Pthreads

RTLinux i386, PPC, ARM Yes SCHED_FIFO Pthreads
RTAI i386, MIPS, PPC,

ARM, m68k-nommu
Yes Fixed priority Lightweight

processes
RTEMS

4.5+
M68k, ColdFire,

SuperH, i386, MIPS,
i960, PowerPC, SPARC,
AMD A29K. PA-RISC

Static
allocation

SCHED_FIFO,
SCHED_RR,
SCHED_OTHER

Pthreads

QNX I386, ARM, MIPS,
PowerPC, SuperH

Yes SCHED_FIFO,
SCHED_RR,
SCHED_OTHER

UNIX-processes,
Lightweight
processes, Pthreads

VxWorks
5.x m68k/CPU32/ColdFire/PowerPC,

i386, ARM, SuperH,
MIPS

Optional Fixed priority,
Rodun-robin

Lightweight
processes

LynxOS i386, m68k, PowerPC,
ARM, SPARC,
PA-RISC

Yes FIFO, Priority
Quantum,
Round-Robin,
Non-preemptive

UNIX-processes &
Pthreads

Priorities
lower- higher

Memory
protection

Dynamic
memory

Inter-process communication

Linux (0-100) Yes Yes Semaphores, Mutexes,
Condition-var., shared-mem,
signals, pipes.

RTLinux (0-1000000) No No Semaphores, Mutexes,
Condition-var., FIFO

RTAI (0x3fffFfff-0) No Yes Semaphores, Mutexes,
Condition-var., FIFO, Mailbox,
shared-mem, net_rpc, Pqueues.

RTEMS
4.5+

(255-1)
(254-1) Posix

No Yes Semaphores, Mutexes,
Condition-var., Pqueues, Events.

QNX (0-31) Yes Yes Semaphores, Mutexes,
Condition-var., Barriers, Atomic
operations, rd/wr-locks, Pqueues,
shared-mem, FIFO.

VxWorks
5.x

(255-0) No Optional Semaphores, Mutexes, Message,
RTSignals,

17

Chapter 5. Summary

Priorities
lower- higher

Memory
protection

Dynamic
memory

Inter-process communication

LynxOS (0-255) Yes Yes Semaphores, Mutexes,
shared-mem, Pqueues, signals,
pipes, Condition-Var.

Priority
inversion control

Time
resolution

Timers Low level
programming

Linux None Configurable
(HighResTimers)

POSIX
timers

No interrupt
programming.

RTLinux Immediate ceiling Hardware
dependant

None Full control HW

RTAI Inheritance Hardware
dependant

None Full control HW

RTEMS
4.5+

Inheritance &
Immediate ceiling

Hardware
dependant

POSIX
timers

Full control HW

QNX Immediate ceiling Configurable POSIX
timers

Interrupts can be
handled by user
processes.

VxWorks
5.x

Inheritance Configurable Watchdog
timers,
POSIX
timers

Full control HW

LynxOS Inheritance Configurable POSIX
timers

POSIX-style threads of
execution within the
kernel for interrupt
handling.

QoS Network Filesystem
Linux FIFO, CBQ, CSZ,

ATM, PRIO, RED,
SFQ, TLE, TBF,
GRED, Diffserv,
Ingress, RSVP

IP, UDP, TCP, SLIP, PPP,
ICMP, DHCP, RARP, RARP,
TFTP, RPC, FTP, HTTP

ReiserFS, ext2, ext3,
NFS, CIFS, ADFS, FAT,
VFAT, NTFS, CRAMFS,
ISO9660, MINIX, QNX4,
ROM, JFS, XFS, Flash

RTLinux None None None
RTAI None IP, UDP None
RTEMS

4.5+
None IP, UDP, TCP, SLIP, PPP,

ICMP, DHCP, RARP, TFTP,
RPC, FTP, HTTP, CORBA

IMFS, DOSFS/FAT

QNX None IP, UDP, TCP, ARP, ICMP,
IGMP, QNET

RAMFS, QNX4, DOS,
ISO9660, ext2, NFS,
CIFS, Flash

OCERA. IST 35102 18

Chapter 5. Summary

QoS Network Filesystem
VxWorks

5.x
None TCP/IP IP, UDP, TCP, IGMP,

ICMP, ARP RIP 1/2 SLIP,
CSLIP, PPP BOOTP, DNS,
DHCP, TFTP FTP, RLOGIN,
RSH, TELNET

FAT, NFS, raw, TrueFFS

LynxOS None IP, UDP, TCP, ICMP, IGMP,
ARP, RARP, DHCP, NAT, RPC,
NTPv3, Raw, Zebra routing,
TFTP

Lynx Fast File system,
ISO9660, NFS, RAMFS.

Debug Languages API compatibilitiy
Linux GDB, DDD,

Insight,

System debugg, LTT

C, C++, ADA, Java, POSIX 1003.1,
VxWorks, pSOS

RTLinux Simple trace, GDB C, C++ POSIX 1003.1c
RTAI KGDB C Custom,

POSIX 1003.1b

RTEMS
4.5+

GDB, DDD,
Debug over: ethernet,
serial, BDM

C, C++, ADA RTEID/ORKID,uITRON 3.0,
POSIX 1003.1b

QNX GDB, memory
overrruns.

C, C++, Java POSIX 1003.1, POSIX 1003.1b

VxWorks
5.x

GDB, Debug over:
ethernet, serial,
WindView, Trace

C, C++ Propietary (VxWorks),
POSIX 1003.1, POSIX 1003.1b

LynxOS GDB, Insight, Debug
over: ethernet, serial

C, C++, ADA Propietary, POSIX.1/.1b/.1c,
Unix BSD 4.3. ABI compatibility
with Linux 2.4

OCERA. IST 35102 19

II. RTOS Analysis
Table of Contents

6. Realtime Support in Linux ..21
7. Low-Latency Patches for Linux..27
8. RTLinux/GPL ..33
9. RTAI ..41
10. RTEMS 4.5+..49
11. QNX ...57
12. VxWorks 5.x ...70
13. LynxOS ...75

Chapter 6. Realtime Support in Linux
Linux is a full-featured UNIX® implementation. The main design criteria of the Linux
kernel is the throughput while realtime and predictability is not an issue. The main
handicap to consider Linux as a realtime system is that the kernel is not preemptable;
that is, while the processor executes kernel code, no other process or event can preempt
kernel execution.

Although Linux is not a realtime system, it has some features, already included in the
mainstream source code or distributed as patch files, designed to provide realtime to
Linux. These are the features described in this section.

From the programmer point of view, there are two main programming paradigms
to build a realtime application: weight-processes (normal UNIX processes) and
lightweight-processes (known as threads or LWP). Linux provides support for both
execution environments, mostly based on POSIX standards 1003.b and 1003.c
respectively.

Most of the realtime extensions are not included into the standard "C" library "libc ".
These system calls are implemented and distributed in in the GNU "C" library (glibc)
but are located in a separate library file called "librt ". Therefore, to compile a program
that makes use of realtime features, the compiler must be invoked flag the "-lrt ".

6.1. Scheduling
From the very first versions of Linux, the scheduler was realtime POSIX compatible.
It supports, among others, the fixed priority (SCHED_FIFO) policy, which is the base
feature to build a realtime systems. It also provides the POSIX required: SCHED_RRand
SCHED_OTHER. The range of priorities is [0..99].

A lot of work has been done to improve the performance of the scheduler through a care-
ful design which yield to a new scheduler code and structure. Next stable Linux kernel
(2.4.19), as well as unstable kernel development (2.5.x), will replace the old scheduler
code with an improved “O(1) scheduler” developed by Ingo Molnar . This new scheduler
is able to manage a large number of processes with no overhead degradation.

6.2. Virtual Memory
It is not possible to build realtime applications on a system with virtual memory. The
random and long delays introduced when RAM is exhausted and swapping is required
is intolerable in a realtime system. Linux provides the mlock() and mlockall() func-
tions that disables paging for the specified range of memory, or for the whole process
respectively. Therefore, all the “locked” memory will stay in RAM until the process exits
or unlocks the memory.

mlock() and mlockall() are included in the POSIX realtime extensions.

6.3. Shared Memory
One of the main communications paradigms used in realtime applications is shared
memory.

Linux processes can share memory with each other and with drivers the POSIX.1b call
mmap() . This function can be used both, to map into main memory a regular file and to
map shared memory objects. When multiple processes map the same memory object (or

21

Chapter 6. Realtime Support in Linux

file), they share access to the underlying data, which is a efficient way to communicate
large amounts of data between processed.

Since version 2.4.x and glibc 2.2 (GNU "C" library), Linux provides open shared memory
objects, which is part of the POSIX realtime extensions. This API has the following
functions: shm_open() and shm_unlink() .

6.4. High Resolution POSIX Timers (HRT)
Current POSIX API defines two different timer facilities:

• BSD timers: setitimer() and getitimer() functions.

• IEEE 1003.1b REALTIME timers: timer_create() , timer_settime() ,
timer_getoverrun() , etc.

Linux provides the BSD POSIX timers with a timing resolution around 10ms, which is
clearly not suitable of realtime applications. The Hight Resolution Timers (HRT) project,
sponsored by MontaVista, provides microsecond resolution with lower overhead follow-
ing the IEEE 1003.b POSIX API. It is distributed as a patch file which can be down-
loaded from Sourceforge. Current distribution works with Linux kernel 2.4.18.

This patch can provide high resolution timers with very low overhead because of two
main design issues: the use of several timing and interrupt hardware sources (the old
8254, the Pentiun internal instruction TSC, and the ACPI1 timers when available), and
a clever data structure to maintain the timers.

The patch provides high resolution clocks: CLOCK_REALTIME_HR and
CLOCK_MONOTONIC_HR. And the accompanying functions: clock_settime() ,
clock_gettime() , clock_getres() . Also the POSIX timers functions are
implemented: timer_create() , timer_delete() , timer_settime() ,
timer_gettime() and timer_getoverrun() .

6.5. Realtime Signals
POSIX extended the signals generation and delivery to improve the realtime capabili-
ties. Signals take an important role in realtime as the way to inform the processes of
the occurrence of asynchronous events like high-resolution timer expiration, fast inter-
process message arrival, asynchronous I/O completion and explicit signal delivery.

The main characteristics of this type of signals are:

• The range of realtime signals supported by Linux is form 32 (SIGRTMIN) to 63
(SIGRTMAX).

• Signals can deliver a small piece of data (an integer or a pointer) to the signal handler
(signal-catching function).

• Signals that carry information are delivered in chronological FIFO order.

• It is possible to automatically create a thread in response to a signal.

Linux fully supports the POSIX realtime signals standard.

6.6. POSIX Asynchronous I/O
Asynchronous I/O (AIO) is the POSIX interface to provide high efficiency asynchronous
I/O access. The standard way to access I/O devices (files, drivers, sockets, fifos, etc.)

OCERA. IST 35102 22

Chapter 6. Realtime Support in Linux

defined by UNIX the read() write() blocking sequence, where a next file access is
performed only when the previous request has been completed. AIO mechanism pro-
vides the ability to overlap application processing and I/O operations initiated by the
application.

A process can start one or more IO requests to a single file or multiples files and continue
its execution. Also, a single system call can start a sequence of I/O operation on one or
several files, which reduces the overhead due to context switches.

There are two implementations available in Linux: the one provided at the library level
by using non-aio system calls (included in the glibc/librt since version 2.1); and the
kernel implementation first developed by SGI™ called KAIO (till linux kernel 2.4.0),
and now the Linux-AIO which provides this functionality to newer kernels.

6.7. POSIX Threads
Current Linux implementation of POSIX threads (POSIX 1003.1c) is based on the work
done by Xavier Leroy, known as LinuxThreads. LinuxThreads is now integrated in the
glibc , and distributed as a part of the it. It provides kernel-level threads: threads are
created with the clone() system call and all scheduling is done in the kernel. This
kind of threading is defined as 1:1, i.e. each thread is mapped to a Linux process.

LinuxThreads implements most of the POSIX API: mutex, condition variables, cancel-
lation, signals, timed calls, etc. The library also provides POSIX semaphores. Mutex do
not implement any protocol to prevent priority inversion. Since threads are scheduled
by the Linux scheduler, the scheduling policies are the same as in Linux: SCHED_FIFO,
SCHED_RRand SCHED_OTHER.

6.8. Quality of Service
Nowadays, linux offers a sophisticated component for bandwidth management called
Traffic Control. This component supports method for classifying, prioritising, and lim-
iting both incoming and out-coming traffic. Therefore, linux can do the following list of
things: limit bandwidth for certain computers, help to fairly share bandwidth, protect
the Internet from abuses, restrict access, do routing based on user id, MAC address,
source IP address ... and so on.

For working with this subsystem, the kernel versions 2.2.x has to be patched, but the
versions 2.4.x and uppers implement directly this functioning.

Network subsystem overview

The following figure shows the network subsystem:

Figure 6-1. Network Subsystem

There are four components:

• Input demultiplexing: Decides if a incoming packets are passed to higher layers
or are directly forwarded to the network.

• Upper Layers: Processes packets and may also generate new traffic and pass it
to the lower layers.

OCERA. IST 35102 23

Chapter 6. Realtime Support in Linux

• Forwarding: This layer performs the selection of the output interface, the selec-
tion of the next hop, encapsulation, etc.

• Output Queueing or Traffic Control: This is the most important component and
decides if packets are queued or dropped, decides in which order packets are sent,
etc.

Once the traffic control releases a packet for sending, the network device driver
sends it to the network.

Traffic Control overview

The traffic control component consist of the following elements: queueing disciplines
(qdisc), classes (within a queueing discipline), filters and policing

In this way, queueing discipline provides a method to enqueue a packet. A class is
the place where packets are stored and processed in a specific way, afterwards, the
qdisc selects the following packet for sending from classes. Filters are used by a
qdisc to assign incoming packets to one of its classes. And finally, policing is used to
ensure that incoming traffic does not exceed certain bounds.

The following picture illustrates an example of traffic control configuration:

Figure 6-2. Traffic Control configuration

This configuration consists of a queuing discipline with two delay priorities, as well
as, two classes: the higher class contains a token bucket filter discipline that limits
the traffic, while the lower class contains a FIFO qdisc. Therefore, while the higher
class has packets for sending (rate < 1Mbps), the priority qdisc selects a packets
from this class. The filter decides which packets are sent to the higher class. Once
a priority qdisc selects the following packet for sending, the network driver sends it
on the network.

In conclusion, the traffic control layer decides whether the packets are queued or
dropped, in which order the packets are sent, and finally it may delay packet trans-
mission. Moreover, the traffic control elements can be combined in a modular way
to support Differentiated Service (DS), Integrated Service (RSVP), ATM and so on.

The following four sections describe the traffic control elements.

Queueing discipline

Each network interface has a queue discipline attached with it, which controls how
packets are enqueued and treated.

A qdisc is a black box, which is able to enqueue packets and dequeue them using
its own algorithm, for example, a CBQ qdisc uses a WRR (Weight Round Robin)
scheduling to select the following packet for sending on the network.

Moreover, qdisc are divided into two categories:

• Classfull: Qdiscs that may have child qdiscs attached to them.

OCERA. IST 35102 24

Chapter 6. Realtime Support in Linux

• Leafs: Qdiscs that have not child’s.

The available classfull qdiscs are:

• PRIO a n-band strict priority scheduler,

• CBQ Class Based Queue,

• CSZ Clak-Scott-Zhang,

• ATM Asynchronous Transfer Model,

• DSMARK - DSCP a Diff-Serv Code Point marker and

• INGRESS

The available leafs qdiscs are:

• FIFO a simple FIFO (it is the default qdisc),

• TBF Token Bucket Filter,

• RED Random Early Detection,

• GRED Generalised Random Early Detection,

• TEQL Traffic Equaliser and

• SFQ Stochastic Fair Queue.

Classes

A class is attached to a qdisc. However, queueing disciplines and classes are inti-
mately tied together; the presence of classes and their semantics are fundamental
properties of the queueing discipline. There is only one available class. This is the
CBQ class. Note that a CBQ may work as queue discipline or class.

Filters

Filters are used to classify packets based on certain properties of them (address IP
...). The supported filters are:

• rsvp (use RSVP protocol for classification),

• u32 (anything in the header may be used for classification),

• fw (use the firewall rules for classification),

• route (use routing table for classification decisions) and

• tcindex (use the DS field for classification).

Note that the u32 filter is the most advanced filter available and the tcindex filter
is used in DiffServ (differentiation services).

OCERA. IST 35102 25

Chapter 6. Realtime Support in Linux

Policing

The goal of policing is to ensure that traffic does not exceed certain bounds. There
are four types of policing mechanisms: policing decisions by filter, refusal to en-
queue a packet, dropping a packet from an inner queueing discipline and dropping
a packet when en-queuing a new one.

6.9. Compatibility
Linux was developed around UNIX and POSIX standards. Therefore, its native API is
mostly POSIX compatible.

Also MontaVista™ developed Wind River pSOS® and Wind River VxWorks® two emu-
lation environments. These emulators are designed to ease the port of legacy RTOS code
Linux. The emulation libraries are available at Sourceforge.

Notes
1. Advanced Configuration and Power Interface

OCERA. IST 35102 26

Chapter 7. Low-Latency Patches for
Linux

7.1. Kernel Latency
When scheduling a real-time user-level Linux process, the real-time performance can be
affected by bottom halves (BHs) execution, kernel non-preemptable sections, and so on.
The kernel latency is a quantity used to measure the difference between the theoretical
schedule and the actual one.

The kernel latency is defined as follows: Let T be a real-time process that requires ex-
ecution at time t, and let t’ be the time at which T is actually scheduled; we define the
kernel latency experienced by T as L = t’ - t.

The biggest source of kernel latency are kernel non-preemptable sections (including BHs
and Interrupt Service Routines - ISRs). In fact, non-preemptable sections in the kernel
can prevent a high priority task from being scheduled for a very long time (up to 100ms).
For example, if interrupts are disabled at time t, task T can only enter the ready queue
later when interrupts are re-enabled. In addition, even if T enters the ready queue at
the correct time t and has the highest real-time priority in the system, it may still not
be scheduled if another task is running in the kernel in a non-preemptable section. In
this case, T will be scheduled when the kernel exits the non-preemptable section at time
t’.

The length of a kernel non-preemptable section depends on the strategy that the kernel
uses to guarantee the consistency of its internal structures, and on the internal orga-
nization of the kernel. The standard Linux kernel is based on the classical monolithic
structure, in which the consistency of kernel structures is enforced by allowing at most
one execution flow in the kernel at any given time. This is achieved by disabling pre-
emption when an execution flow enters the kernel, i.e., when a system call is invoked or
when an interrupt fires. When a system call is invoked, the thread that invokes it enters
in the kernel and becomes non-preemptable, returning preemptable when the execution
exits from the kernel. When an interrupt fires, a short ISR is invoked with interrupts
disabled: the ISR acknowledges the hardware interrupt and schedules a BH for execu-
tion. The BH will be executed in a non-preemptive way immediately before returning to
user mode; hence, if the ISR interrupts a system call, the BH will be executed only after
that the system call is completed (system calls can synchronize with ISRs by explicitly
disabling interrupts). Summing up, in a standard Linux kernel, the maximum latency
is equal to the maximum length of a system call plus the processing time of all the inter-
rupts that fire before returning to user mode. Unfortunately, this value can be as large
as 100ms.

7.2. Possible Solutions
Two different approaches can be used to reduce the size of kernel non-preemptable
sections: the one used by the Low-Latency patches (Ingo Molnar and Andrew
Morton)[LowLat], and the one used by the kernel preemptability patch (MontaVista,
TimeSys)[kpreem, TimeSys].

7.2.1. Low-Latency Linux
This approach “corrects” the monolithic structure by inserting explicit rescheduling
points (that effectively are preemption points) inside the kernel. In this approach, when
a thread is executing inside the kernel it can explicitly decide to yield the CPU to some

27

Chapter 7. Low-Latency Patches for Linux

other thread. In this way, the size of non-preemptable sections is reduced, thus decreas-
ing the latency. In a low-latency kernel, the consistency of kernel data is enforced by
using cooperative scheduling (instead of non-preemptive scheduling) when the execu-
tion flow enters the kernel.

This approach is also used by some real-time versions of Linux, such as RED Linux. In
a low-latency kernel, the maximum latency decreases to the maximum time between
two rescheduling points. Since the low-latency patch has been carefully hand-tuned for
quite a long time, it performs surprisingly well.

7.2.2. Preemptable Linux
The preemptable approach, used in most real-time systems, removes the constraint of a
single execution flow inside the kernel. Thus it is not necessary to disable preemption
when an execution flow enters the kernel. To support full kernel preemptability, kernel
data must be explicitly protected using mutexes or spinlocks. The Linux preemptable
kernel patch, sponsored by MontaVista, uses this approach and makes the kernel fully
preemptable. Kernel preemption is disabled only when a spinlock is held.

A similar approach is used by TimeSys, that uses mutexes instead of spinlocks, and
provide priority inheritance. While the MontaVista patch disables preemption when a
spinlock is acquired, the TimeSys one is based on blocking synchronization.

In a preemptable kernel, the maximum latency is determined by the maximum amount
of time for which a spinlock is held inside the kernel. Again, it is important to note that
BHs are serialized using a spinlock, thus they contribute to the latency.

An additional patch (lock-breaking) merges some of the low-latency rescheduling points
into the preemptable kernel, for decreasing the amount of time for which spinlocks are
held.

7.3. Evaluation
We measured the latency for the standard, Low-Latency, preemptable and preemptable
with lock-breaking kernels while running different loads in background. All the experi-
ments were performed using the Latency Benchmark tool downloadable from [FT]. The

OCERA. IST 35102 28

Chapter 7. Low-Latency Patches for Linux

results are shown in the following figures:

Figure 7-1. Latency in the Standard Kernel

Figure 7-2. Latency in the Low Latency Kernel

OCERA. IST 35102 29

Chapter 7. Low-Latency Patches for Linux

Figure 7-3. Latency in the Preemptable Kernel

Figure 7-4. Latency in the Preemptable Lock-Breaking Kernel

From the first figure, it is possible to see that standard Linux exhibits high latencies at
the end of the memory stress (a program that reads and writes a large array in memory),
during the I/O stress (a program that reads and writes large amount of data on a file),
when accessing the /proc file system, and when switching the caps/lock led. The large
latency at the end of the memory stress is due to the munmap() system call. Comparing
the figures it is possible to see that the low latency kernel solves all the problems except
the /proc file system access and the caps/lock switch. On the other hand, the preemptable
kernel eliminates the large latency in the /proc fs access, but does not solve the problem

OCERA. IST 35102 30

Chapter 7. Low-Latency Patches for Linux

with the memory stress, and is not as effective as the low latency kernel in reducing
the latency during the I/O stress. Finally, the lock-breaking preemptable kernel seems
to provide good real-time performance, but still has some problem during the I/O stress.

By repeating similar experiments for longer amounts of time, we verified that the low-
latency kernel is characterized by larger average latencies respect to the preemptable
and lock-breaking preemptable kernels, but reduces the worst case latencies. In other
words, the tail of the probability distribution function is shorter for a low-latency ker-
nel. As an example, the PDFs of the latency during the I/O stress are reported in the
following figures (note that this new experiments were performed on a computer that is
faster than the one used for the previous experiments).

Figure 7-5. PDF of the Latency in the Low-Latency Kernel

OCERA. IST 35102 31

Chapter 7. Low-Latency Patches for Linux

Figure 7-6. PDF of the Latency in the Lock-Breaking Kernel

According to the previous figures, it seems that the low-latency patch provides better
real-time performance. This is probably due to the fact that the Linux kernel still con-
tains “big spinlocks” that are held for long amounts of time, and that the lock-breaking
patch does not “break” properly. A classical example is the spinlock used to serialize BHs.
However, in the future Linux developers will likely decrease the size of kernel critical
sections (to improve SMP performance), hence it seems to be reasonable to think that
the latency of the preemptable and lock-breaking preemptable kernel will decrease.

OCERA. IST 35102 32

Chapter 8. RTLinux/GPL
There are two different versions of RTLinux: RTLinux/Pro and RTLinux/Open.

RTLinux/Open is available on the web. The main (only) developer of this version was
FSMLabs and stops its development in 2Q/2001. RTLinux/Pro is available for a free
from FSMLabs and the license is non-GPL.

This paper is focused of the RTLinux/Open version.

8.1. Architecture overview
There are two approaches to provide real-time performance in a Linux system:

1. Improving the Linux kernel preemption.

2. Adding a new software layer beneath Linux kernel with full control of interrupts
and processor key features.

These two approaches are known as "preemption improvement" and "interrupt abstrac-
tion" respectively. This second approach is the one used by RTLinux.

RTLinux is a small, fast operating system, following the POSIX 1003.13 "minimal real-
time operating system" standard.

RTLinux adds a layer of virtual hardware between the standard Linux kernel and the
computer hardware (see Figure 8-1, RTLinux layer architecture). As far as the standard
Linux kernel is concerned, this new layer appears to be the actual hardware. RTLinux
implements a complete and predictable RTOS with no interference from the non-real-
time Linux. The RTLinux threads are executed directly by a fixed-priority scheduler. The
whole Linux kernel, and all the normal Linux processes, are managed by the RTLinux
scheduler as the background task. This way, it is possible to have a complete general
purpose operating system running on top of a small predictable RTOS.

Figure 8-1. RTLinux layer architecture

33

Chapter 8. RTLinux/GPL

There are three main modifications done to the Linux kernel in order to virtualize the
hardware so that RTLinux can take full control of the machine: The RTLinux layer takes
direct control of all the hardware interrupts, interrupts that are not controlled by real-
time threads are forwarded to the Linux upper level; RTLinux also takes the control of
the timer hardware (8254 and APIC when available) and implements a virtual timer
to Linux; and the last modification done to Linux to remove the basic control of the
hardware from Linux is to replace all the cli and sti (disable and enable interrupt
flag) functions calls from the Linux kernel so that Linux can no make a real disable but
a virtual interrupt disable. These modifications are quiet complex and tricky, but do not
require large code (Linux) modifications.

RTLinux provides an execution environment "below" the Linux kernel. One consequence
of this, is that realtime threads can not use Linux services because deadlock or system
inconsistencies may happen. To overcome this problem, the realtime system has to be
divided into two separated layers: the hard realtime layer, executed on top of RTLinux,
and the soft realtime, executed as normal Linux processes. Several mechanisms (FIFO,
shared memory) can be used to communicate threads in both layers.

The two layer approach is a useful method to provide hard realtime while having all
the features of a desktop operating system. It decouples the mechanism of the realtime
kernel from the mechanism of the general purpose Linux kernel so that each system can
be optimized independently.

8.2. Hardware characteristics
Supported processors:

i386, PPC, ARM (StrongARM/iPAQ).

Supported multi processor:

Yes. It is available for i386 architectures.

8.3. Process management
Scheduling policy:

There are three scheduling policies available: SCHED_FIFO, SCHED_SPORADIC
SCHED_EDF. SCHED_FIFOis a fixed priority scheduling and threads with the same
priority are scheduled in FIFO order. SCHED_SPORADICan implementaion of the
sporadic server used to run aperiodic activities. SCHED_EDFimplements a dynamic
priority scheduling policy the EDF (Earliest Deadline First). Each thread has a
fixed priority and a deadline. Threads are sorted by priority, but same priority
threads are scheduled according to the EDF policy.

Periodic threads:

The system provides special system calls to implement periodic threads.
pthread_make_periodic_np() and pthread_wait_np()

OCERA. IST 35102 34

Chapter 8. RTLinux/GPL

Range of priorities and maximum number of threads:

Minimum and maximum priority is 0 and 1000000 respectively. There is no limit
in the number of running threads, but the scheduling cost is proportional to the
number of threads. Current scheduler code is designed to handle efficiently a low
number of threads (around 10).

Thread creation and deletion:

It provides all the POSIX Thread termination facilities and also some extensions to
remove termitate threads easier.

A thread can terminate itself by calling pthread_exit() function.
pthread_join() suspend execution the execution of the calling thread until the
target thread terminates. To implement this behavior, when a thread exits, the
system do not delete the supporting data until other thread has joined. The system
also provides the pthread_detach() function to indicate that the target thread
will not be joined and the system support data can be reclaimed as soon as the
thread exits.

A thread can request the cancellation (termination) of other thread:
pthread_cancel() . The thread that receives the cancellation request, depending
on the cancelability state, can do one o the following action:

• PTHREAD_CANCEL_DISABLE: The cancel request is ignored.

• PTHREAD_CANCEL_DEFERRED: The thread will be canceled but only at some safe
points.

• PTHREAD_CANCEL_ASYNCHRONOUS:The thread is canceled immediately.

A thread can install cancellation cleanup handlers: pthread_cleanup_push()
and pthread_cleanup_pop() . The cleanup handlers are called when the thread
exits, is canceled or the handler is removed.

pthread_delete_np() function can be used to termintate inmediately a thread
and can be used instead of the pair: pthread_cancel()/pthread_join()

8.4. Memory management
Protected address spaces

Although RTLinux is designed to run in processors with MMU, all the application
threads and the RTLinux kernel run in the same address space. There is no memory
protection between threads and the kernel and also between threads themselves.

From the point of view of memory management, RTLinux is the guest operating
system of the Linux Kernel. The Linux kernel has the whole control of the memory.

Dynamic memory allocation:

RTLinux do not provide dynamic memory allocation nor use it internally. The main
argument is that dynamic memory allocation is not predictable if implemented ef-

OCERA. IST 35102 35

Chapter 8. RTLinux/GPL

ficiently. The Real-Time goal of predictability is usually achieved by preallocating
most of the resources the threads will use at run time.

It is possible to allocate all the memory that each thread will require before the
threads are created.

8.5. Inter-Process communication
Semaphores

POSIX REALTIME semaphores are fully implemented: sem_init() ,
sem_destroy() , sem_getvalue() , sem_post() , sem_trywait() and
sem_wait() . These are counting semaphores.

Mutex

RTLinux supports the POSIX pthread_mutex_ family of functions:
pthread_mutex_init() , pthread_mutex_destroy() ,
pthread_mutex_lock() , pthread_mutex_trylock() and
pthread_mutex_unlock() . As well as all the supporting,
pthread_mutexattr_... like, functions to handle mutex creation attributes.

The supported mutex types are:

• PTHREAD_MUTEX_NORMAL: The default POSIX mutex.

• PTHREAD_MUTEX_SPINLOCK_NP: Provides a interface to spin-locks used to syn-
chronize the execution in multiprocessor systems.

The supported mutex protocols are:

• PTHREAD_PRIO_NONE:No priority control is performed on locking and unlocking.

• PTHREAD_PRIO_PROTECT: Immediate priority inheritance. The thread that locks
the mutex inherits the priority ceiling of the semaphore, and returns to the origi-
nal priority when the unlocks the mutex.

Priority inversion control

Mutex provide immediate priority inheritance.

Messages queues

There is no message queues available.

OCERA. IST 35102 36

Chapter 8. RTLinux/GPL

Mailboxes

There is no mailboxes.

Shared memory

shared memory is provided with a non-POSIX interface called mbuff . Since all
threads are executed in the kernel address space (rtlinux threads share by default
all the memory), this sharing memory mechanism is used to communicate rtlinux
threads and normal linux processes.

Both execution environments, RTLinux and Linux, have the same mbuff API.

Following the idea that not dynamic memory allocation can be requested during
normal system execution, allocation and releasing functions can not be used from
RTLinux threads, only at module loading or by linux processes.

FIFOs

RTLinux provide a single IPC called FIFO. It is First-In-First-Out queues that can
be read from and written to by Linux processes and RTLinux threads. FIFOs are
uni-directional - you can use a pair of FIFOs for bi-directional data exchange.

8.6. Time and timers
Time resolution

Time is measured in nano-seconds. Two different data structures are used to mea-
sure time: POSIX structure:

struct timespec {
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */

};

and RTLinux specific:
typedef long long hrtime_t; /* Nano seconds */

RTLinux use the highest resolution that the underlying hardware provides.

Currently supported clocks are:

• CLOCK_MONOTONIC: This POSIX clock runs at a steady rate, and is never ad-
justed or reset.

• CLOCK_REALTIME: This is the standard POSIX realtime clock. Currently, it is
the same as CLOCK_MONOTONIC.

• CLOCK_RTL_SCHED: The clock that the scheduler uses for task scheduling, it is
the best hardware clock.

The following clocks are architecture-dependent. They are not normally found in
user programs.

OCERA. IST 35102 37

Chapter 8. RTLinux/GPL

• CLOCK_8254: Used on non-APIC x86 machines for scheduling. Its frequency is
1193180Hz.

• CLOCK_APIC: Used on SMP x86 machines and single processor equipped with
local APIC. This clock ticks at the same frequency than the internal processor
clock. If the processor is clocked at 1GHz or higher, then the this clock has a
resolution smaller than 1 nano-second.

User timers

There is no user timers. There is only one timer handler per hardware timer, which
is the associated with the interrupt handler. When the scheduler module is loaded,
the scheduler takes the control of the timer and no other thread can use the timer.

The only timing facility that a thread can use being a periodic thread.

Facilities to add new hardware timers

The internal structure of the source code is prepared to add new timer drivers eas-
ily. There is a struct rtl_clock similar to the device driver structure used to
register UNIX device drivers.

8.7. Driver programming
Interrupts

RTLinux defines two types of interrupts: Soft and Hard Interrupts.

Hard Interrupts the one originated directly by the real hardware. There is very
little system interference in the service of these interrupts, therefore the interrupt
latency is almost only limited by the performance of the underlying hardware. Since
these handlers are executed at the RTLinux level, it is not possible to call linux ser-
vices. Interrupt handlers are installed and uninstalled with rtl_request_irq()
and rtl_free_irq() functions.

Soft interrupts are normal Linux kernel interrupts, in the sense that the interrupt
handlers are executed by the Linux kernel thread. The latency of this interrupts
are the same than that of a normal linux, i.e., no realtime. On the other
hand, is is possible to use all the facilities of the linux kernel. The following
functions are used to manage this kind of interrupts: rtl_get_soft_irq() and
rtl_free_soft_irq() .

It is possible to generate interrupts from RTLinux to Linux with the function:
rtl_global_pend_irq . Also, by using the POSIX signal mechanism is possible
to send signals (which are received like soft interrupts) to the linux thread.

Low level prograaming

Since RTLinux threads are executed in kernel address space and processor mode,
it is possible to use all the reserved processor instructions directly. To direct access
io ports in ISA bus: rtl_inb , rtl_inb_p , and the outb counterparts. To access

OCERA. IST 35102 38

Chapter 8. RTLinux/GPL

physical memory (devices located at the PCI bus) it is possible to use ioremap() 1

function at thread initialization and then access the device through the returned
pointer.

8.8. Quality of Service
There is no QoS utilities.

8.9. Network
A separate module called RTnet provides the drivers (only two network drivers are sup-
ported) and the protocols (IP, ARP, UDP and ICMP) over Ethernet. The API is quiet
similar to the sockets API: rt_socket() , rt_connect() , rt_sendmsg() , etc. Cur-
rent version of RTnet only works with Linux kernel version 2.2.x.

Also several CAN drivers are available.

8.10. Filesystems
The module rtl_posixio.o implements the /dev filesystem. It provides unix like
(open() , read() , write() , ...) functions to access device driver services, and drivers
can be registered with the function: rtl_register_rtldev() .

Current implementation provides the following devices: /dev/rtf , /dev/mem and
/dev/ttyS

RTLinux do not provide any block device nor regular filesystem implementation. Since
the background RTLinux process is the Linux kernel, RTLinux designers choose not to
include non-realtime features that are already available and usable.

8.11. Trace and debug
Logic debug

Source level debugging using GDB directly from the same machine that is running
the system. The debugging target system (RTLinux) and the host system (where
GDB is running) are communicated with FIFOS.

It is possible to debug periodic threads (gdb command info threads) in the usual
way: step by step, break points, inspect variable values, etc. Multiprocessor systems
can be debugged. Also is possible to use graphical front-ends like: DDD, gvd, xxgdb,
insight.

Timing debug

An optional tracer module can be included in the system. The tracer will register all
the relevant system events and user-defined ones.

The builtin set of events includes RTLinux interrupt handlers entry and exit, sched-
uler entry and exit, spin-lock acquiring and freeing, context switches, interrupts dis-
abling and enabling. It is possible to attach an arbitrary 32-bit value to each event
record. The current value of instruction pointer is also logged with each event.

OCERA. IST 35102 39

Chapter 8. RTLinux/GPL

Events are grouped into classes. It is possible to select logging of events of any
combination of different classes during runtime.

Events are logged in circular buffers located in shared memory, where a user-space
program can collect and store in disk. This logging mechanism causes a minimal
interference.

8.12. Miscelanea
Development tools

The development tools are the same than the used to develop the Linux kernel:
GCC, binutils, make, etc.

It is possible to do cross development (host-target) and stand alone development,
that is, use the same computer to compile and run/test the embedded system.

Programming languages

The main programming language is "C". But it is also possible to use C++.

Ted Baker reported a preliminary porting of the ADA language to the RTLinux
system.

API compatibility

POSIX 1003.13/PSE51-compatible.

Notes
1. ioremap: Maps the given physical address range into the virtual address space with

no caching, suitable for being accessed from a driver.

OCERA. IST 35102 40

Chapter 9. RTAI
RTAI is the acronym of Realtime Application Interface. It was first started at the Dipar-
timento di Ingeneria Aerospaziale, Politecnico di Milano by Professor Paolo Mantegazza.

RTAI started as a variant of RTLinux in 1999 when Paolo Mantegazza tried to collabo-
rate with RTLinux including new features and rearrange the RTLinux code but Victor
did not accepted his contributions. Since then, the relations between RTAI and RTLinux
developers are not good.

Although RTAI still contains code from the original RTLinux code, the API differences
between them evolved in opposite directions. RTLinux was rewritten to be POSIX com-
patible and to remain small and simple; RTAI developers added new features and sys-
tem calls following a personal and non always coherent style. One of the main develop-
ment guideline of RTLinux was to keep the system as simple as possible and only add
new features when strictly necessary. On the other hand, RTAI developers accepted and
integrated into the system all code contributions which resulted in a full featured, but
some times redundant and incompatible, system.

Currently, RTAI developers have started two major tasks:

• Replace the underlying hardware control RTHAL, based on the RTLinux original code
and patented by Victor Yoddaiken, with a new technology called ADEOS "Adaptive
Domain Environment for Operating Systems".

• Redesign the API.

9.1. Architecture overview
The basic structure of RTAI is the same than RTLinux. A new software layer is beneath
Linux kernel with full control of interrupts and processor key features.

RTAI scheduler treats the Linux operating system kernel as the idle task. Linux only
executes when there are no real time tasks to run, and the real time kernel is inactive.
The Linux task can never block interrupts or prevent itself from being preempted.

9.2. Hardware characteristics
Supported processors:

i386, MIPS, PPC, ARM, m68k-nommu.

Supported multi processor:

Yes. It is available for i386 architectures.

41

Chapter 9. RTAI

9.3. Process management
Scheduling policy:

There are two scheduling policies available: RT_SCHED_FIFOand RT_SCHED_RR.

Function rt_set_sched_policy(RT_TASK *task, int policy, int
rr_quantum_ns) is used to set the priority and the round robin quantum.

Periodic threads:

The system provides special system calls to implement periodic threads:
rt_task_make_periodic() and rt_task_wait_period()

Range of priorities and maximum number of threads:

Minimum and maximum priority is 0x3fffFfff and 0 respectively. Which is the oppo-
site way as how POSIX define priorities, that is, in POSIX the higher the priority,
the higher the priority.

The number of active tasks is only limited by the amount of memory available.

Thread creation and deletion:

rt_task_init() and rt_task_delete functions are used to create and destroy
tasks. If task task was waiting on a queue, i.e. semaphore, mailbox, etc, it is re-
moved from such a queue and messaging tasks pending on its message queue are
unblocked with an error return.

9.4. Memory management
Protected address spaces

Although RTAI is designed to run in processors with MMU, all the application tasks
and the RTAI kernel run in the same address space. There is no memory protection
between tasks and the RTAI kernel and also between threads themselves.

From the point of view of memory management, RTAI is the guest operating system
of the Linux Kernel. The Linux kernel has the whole control of the memory.

Dynamic memory allocation:

The module rt_mem_mgr provides the functions rt_malloc() rt_free() .

Some amount of memory is pre-allocated then the module in inserted, and real
time tasks can allocate and free memory from this pool while executing in RTAI
environment.

OCERA. IST 35102 42

Chapter 9. RTAI

9.5. Inter-Process communication
Semaphores

Two different and incompatible semaphore facilities are implemented in RTAI:
RTAI-SEMAPHORES, FIFO-SEMAPHORES.

• RTAI-SEMAPHORES: The following functions are available:
rt_typed_sem_init() , rt_sem_init() , rt_sem_delete() ,
rt_sem_signal() , rt_sem_wait() , rt_sem_wait_if() ,
rt_sem_wait_until() , rt_sem_wait_timed() .

A semaphore of the kind can operate in one of the three following modes (types):
CNT_SEMfor counting semaphores, BIN_SEMfor binary semaphores, RES_SEMfor
resource semaphores. Counting semaphores can register up to 0xFFFE events.
Binary semaphores do not count signalled events, their count will never exceed 1
whatever number of events is signalled to them.Resource semaphores are special
binary semaphores suitable for managing resources. The task that acquires a
resource semaphore becomes its owner. The owner has its priority increased to
that of any task blocking on a wait to the semaphore. Resource semaphores can
be recursed.

• FIFO-SEMAPHORES: FIFO semaphore’s API: rtf_sem_init() ,
rtf_sem_destroy() , rtf_sem_post() , rtf_sem_trywait() ,
rtf_sem_timed_wait() .

One of the first RTLinux and RTAI communication mechanism has an intrinsic
synchronization capability, and that feature is the one used to implement this
kind of semaphores. Also, current implementation of FIFO’s is based of mailboxes.

Mutex

RTAI supports the POSIX pthread_mutex_ family of functions in the POSIX
compatibility module: pthread_mutex_init() , pthread_mutex_destroy() ,
pthread_mutex_lock() , pthread_mutex_trylock() and
pthread_mutex_unlock() . As well as all the supporting,
pthread_mutexattr_... like, functions to handle mutex creation attributes.

The supported mutex types are:

• PTHREAD_MUTEX_FAST_NP: The default POSIX mutex.

• PTHREAD_MUTEX_RECURSIVE_NP: This type of semaphore can be locked more
then one time without causing a self task deadlock.

• PTHREAD_MUTEX_ERRORCHECK_NP: Detects and reports simple usage errors.

Jointly with the mutex the module also implements POSIX Conditional Variables.

Priority inversion control

Mutex provide immediate priority inheritance.

OCERA. IST 35102 43

Chapter 9. RTAI

Messages queues

Provides four different (incompatible) intertask messages facilities:

• Message queues compatible with POSIX 1003.b queues. The functionality is pro-
vided by the POSIX compatibility module. The API is: mq_open() , mq_send() ,
etc.

• Small (4 bytes) synchronous messages. Messages can be priority ordered
(determined by the compile time option MSG_PRIORD). Also there are timed
sending and receiving primitives. The API is: rt_send() , rt_send_until() ,
rt_receive() , etc.

• Extended intertask messaging. Allows to use intertaks messages of any size. The
API is: rt_sendx() , rt_sendx_until() , rt_receivex() , etc.

• Remote Procedure Calls (these RPC has no has nothing in common then the well
know inter-host RPC, like Sun Microsystems™ RPC) do the same thing that syn-
chronous messages but the tasks are coupled awaiting a reply from the receiver.
RPCs operate like complementary, send and receive message pairs. The API is:
rt_rpc() , rt_rpc_if() , rt_return() , etc.

Mailboxes

RTAI provides mailboxes. Messages are ordered in FIFO order. Different size mes-
sages of are allowed. Multiple senders and receivers can read and write messages
to the same mailbox.

There are several sending an receiving functions that provides a lot of flexibility
(receiving functions are omitted of the following list for the sake of clarity):

• rt_mbx_send() : Blocking send of the whole message.

• rt_mbx_send_wp() : Send as many bytes as possible, without blocking the call-
ing task.

• rt_mbx_send_if() : Send a message, only if the whole message can be passed
without blocking the calling task.

• rt_mbx_send_until() , rt_mbx_send_timed : Send a message with timeout.

Shared memory

Shared memory is provided with a non-POSIX interface called shmem. Since all
threads are executed in the kernel address space (rtlinux threads share by default
all the memory), this sharing memory mechanism is used to communicate RTAI
threads and normal linux processes.

Although the API is no the same, it is quiet similar to the SYSTEM V shared mem-
ory. The first time an area is requested, the system allocates a new chunk of mem-
ory; subsequent requests return the pointer to the already allocated memory.

FIFOs

RTAI fifos maintain full compatibility with those available in NMT_RTLinux. They
are implemented on top of mailboxes.

OCERA. IST 35102 44

Chapter 9. RTAI

Also provides a mechanism to create fifos by name.

9.6. Time and timers
Time resolution

Time is stored in a RTIME which is defined as:

struct timespec {
typedef long long RTIME;
};

The main function to get time is rt_get_time() , which return the time measured
in internal count units since start_rt_timer() function was called. Function
rt_get_time_ns() is the same as rt_get_time but the returned time is converted
to nanoseconds.

User timers

There is no user timers. There is only one timer handler per hardware timer, which
is the associated with the interrupt handler. When the scheduler module is loaded,
the scheduler takes the control of the timer and no other thread can use the timer.

The only timing facility that a thread can use being a periodic thread. And the
delay functions: rt_busy_sleep() , rt_sleep() and rt_sleep_until() . Some
functions use nanoseconds while other work with hardware ticks.

How time has to be used by the programmer is not well documented. The use of
hardware ticks is very efficient, but produces different results when the same pro-
gram runs on different hardware (for example, a i486 computer use the old 8254
clock while a Pentium has a builtin timer which provides a highest resolution clock).

Watchdog

The Watchdog module provide services to protect tasks (and the host Linux
OS) against programming errors in RTAI applications. The watchdog can be
programmed to perform several action on the occurrence of a task overrun.

9.7. Driver programming
Interrupts

RTAI defines two types of interrupts: Soft and Hard Interrupts.

Hard Interrupts the one originated directly by the real hardware. There is
very little system interference in the service of these interrupts, therefore the
interrupt latency is almost only limited by the performance of the underlying
hardware. Since these handlers are executed at the RTAI level, it is not possible
to call linux services. Interrupt handlers are installed and uninstalled with
rt_request_global_irq() and rt_free_global_irq() functions.

OCERA. IST 35102 45

Chapter 9. RTAI

It is possible to install interrupt handlers that will be executed as a normal Linux
interrupt service routines. This is a powerful mechanism to execute code in Linux
space, that can be triggered just sending a software interrupt from RTAI with the
function rt_pend_linux_irq .

Low level programming

Since RTAI threads are executed in kernel address space and processor mode, it
is possible to use all the reserved processor instructions directly. To direct access
io ports in ISA bus: rtl_inb , rtl_inb_p , and the outb counterparts. To access
physical memory (devices located at the PCI bus) it is possible to use ioremap() 1

function at thread initialization and then access the device through the returned
pointer.

9.8. Quality of Service
There is no QoS utilities.

9.9. Network
A separate module called RTnet provides the drivers (only two network drivers are sup-
ported) and the protocols (IP, ARP, UDP and ICMP) over Ethernet. The API is quiet
similar to the sockets API: rt_socket() , rt_connect() , rt_sendmsg() , etc. Cur-
rent version of RTnet only works with Linux kernel version 2.2.x.

RTAI has extended its API to allow true remote (other host) procedure call RPC. New
API functions has been added with the following syntax: replace the first two letters
of the function name (for example: given the rt_mbx_send() , the new function
RT_mbx_send() has been added); and the new function has two new parameters: node
and port. This feature do not comply with any communication standard.

9.10. Filesystems
There is no filesystem support except the use of the Linux /proc directory which pro-
vides status and debug information on the current operating conditions.

9.11. Trace and debug
Logic debug

Source level debugging using Kgdb+Kmod which is a modified version of
kgdb/gdbstubs which provides improved kernel module debug support including
real-time modules. The target is debugged from a host by mean of serial cable
which connects both machines.

OCERA. IST 35102 46

Chapter 9. RTAI

Timing debug

An optional tracer module (Linux Trace Toolkit, LTT) can be included in the system.
The tracer will register all the relevant system events and user-defined ones. LTT
has also a graphical tool to visualize the logged events.

LTT provides developers with all of the information necessary to reconstruct a sys-
tem’s behavior over a certain period of time. Using LTT, one can graphically view
the exact the dynamics of a system and find logical and temporal bugs of the system
or the application.

9.12. Miscelanea
Development tools

The development tools are the same than the used to develop the Linux kernel:
GCC, binutils, make, etc.

It is possible to do cross development (host-target) and stand alone development,
that is, use the same computer to compile and run/test the embedded system.

Programming languages

The main programming language is "C". But it is also possible to use C++.

API compatibility

The original API do not adhere to any standard, but it has module which provides
some compatibility with POSIX: mutex, conditional variables, message queues and
POSIX threads.

Software watchdog

The higest priority periodic task that protects the systems against tasks errors.
Available policies:

• Nothing.

• Resynchronise the task’s frame.

• Debug.

• Stretch the period of the offending task.

• Slip the offending task by forcibly suspending it for a percentage of its period.

• Suspend the offending task.

• Kill the offending task and remove all trace of it.

OCERA. IST 35102 47

Chapter 9. RTAI

Generate code for RTAI from Simulink (RTW)

The Real-Time Workshop (RTW) is a tool that produces C-code or target specific code
directly from a Simulink model for a variety of environnements, including real- time
systems.

Notes
1. ioremap: Maps the given physical address range into the virtual address space with

no caching, suitable for being accessed from a driver.

OCERA. IST 35102 48

Chapter 10. RTEMS 4.5+
This document contains a list of features of RTEMS executive for RTOS comparison.
The current snapshot of version 4.5+ was studied.

RTEMS is a real-time executive which provides a high performance environment for
embedded critical and military applications including many features. RTEMS executive
implements more API interface. One of them strictly adheres to POSIX® 1003.1b stan-
dard. Kernel creates multithread, multitasking environment for application threads.
Each group of system functions is implemented by corresponding manager located in
independent library module. Resulting application images are build by linking kernel
libraries with application code. Set of used and linked manager modules can be defined
independently for each application. There is support for TCP/IP networking, network
and local filesystems. Debugging is possible over serial line or Ethernet.

There are enumerated most important POSIX API functions for each studied executive
functionality. Other mentioned APIs have similar sets of functions.

10.1. Hardware characteristics
Supported processors:

Motorola MC68xxx, MC683xx and ColdFire; Hitachi SH, Intel i386 and i960; MIPS;
PowerPC; SPARC; AMD A29K; Hewlett-Packard PA-RISC .

Supported multi processor:

Most of processors targets can be used in multiprocessor environment, but tasks do
not migrate between CPUs. They are strictly bind to predefined CPU.

In addition, there is a port to UNIX which can be used as a prototyping and simulation
environment.

10.2. Process management
RTEMS executive does not implement multiprocess environment with separated ap-
plication address spaces. As a result, next functions supporting independent process
creation and deletion are not implemented: fork() , execl() , execv() , execle() ,
execve() , execlp() , execvp() , pthread_atfork() and wait() .

RTEMS executive is focused on multithread applications and its Task Manager supports
full set of functions in classic and POSIX API. Cancellation functions are implemented
by Cancellation Manager.

Table 10-1. Thread Creation and Deletion calls

POSIX API Classic API Description
pthread_create() rtems_task_create() Create a new thread of

execution.
pthread_exit() rtems_task_delete() Destroy a thread.

49

Chapter 10. RTEMS 4.5+

POSIX API Classic API Description
pthread_cancel() Cancel a thread at the next

cancellation point.
pthread_detach() Detach a thread so it doesn’t

need to be joined.
pthread_join() Join a thread waiting for its

exit status.
All other POSIX thread control related functions are implemented:
pthread_self() , pthread_equal() , pthread_once() ,
pthread_setschedparam() , pthread_getschedparam() and group of functions
pthread_attr_getxxx() /pthread_attr_setxxx() .

Scheduling policy:

• Event-driven, priority-based, preemptive scheduling

• Optional rate monotonic scheduling

Periodic threads:

RTEMS do not provide any special API call to schedule peritodic threads.

Range of priorities and maximum number of threads:

• 255 executive kernel priority levels (1 the highest till 255 the lowest)

POSIX API defines its own priority range from 1 to 254 (1 the lowest and 254 the
highest)

• Maximal number of threads can be defined for each application and configurable
maximum depends on amount of available memory.

Thread creation and deletion:

Threads can be created dynamically.

Controlled thread deletion?. Yes

10.3. Memory management
Protected address spaces

Not supported.

Dynamic memory allocation:

malloc() and free() functions - yes

Variable size memory chunks allocation? yes

OCERA. IST 35102 50

Chapter 10. RTEMS 4.5+

Based on Region Manager concept.

10.4. Inter-Process communication
RTEMS implements all standard POSIX 1003.1b IPC mechanisms for concurrent
threads synchronization and communication.

Semaphores

POSIX binary, counting, with/without timeout, named/unnamed

Creation and destruction of unnamed semaphores: sem_init() and
sem_destroy()

Opening/creation and closing of named semaphores: sem_open() and
sem_close() . An unused named semaphore can be deleted by sem_unlink() .

Function sem_wait() attempts to lock a semaphore, If the semaphore is unavail-
able (value is zero) blocks until the semaphore becomes available. There is non-
blocking version sem_trywait() and version with timeout sem_timedwait() .

Function sem_post() unlocks the semaphore and function sem_getvalue() en-
ables to retrieve actual value of the semaphore.

Mutex

Similar set of basic POSIX API functions exists as for semaphores. There are classic
API functions as well.

Basic functions: pthread_mutex_init() , pthread_mutex_destroy() ,
pthread_mutex_lock() , pthread_mutex_trylock() ,
pthread_mutex_timedlock() and pthread_mutex_unlock() .

Next functions are used to manipulate with mutex attributes:
pthread_mutexattr_init() , pthread_mutexattr_destroy() ,
pthread_mutexattr_setprotocol() , pthread_mutexattr_getprotocol() ,
pthread_mutexattr_setprioceiling() ,
pthread_mutexattr_getprioceiling() ,
pthread_mutexattr_setpshared() and
pthread_mutexattr_getpshared() .

The following ordering protocols for waiting threads can be specified:

• PTHREAD_PRIO_NONE: blocking order FIFO.

• PTHREAD_PRIO_INHERIT: blocking order priority with the priority inheritance
protocol in effect.

• PTHREAD_PRIO_PROTECT: blocking order priority with the priority ceiling proto-
col in effect.

Priority inversion control:

Possible to activate priority inheritance or priority ceiling protocol.

OCERA. IST 35102 51

Chapter 10. RTEMS 4.5+

Conditional variables

RTEMS implements POSIX conditional variables in Condition Variable Manager.

The following functions are responsible of conditional variables creation, destruc-
tion and manipulation: pthread_cond_init() , pthread_cond_destroy() ,
pthread_cond_signal() , pthread_cond_broadcast() ,
pthread_cond_wait() and pthread_cond_timedwait() .

The shared attribute can be defined and read by corresponding attribute functions.

Messages queues

FIFO or task priority wakeup order, LIFO urgent messages support, with timeout,
fixed depth and max message size.

Message Passing Manager implements next POSIX functions: mq_open() ,
mq_close() , mq_unlink() , mq_send() , mq_receive() , mq_notify() ,
mq_setattr() and mq_getattr() .

Unix style FIFO special files

In development.

Mailboxes

Implemented only for ITRON API.

Shared memory

No special directives.

Signals

Standard and POSIX signals with timeout. Signals are numbered from 1 to 32.

There are standard functions for sending of signal to process (whole application)
kill() and sigqueue() with value and queuing capability. The thread specific
version exists as well pthread_kill() . Signals can be masked on process
sigprocmask() or thread basis pthread_sigmask() .

There are defined standard functions for signal mask manipulation sigaddset() ,
sigdelset() , sigfillset() , sigismember() and sigemptyset() . Required
reaction on unmasked pending signal or received signal is defined by function
sigaction() .

More functions for waiting, examination of pending signals and combined mask
manipulation and waiting are defined pause() , sigpending() , sigsuspend() ,
sigwait() , sigwaitinfo() and sigtimedwait() .

Alarm signal after specified number of seconds can be scheduled by alarm() func-
tion.

OCERA. IST 35102 52

Chapter 10. RTEMS 4.5+

Other mechanisms

Native RTEMS API for 32 events.

An event flag is used by a task/thread (or ISR) to inform another task of the oc-
currence of a significant situation. Thirty-two event flags are associated with each
task. A collection of one or more event flags is referred to as an event set. The data
type rtems_event_set is used to manage event sets.

10.5. Time and timers
Time resolution

Tick timer resolution depends and can be set on BSP level.

Clock functions

Clock Manager provides functions for examining clock resolution
clock_getres() , setting and getting real time clock_gettime() and
clock_settime() . Execution delay functions sleep() and nanosleep() .
Functions gettimeofday() and time() reads actual calendar time.

Application timers

Next POSIX API functions are provided by Timer Manager. Per-process
(application) timers can be created and deleted by functions timer_create()
and timer_delete() . Timer expiration time can be set and examined by
timer_settime() and timer_gettime() . Number of overrun counts can be
check by function timer_getoverrun() .

There are many other time related functions provided through different
manages as well: alarm() , sleep() , nanosleep() , sigtimedwait() ,
pthread_cond_timedwait() , etc.

Facilities to add new hardware timers

N/A

10.6. Driver programming
Interrupts

Interrupts are not converted to signals or other asynchronous events. They are han-
dled by any C routine which was connected to the given interrupt vector. An inter-
rupt handler can be established by any normal thread, kernel driver is not needed.

Functions to manage interrupt handlers are system specific and that is why only
classic API is available.

OCERA. IST 35102 53

Chapter 10. RTEMS 4.5+

rtems_interrupt_catch()

This directive establishes new specified interrupt service routine (ISR) for the
specified interrupt vector number. The previous ISR for the specified vector is
returned by call.

rtems_interrupt_disable()

This directive disables all maskable interrupts and returns the previous level.
A later invocation of the rtems_interrupt_enable() directive should be
used to restore the interrupt level.

rtems_interrupt_enable()

This directive enables maskable interrupts to the level which was returned
by a previous call to rtems_interrupt_disable() . Immediately prior to
invoking this directive, maskable interrupts should be disabled by a call to
rtems_interrupt_disable and will be enabled when this directive returns to the
caller.

rtems_interrupt_flash()

This directive temporarily enables disabled maskable interrupts to the level
which was returned by a previous call to rtems_interrupt_disable() .

rtems_interrupt_is_in_progress()

This directive returns TRUEif the processor is currently servicing an interrupt
and FALSE otherwise. A return value of TRUEindicates that the caller is an
interrupt service routine, not a task. The directives available to an interrupt
service routine are restricted.

Kernel facilities

Drivers are written as regular POSIX or RTEMS threads. Only ISR notification
function is special case, which should transfer/invoke processing to regular threads.

10.7. Quality of Service
none

10.8. Network
TCP/IP Stack

• High performance port of FreeBSD TCP/IP stack

• UDP, TCP

• ICMP, DHCP, RARP

• TFTP

• RPC

• FTPD

• HTTPD

OCERA. IST 35102 54

Chapter 10. RTEMS 4.5+

• CORBA

10.9. Filesystems
In-Memory FileSystem (IMFS). The IMFS is a full featured POSIX filesystem that keeps
all information in memory.

DOSFS/FAT filesystem in development.

10.10. Trace and debug
GNU debugger (gdb) - thread aware

DDD GUI interface to GDB

Debug over Ethernet, Serial Port or BDM

Timing debugger - probably no

System trace and event record - probably no

10.11. Miscellaneous
Graphic support depends on BSP package

There are configuration and known applications using graphics frame-buffer and there
exists MicroWindows and Nano-X port for RTEMS executive.

Development environment: GCC and other GNU tools. Remote debugging via serial line
or Ethernet.

Fail signal and recovery: setjmp/longjmp

Supported programming languages: C, C++, ADA

Provided RTOS APIs:

• RTEID/ORKID based Classic API.

• uITRON 3.0 API in development.

• ADA language API for RT systems.

• POSIX 1003.1b API including threads.

The implementation status can be sketched by one section from reported com-
pliance summary which shows next numbers for 362 POSIX 1003.1b functions
defined by standard.

• Implemented : 301

• Unimplemented : 21

• Unimplementable : 16

• Partial : 2

• Dummy : 19

• Untested : 1

OCERA. IST 35102 55

Chapter 10. RTEMS 4.5+

Following is a list of the most important lacking functionalities of current version
of RTEMS executive.

• The current implementation of dup() is insufficient.

• FIFOs mkfifo() are not currently implemented.

• Asynchronous IO is not implemented.

• The flockfile() family is not implemented

• getc/putc unlocked family is not implemented

• Shared Memory is not implemented

OCERA. IST 35102 56

Chapter 11. QNX
QNX is a realtime operating system that provides multitasking, multiuser, network-
ing, message passing, preemtive scheduling, fast context-switching and so on services.
Moreover, QNX achieves these capabilities with a POSIX standar API. Other important
feature is modularity allowing QNX be scaled to very small sizes for embedded system or
scaled for large systems (workstations). So, this chapter describes the QNX v6 realtime
operating system features.

11.1. Architecture overview
The following figure shows the QNX architecture:

Figure 11-1. QNX architecture

As shown in figure, the QNX architecture consists of the small Neutrino microkernel
managing a group of cooperating processes. The most important one is process manager
(explained after) and the other processes are, for example, GUI manager, nerwork man-
ager, devices manager, shared libraries and so on. Moreover, it is important to note that
there is a module called procnto that consists of the Neutrino microkernel and process
manager and that, this module, is required for all runtime systems.

Now, the most importants modules are presented:

Neutrino Microkernel

The QNX microkernel, known as Neutrino, is an implementation of the core POSIX
together with the fundamental message passing services. The POSIX features that
are not implemented in the microkernel are provided by optional processes and
shared libraries.

Neutrino provides a few fundamental services:

• Thread services: Neutrino provides the POSIX thread creation primitives.

• Signal services: Neutrino provides the POSIX signal primitives.

• Message passing services: Neutrino handles the routing of all messages between
all threads through the whole system.

57

Chapter 11. QNX

• Synchronization services: Neutrino provides the POSIX thread synchronization
primitives.

• Scheduling services: Neutrino schedules threads using the various POSIX real-
time scheduling algorithms.

• Timers services: Neutrino provides the set of POSIX timer.

Process Manager

The process manager is capable of creating multiple POSIX processes (each of which
may contain multiples POSIX threads). Its main areas of responsability include:

• Process management: It manages process creation, destruction, and process at-
tributes such us user ID and group ID.

• Memory management: It manages memory protection, shared libraries, and
POSIX shared memory primitives.

• Pathname management: It manages the pathname space (mountpoints).

Message-based Interprocess Comunication

When several threads run concurrently, as in typical realtime multitasking envi-
ronments, the operating system must provide mechanisms to allow them to com-
municate with each other. This mechanism, called Interprocess Comunication, uses
a message passing as its fundamental principle.

Message passing not only allows processes to pass data to each other, but also pro-
vides a mechanism to sinchronize the execution of several processes.

11.2. Hardware characteristics
Supported processors

The processors families x86, ARM, MIPS, PowerPC and SH-4 are supported by
QNX.

Supported multi processor

QNX is available for x86 (any Intel multi processor specification) and PowerPC (600
or 700 series) multi processor architectures.

11.3. Process management
QNX provides both POSIX processes and POSIX threads. So, the process management
is the responsible for the process creation and destruction as well as the management of
process attributes.

OCERA. IST 35102 58

Chapter 11. QNX

POSIX processes management:

QNX realizes the POSIX processes creation and destruction, basically, using these
POSIX functions: spawn() , fork() and exec() .

Moreover, QNX provides other non-POSIX functions. These primitives are:
spawnl() , spawnle() , spawnlp() , spawnlpe() , spawnp() , spawnv() ,
spawnve() , spawnvp() , spawnvpe() , execlpe() and execvpe() .

Scheduling policy:

The QNX microkernel provides the following scheduling algorithms:

• FIFO scheduling:

• Round-Robin scheduling:

• Adaptive scheduling: A thread behaves as follows:

• If the thread consumes its timeslice, its priority is reduced by 1. Note that it
will only drop one level below its original priority.

• If the threads blocks, it inmediately comes back to its original priority.

• Sporadic scheduling: Essentially, this algorithm allows a thread to service aperi-
odic events without exposing the hard deadlines of other threads or processes in
the system.

Periodic threads:

QNX does not provide functions to implement directly periodic threads. Therefore, it
is necessary to use timers calls to perform this functioning. Moreover, using timers,
the following notification types may be used: signal, pulses and thread creation.

Range of priorities and maximum number of threads:

Each thread can have a range of priorities from 0 to 31 (the highest priority), inde-
pendently of the scheduling policy. The special idle thread (in the process manager)
has priority 0 and is always ready to run. Moreover, a thread have a real priority
and a effective priority, and it is scheduled in accordance with its effective priority.

There is no limit thread creation in the same process, except the memory space, of
course.

Thread creation and deletion:

QNX provides a full-POSIX API for managing the thread creation and deletion. The
following table shows these functions as well as the microkernel primitives used by
these routines:

Table 11-1. Thread creation and deletion calls

POSIX call Microkernel call Description
pthread_create() ThreadCreate() Create a new thread of

execution.
pthread_exit() ThreadDestroy() Destroy a thread.

OCERA. IST 35102 59

Chapter 11. QNX

POSIX call Microkernel call Description
pthread_cancel() ThreadCancel() Cancel a thread at the next

cancellation point.
pthread_detach() ThreadDetach() Detach a thread so it

doesn’t need to be joined.
pthread_join() ThreadJoin() Join a thread waiting for

its exit status.

11.4. Memory management
Protected adress space:

Neutrino offers complete memory protection for user applications and for operating
system components (device drivers, filesystems, etc.).

Moreover, QNX reaches the complex POSIX process model in a protected environ-
ment using a MMU (Memory Management Unit) mechanism. This protection is
useful both for development and for the runtime system.

In conclusion, QNX provides a microkernel architecture with full memory protection
between each operating system components such as filesystem, TCP/IP, Qnet and so
on. Therefore each process is a address space separated and protected against the
rest of components.

Dynamic memory allocation:

QNX provides dynamically request memory allocation using the malloc() ,
realloc() or calloc() functions, and provides the free() function to release
memory allocation.

11.5. Inter-Process communication
QNX provides the POSIX standard process/thread synchronization and communication
services. The following tables show a resume of all these mechanisms:

Table 11-2. Synchronization Services

Sync Mechanism Implemented in Used by POSIX
Semaphore Kernel Process/Threads YES
Mutexes Kernel Threads YES
Recursive Mutexes Kernel Threads YES
Condition variable External Process Threads YES
Readers/Writers
locks

External Process Threads YES

Barriers External Process Threads YES
FIFO scheduling Kernel Process/Threads NO

OCERA. IST 35102 60

Chapter 11. QNX

Sync Mechanism Implemented in Used by POSIX
Atomic operations Kernel Process/Threads NO

Table 11-3. Communication Services

Communication
Mechanism

Implemented in Used by POSIX

Message Passing kernel Processes NO
Signals -- Processes/Threads YES
PIPES external process Processes/Threads YES
FIFOs external process Processes/Threads YES
Message Queues external process Threads YES
Shared Memory process manager Processes/Threads YES

Semaphores:

QNX provides the full-POSIX semaphores calls. Therefore, both named and unamed
semaphores are provided.

The following table list the primitives available on QNX for managing the
semaphores, as well as, the microkernel calls used by these routines:

Table 11-4. Semaphore management primitives

POSIX Call Kernel Call Description
sem_init() SyncTypeCreate() Creates a semaphore
sem_destroy() SyncDestroy() Destroy synchronization

object
sem_wait() SyncSemWait() Wait on a semaphore
sem_trywait() SyncSemWait() Wait on a semaphore
sem_post() SyncSemPost() Post a semaphore

Mutexes:

QNX provides the full POSIX mutexes calls where each of them, are associated with
a microkernel call. The following table shows these routines:

Table 11-5. Mutexes management primitives

POSIX Call Kernel Call Description
pthread_mutex_init() SyncTypeCreate() Create a mutex.
pthread_mutex_destroy() SyncDesctroy() Destroy a mutex.

pthread_mutex_lock() SyncMutexLock() Lock a mutex.
pthread_mutex_unlock() SyncMutexUnlock() Unlock a mutex.

pthread_mutex_trylock() SyncMutexLock() Used to test whether the
mutex is currently locked
or not.

The following mutex types are supported by QNX:

OCERA. IST 35102 61

Chapter 11. QNX

PTHREAD_MUTEX_NORMAL,PTHREAD_MUTEX_ERRORCHECK,
PTHREAD_MUTEX_RECURSIVEand PTHREAD_MUTEX_DEFAULT. Note that QNX
supports the full POSIX mutex types.

Currently, there is only one POSIX mutex protocol available in QNX: the
PTHREAD_PRIO_INHERIT protocol. Therefore, PTHREAD_PRIO_PROTECTprotocol
is not supported.

Finally, it is important to note how the classic priority inversion problem is solved: If
a thread with a higher priority than the mutex owner tries to lock a mutex, then the
effective priority of the current owner will be increased to that of the higher priority
blocked thread waiting for mutex. The owner will returns to its real priority when
it unlocks the mutex. This scheme is called priority inheritance.

Recursive mutexes

This service consists of that the attribute of the mutex can be modified (using
PTHREAD_MUTEX_RECURSIVEtype) to allow a mutex to be recursively locked by
the same thread. So, QNX provides this POSIX functioning.

Priority inversion control:

As described earlier, the priority inversion control problem is solved using inmediate
priority inheritance.

Condition variable:

In the same way as semaphores and mutexes, QNX provides full POSIX
condition variable functions as well as the microkernel calls that are
used by these routines. These functions are: pthread_cond_init() ,
pthread_cond_destroy() , pthread_cond_wait() , pthread_cond_signal()
and pthread_cond_broadcast() .

Reader/Writer Locks:

QNX provides full POSIX reader/writers functions. Now these functions
are listed: pthread_rwlock_rdlock() , pthread_rwlock_wrlock() ,
pthread_rwlock_unlock() , pthread_rwlock_tryrdlock() ,
pthread_rwlock_trywrlock() .

It is important to note that Reader/writer locks are not implemented directly within
the kernel and have not associated a microkernel call either, but are built from the
mutex and condvar services provided by the kernel.

Barriers:

QNX provides full POSIX barriers functions. Those functions
are: pthread_barrier_init() , pthread_barrier_wait() ,
pthread_barrier_destroy() and pthread_barrierattr_* family.

OCERA. IST 35102 62

Chapter 11. QNX

FIFO scheduling:

This type of synchronization consist of selecting the POSIX FIFO scheduling algo-
rithm. In this way, we can guarantee that two threads of the same priority don’t
execute the critical section concurrently.

Note that this feature is not accomplished on SMP systems.

Atomic Operations:

This synchronization mechanism allows to perform a short operation with the guar-
antee that the operation will performing atomically. The most important atomic
operations that Neutrino provides are:

Table 11-6. Atomic Operations

Function Description
atomic_add() Add a value.
atomic_sub() Substract a value.
atomic_clr() Clear bits.
atomic_set() Set bits.
atomic_toggle() Complementing bits.

Message Passing:

QNX provides the message passing mechanism as the main form of IPC in QNX
and Neutrino. Although other forms are available, those options are built over its
native IPC.

The following illustration shows the state changes in a send-receive transaction.

Figure 11-2. QNX message passing model

As shown in figure, a thread that does a MsgSend() to another thread or process
will be blocked until the receiving thread does a MsgReceive() , processes the mes-
sage, and executes a MsgReply() . If a thread executes a MsgReceive() without
a previously sent message pending, it will block until another thread executes a
MsgSend() . Therefore, while the send and receive operations are blocked and syn-
chronous, MsgReply() and MsgError() don’t block and furthermore, unlock the
client from MsgSend() .

OCERA. IST 35102 63

Chapter 11. QNX

The following table lists the message passing API provided by QNX:

Table 11-7. Message Passing API

Function Description
MsgSend() Send a message and block until reply.
MsgReceive() Wait for a message.
MsgReceivePulse() Wait for a tiny, nonblocking message

(pulse).
MsgReply() Reply to a message.
MsgError() Reply only with an error status. No

message bytes are transferred.
MsgRead() Read additional data from a received

message.
MsgWrite() Write additional data to a reply

message.
MsgInfo() Obtain info on a received message.
MsgSendPulse() Send a tiny, nonblocking message

(pulse).
MsgDeliverEvent() Deliver an event to a client.
MsgKeyData() Key a message to allow security checks.

Moreover, QNX provides other message passing functions and mechanism that are
based on the API defined above. This mechanism are: Multipart Transfers, Channels
and Pulses.

Signals:

QNX support POSIX signals, realtime signals and traditional UNIX signals. More-
over, Neutrino provides eight special signals. Therefore, a total of 64 signals have
been defined. The following table resumes these signals range:

Table 11-8. Signals range

Signal range Description
1...57 57 POSIX signals, including traditional

UNIX signals.
41...56 16 POSIX realtime signals.
57...64 8 special Neutrino signals.

PIPEs:

To uses pipes in QNX, the pipe resource manager, called pipe must be loaded.

This POSIX comunication mechanism are available on QNX using the symbol | to
create a pipe from shell and the pipe() or popen() functions to create a pipe from
programs.

OCERA. IST 35102 64

Chapter 11. QNX

FIFOs:

As well as pipes, for using FIFOs in QNX, the resource manager pipe must be
loaded.

To manage FIFOs, QNX provides the following utilities: the mkfifo and rm
command to create/delete FIFOs from shell, and the mkfifo() , remove() and
unlink() functions to create/delete FIFOs from programs.

Message Queues:

QNX provides a full POSIX message queue API. To use this synchronous mech-
anism in Neutrino, the message queue resouce manager called mqueue must be
loaded.

There is a fundamental different between QNX messages and POSIX messages
queue: while QNX messages block and copy data directly from the address spaces
of the process sending to the address space of process receiving, POSIX message
queue, on the other hand, do not block and may have pending messages queued.

In Neutrino microkernel, all mesages queues created will appear in the filename
space under the directory /dev/mqueue.

Shared Memory:

Full POSIX shared memory is implemented in Neutrino via the process manager
called procnto. The following functions are implemented as messages to procnto:
shm_open() , close() , mmap() , mummap(), mprotect() , msync() , shm_ctl()
and shm_unlink() .

11.6. Time and timers
Timer resolution

Neutrino provides the full set of POSIX clock functionality. Therefore, time may be
measured in nanosecond, as well as, in second.

Moreover, QNX also provides several non POSIX clock functions: ClockAdjust()
and ClockCycle() .

The posible clock types are:

• CLOCK_MONOTONIC: This POSIX clock always increase at a constant rate and can
not be adjusted.

• CLOCK_SOFTTIME: The same as CLOCK_REALTIME, but if the CPU is in power-
down mode, the clock stop running.

• CLOCK_REALTIME: A clock that mantains a ystem time.

It is importan to know that valid dates on a QNX system range from January 1970
to January 2554, and note that POSIX may be limited to the year 2038.

OCERA. IST 35102 65

Chapter 11. QNX

11.7. Driver programming
Interrupts

Neutrino provides the following interrupt handling API:

Table 11-9. Interrupt Handling API

Function Description
InterruptAttach() Attach a local function to an interrupt

vector.
InterruptAttachEvent() Generate an event on an interrupt,

which will ready a thread
InterruptDetach() Detach from an interrupt using the ID

returned by InterruptAttach() or
InterruptAttachEvent() .

InterruptWait() Wait for interrupt.
InterruptEnable() Enable hardware interrupts.
InterruptDisable() Disable hardware interrupts.
InterruptMask() Mask a hardware interrupt.
InterruptUnmask() Unmask a hardware interrupt.
InterruptLock() Guard a critical section of code between

an interrupt handler and a thread. It is
necessary to make this code SMP safe.

InterruptUnlock() Remove an SMP-safe lock on a critical
section of code.

Using this API, a privileged thread (in user level) can call InterruptAttach()
or InterruptAttachEvent() , passing a hardware interrupt number and the ad-
dress of a function in the thread’s address space to be called when the interrupt
occurs. QNX allows multiple ISRs to be attached to each hardware interrupt num-
ber.

Low level programming

To access a PCI devices, QNX provides a well defined API. Some of these functions
are: pci_map_irq() for mapping a interrupt pin to an IRQ, pci_find_device()
to find the PCI device with a given ID and vendor ID, and so on.

In conclusion, QNX provides a lot of APIs to manage low level hardware features.

11.8. Quality of Service
Quality of Service are provided in QNX using Qnet. This protocol supports policies to
ensure reliable transactions.

In QNX, the default QoS policy, called sequential works like this. The first network link
is used until it fails, then the next link is used, and so on. The user specifies the preferred

OCERA. IST 35102 66

Chapter 11. QNX

order of the links: the most desired link is specified first, followed by the second choice,
and so on.

11.9. Network
Basically, QNX provides two protocols: TCP/IP and QNet.

TCP/IP

QNX provides an implementation of the TCP/IP stack (npm-tcpip) relatively light,
modular and using the common BSD Socket API (this API is the standar API for
TCP/IP programing in the UNIX world). This implemenattion provides an NFS
server/client, multicasting, support for IPsec security, IPv6, and so on.

QNet

Qnet is the QNX native networking protocol that extends the operating system mes-
sage passing interprocess comunication (IPC) transparently through a networks of
microkernels.

To understand how this protocol works, consider the case of a simple network with
two nodes; one of them contains the client process, and the other one contains
the server process. The client process creates a connection to the server, using the
ConnectAttach() function call and then sends its messages using the MsgSend()
function call (this network case works in the same way that in the single node case).

It is important to note that the POSIX calls such as open() , read() , write() , etc
can be used too.

11.10. Filesystems
The following list shows the filesystem supported by QNX:

• RAM filesystem: Every QNX system provides a simple RAM-based "filesystem" that
allows read/write files to be placed under /dev/shmen.

• QNX4 filesystem: This is the native neutrino filesystem.

• DOS filesystem: The DOS Filesystem provides transparent access to DOS disks.

• CD-ROM filesystem: The CD-ROM filesystem shared library, called fs-cd.so, imple-
ments the ISO 9660 standard as well as a number of extensions, including Rock Ridge
(RRIP), Joliet (Microsoft), and multisession (Kodak Photo CD, enhanced audio).

• Flash filesystem: Some of the flash filesystems supported by QNX are shown: generic
flas filesystem (def-generic), SH$7750 Aspen eval board (devf-aspen), PowerPaq eval
board (devf-ppag) and so on.

• NFS filesystem

• CIFS filesystem: This filesystem is known typically as SMB.

• Linux Ext2 filesystem: The Ext2 filesystem (fs-ext2.so) provides transparent access to
Linux disk partitions.

• Virtual filesystem: QNX provides two types of virtual filesystem:

OCERA. IST 35102 67

Chapter 11. QNX

• Package filesystem: It is a virtual filesystem that presents a customized view of a
set of files and directories to a client.

• Inflator: It is a resource manager that sits in front of other filesystems and inflates
files that were previously deflated (using the deflate utility).

In conclusion, most of these filesystems are resource managers that adopt a portion of
the pathname space (called mountpoint) and provide filesystem services through the
standar POSIX API (open() , close() , read() , etc.).

QNX provides a process, called pathname management that manages the pathname
space and allows to support the POSIX semantics for device and file access, while mak-
ing the use of those services optional for small embedded systems.

Some of these devices filesystems or mountpoints are: /dev/hd0 , /dev/fd0 ,
/dev/shmem , /dev/mem , /dev/zero , /dev/ser* (serial device), /dev/con* (simple
console device), /dev/par* (parallel printer), /dev/pty* (pseudo console device) and
so on.

In conclusion, when a process opens a file using the POSIX open() call, the library
routine sends the pathname to procnto, where the pathname is compared against the
prefix tree to determine which resource managers should be sent this message (This
work is realized by pathname management thread).

11.11. Trace and debug
Logic debug

The utility GBD can be used for debugging C and C++ programs.

Timing debug

When a program uses dynamic memory allocation, it is posible introduce memory
leaks. Therefore, to determine whether the heap was corrupted, the malloc debug li-
brary is available in QNX. This library provides several checking by default: alloca-
tion memory, reallocating memory and releasing memory. Moreover, the mallopt()
function allows optional checks: MALLOC_CKACCESSto detect buffer overruns and
underruns as a result of string operations, MALLOC_FILLAREAto detect overruns
as a result of user request size, MALLOC_CKCHAINand MALLOC_VERIFY.

Furthermore, is important to note that when the library detects a problem, a mes-
sage error is generated and the program is aborted. This behavior can be change
specifying a handler that determines what is done when a warning o faltal error is
detected.

Finally, this library provides the malloc_dump_unreferenced() function to trace
and giving results. This function suspends all threads, performs the trace operation
and prints messages of all memory leaks detected.

Other tracing mechanism utility called procnto-instr is provided by QNX. This mod-
ule allows monitor the system execution in real time. Moreover, the TraceEvent()
call can be used to generate custom events into the trace stream.

OCERA. IST 35102 68

Chapter 11. QNX

11.12. Miscelanea
Graphic support

The propietary environment built by QNX Software Systems is called Photon Mi-
croGUI.

Development tools

QNX provides the Qcc and qcc compilers. They are based on the POSIX c86 utility.
By default Qcc considers a C++ program while qcc considers a C program.

It is important to know that QNX provides a command that allows to built a scaled
embedded systems. This utility is named mkifs.

It is possible to do cross development (host-target) and stand alone development,
that is, use the same computer to compile and run/test the embedded system.

Programming languages

The main programming languages are C and C++.

Moreover, QNX provides the Visual Age Micro-Edition environment to develop pro-
grams written using the java languaje.

Finally, QNX provides a tool called the Photon Application Builder (abbreviated as
PhAB or AppBuilder). It’s a visual tool to develop user’s interface. The code gener-
ated by this tool is C and C++.

API compatibility

POSIX 1003.1.

OCERA. IST 35102 69

Chapter 12. VxWorks 5.x

12.1. Hardware characteristics
Supported processors:

Motorola 68k/CPU32/ColdFire/PowerPC, Intel x86, Intel ARM/StrongARM, Hitachi
SuperH, MIPS

Supported multi processor:

Multiprocessor systems are supported with optional package VxMP.

12.2. Process management
Scheduling policy:

There are only two scheduling policies available. Default is preemptive priority
scheduling, it can be changed to Round-Robin scheduling. User can switch between
these two polities during runtime.

Periodic threads:

There are no means to handle periodic threads. It is neccessary for an application
to use standard timers.

Range of priorities and maximum number of threads:

There are 256 priority levels in range 0 - 255, 0 is the highest priority. Number of
threads limited only by amount of available memory etc.

Thread creation and deletion:

Threads can be created dynamically by calling TaskSpawn() function.

12.3. Memory management
Protected address spaces

There is no any protection between user and system space and among different pro-
cesses in basic VxWorks OS. All processes have unlimited access into whole memory
space. Memory protection is available as optional package (VxVMI).

70

Chapter 12. VxWorks 5.x

Dynamic memory allocation:

Full support using standard functions malloc() ,calloc() ,realloc() and
free() .

12.4. Inter-Process communication
VxWorks implement two APIs for IPC - native wind API and POSIX 1003.1b compliant
API.

Semaphores

Binary, counting, mutex, with timeout.

Semphore creation and deletion is performed by calling semBCreate() (binary),
semCCreate() (counting), semMCreate() (mutex) and semClose() functions.

Function semTake() attempts to take a semaphore. If the semaphore is not avail-
able, semTake() blocks until semaphore becomes available.Duration of blocking
depends on parameter timeout which can be WAIT_FOREVER, WAIT_NOWAIT
or any nonzero value which specifies timeout.When timeout is WAIT_NOWAIT,
semTake() becomes nonblocking.

Mutex

Mutex semaphore implements priority inheritance algorithm and provides means
disabling task deletion while this task owns such semaphore. These features can be
switched on during semaphore creation by parameters SEM_INVERSION_SAFE
and SEM_DELETE_SAFE.

Priority inversion control

Possible with mutex semaphores.

Messages queues

Synchronous, prioritized messages, with timeout, fixed depth and max message size.
Depth and maximal message length is specified durinq queue creation and it can’t
be changed later. Wind API provides functions msgQCreate() for queue creation,
msgQSend() for sending a message and msgQRcvd() for receiving a message.

Mailboxes

none

Shared memory

No special means because there are no memory protection between tasks. For mul-
tiprocessor systems optional package VxMP.

OCERA. IST 35102 71

Chapter 12. VxWorks 5.x

(Queued) signals

The wind kernel supports two types of signal interface: UNIX BSD-style signals
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn, in-
cludes both the fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b.

The signal facility provides a set of 31 distinct signals. A signal can be raised by
calling kill() . A signal handler is bound to a particular signal with sigaction() .
Signals are blocked for the duration of the signal handler. Tasks can block the oc-
currence of certain signals with sigprocmask() . If a signal is blocked when it is
raised, its handler routine will be called when the signal becomes unblocked.

12.5. Time and timers
Time resolution

Configurable tick timer resolution, based on system clock. Limited by HW capa-
bilities and kernel configuration, default system clock is 60Hz. As an example, on
standard PC machine with Celeron 566MHz processor and kernel configured with
TCP/IP stack, full debug support and asynchronous I/O support it is capable of up
to cca 8kHz.

Facilities to add new hardware timers

N/A

12.6. Driver programming
Interrupts

Interrupts are not converted to signals or other asynchronous events. They are han-
dled by any C routine which was connected to given interrupt vector by function
IntConnect . An interrupt can be handled by application thread, kernel driver is
not needed. All interrupt handlers use one common special stack which is prepared
by the system during the start-up.

When a task causes a hardware exception such as illegal instruction or bus error,
the task is suspended and the rest of the system continues uninterrupted. However,
when an ISR causes such an exception, there is no safe recourse for the system
to handle the exception. The ISR has no context that can be suspended. Instead,
VxWorks stores the description of the exception in a special location in low memory
and executes a system restart.

OCERA. IST 35102 72

Chapter 12. VxWorks 5.x

12.7. Quality of Service
none

12.8. Network
VxWorks currently supports loosely coupled network connections over serial lines (us-
ing SLIP, CSLIP, or PPP) or Ethernet networks (IEEE 802.3). It also supports tightly
coupled connections over a backplane bus using shared memory. The standard VxWorks
network stack uses the Internet protocols, based on the 4.4 BSD TCP/IP release, for all
network communications.

In addition to the remote access provided by Tornado, VxWorks supports remote com-
mand execution, remote login, and remote source-level debugging. VxWorks also sup-
ports standard BSD socket calls, remote procedure calls, SNMP, remote file access, boot
parameter access from a host, and proxy ARP networks.

Supported protocols: BSD 4.4 TCP/IP IP, UDP, TCP, IGMP, ICMP, ARP RIP 1/2 SLIP,
CSLIP, PPP BOOTP, DNS, DHCP, TFTP FTP, RLOGIN, RSH, TELNET

In addition to the standard BSD socket interface, VxWorks also supports zbuf sockets,
an alternative set of socket calls based on a data abstraction called the zbuf (the zero-
copy buffer). Although this interface is WRS-specific, the interface can communicate
with standard BSD sockets. Thus, the other end of the socket connection can use the
standard BSD interface even if you chose to use the zbuf interface on the VxWorks side
of the connection.

12.9. Filesystems
VxWorks support these filesystems: FAT, NFS, raw, TrueFFS, SCSI support

There is also another file system - The Target Server File System (TSFS). FSFS is a
full-featured VxWorks file system, but the files operated on by using the file system are
actually located on the host. TSFS uses a WDB driver to transfer requests from the I/O
system to the target server. The target server reads the request and executes it using the
host file system. Thus when you open a file with TSFS, the file being opened is actually
on the host. Future read() and write() calls on the file descriptor obtained from the
open() call actually read from and write to the opened host file.

12.10. Trace and debug
Command line (based on gdb) with graphic frontend. Remote debugging is possible via
Ethernet or serial line.

WindView is timing debugger which displays detailed information for each event (such
as the action that occurred, the context in which the action occurred, and the object
associated with the action). In addition, WindView tags certain events with either high-
resolution timestamps or event sequence numbers.

At the default logging level WindView shows only the context switches. You can config-
ure WindView to show all task state transitions so that, for example, when a task goes
from pended to active state, that event is logged and displayed. Or you can configure
WindView to show details of selected objects in instrumented libraries. Instrumented
objects include semaphore gives and takes, message queue sends and receives, timer
expirations, and signals, as well as task and memory activities.

System trace and event record - yes, using VxView

OCERA. IST 35102 73

Chapter 12. VxWorks 5.x

12.11. Miscelaneous
Development environment: propietary compiler or gcc, graphic IDE (for win32 or So-
laris). Remote debugging via serial line or Ethernet. Dynamic module loading/unloading

Fail signal and recovery - setjmp/longjmp

Supported programming languages: C, C++

Compatibility with other RTOS is limited. There are two APIs - VxWorks native specific
API and POSIX 1003.1b compliant API, but POSIX API is not fully implemented.

OCERA. IST 35102 74

Chapter 13. LynxOS
This document describes the main features of LynxOS®

LynxOS® is used in aeronautics and safety critical systems since it is presented as an
higly dependable and fault-tolerant system.

LynxOS® is already available for a large number of processors and does its best to opti-
mize their use, it envolves in particular very good memory management.

LynxOS® is a UNIX®/POSIX conforming RTOS. It is fully conformant with POSIX in-
terfaces for core services (1003.1), real-time extensions(.1b), and thread extensions(.1c)

13.1. Hardware characteristics
Supported processors:

A large variety of processors are supported. Among them the most important are :

• Motorola: PowerPC (PPC 601, 603, 604), PowerPC G3 (PPC 75x), PowerPC G4
(PPC 7400,7410,74xx) with Altivec Support, PowerPC IBM 405,440.

• Intel: x86(IA-32) Architecture (and compatible).

• MIPS

• Xscale

• ARM9

13.2. Process management
LynxOS® is a hard-real-Time OS, it is fully preemptible and reentrant. It uses a RT
Global Scheduler and implements priority inheritance and priority tracking so that the
highest priority thread runs regardless of which process it is in or if it’s a kernel thread.
Moreover, it provides deterministic response-time for tasks even in the presence of mul-
tiple interrupts, the highest priority task will only be interrupted once for each device
thanks to the priority tracking policy.

LynxOS® applies a uniform global priorities management:

• Kernel and application threads exist within the same priority space

• Same scheduler queues for kernel and application threads

• High priority application threads are scheduled before lower priority kernel threads

Kernel threads may utilize 1/2 priority steps and priority tracking so they run before
the user task they serve, but after higher priority user tasks

75

Chapter 13. LynxOS

Scheduling policy:

Three scheduling policies are available :

SCHED_FIFO(first-in,first-out)

Standard POSIX FIFO policy. A preemptable fixed priority scheduler.
SCHED_RR(round robin)

SCHED_OTHER(Proprietary Lynx scheduling policy named "Priority based quan-
tum")

This is similar to round robin policy, excepted the fact that a configurable time
quantum is defined for each level of priority. This time quantum can be set
using the setquantum() call.

The default value for the time quantum is 640ms. It can be modified, it is
the system constant named QUANTUM defined in the configuration file
/usr/include/param.h

The scheduling policy is modifiable

3 functions rinsert() ,redesert() ,rsched() are used to manipul ate the
different scheduler queues (Ready-Queue,Fast-Ready-Queue,...) and the function
newcontext() achieves context switching between processes

Periodic threads:

Barriers as defined in POSIX1.d can be used to implement periodic threads
Range of priorities and maximum number of threads:

There is up to 256 levels of priority for the application (user level) and 256 for
the kernel. Moreover, half priorities are used for the priority tracking mechanism
specific to LynxOS® (see below).

Thread creation and deletion:

Every thread has its own stack, register set, priority, and scheduling algorithm.

The priority is inherited from the caller of pthread_create() .The schedpolicy
attibute is SCHED_FIFO.

Supports thread control and cancellation model as defined by POSIX 1003.1c
threads.

13.3. Memory management
Protected address spaces

Conventional UNIX® protections exist between application threads of different pro-
cesses. Threads of a process share the virtual address space of that process (excel-
lent for IPC and I/O). Application threads execute in the address space of a conven-
tional process, kernel threads execute in the kernel’s address space.

LynxOS® exploits very well hardware MMU from the processor MMU, so that each
process has it’s own virtual memory space perfectly protected. This is important to
guaranty QoS and to built robust systems. Moreover paged style MMU eliminates
system wide memory fragmentation.

OCERA. IST 35102 76

Chapter 13. LynxOS

Kernel data structures are protected thanks to user/kernel mode as in Linux. User
processes "trap" into the kernel to execute system calls. Kernel/user mode is sup-
ported directly by microprocessor privilege levels. User processes are limited in
memory regions they can access and instructions they can execute. Kernel can acces
all memory regions.

Kernel threads minimize the time spent in H/W context

Dynamic memory allocation:

malloc() and free() functions are available.

13.4. Inter-Process communication
Semaphores

Provides POSIX semaphores (counting semaphores).

Mutex

Standard POSIX mutexes and condition variables.

Priority inversion control

No priority inversion but specific inheritance mechanism called priority tracking
(see driver section).

Simple inheritance, immediate ceiling, etc.

Priority inheritance is implemented via binary semaphores. When a high priority
task wants a resource held by a lower priority task, the lower priority task’s priority
is boosted to that of the higher priority task until the resource is released. This
mechanism is used in the LynxOS® kernel and is available to applications and
drivers.

The default protocol attribute of pthread_mutextattrr_t is
PTHREAD_PRIO_INHERITso the prioceiling attribute is irrelevant.

Messages queues

yes

Synchronous or/and Asynchronous, prioritized messages, etc.

Mailboxes

yes.

OCERA. IST 35102 77

Chapter 13. LynxOS

Shared memory

Them mmap() support for regular files and shared memory.

LynxOS provides a thread safe version of the standard ’C’ library with extensions for
higher performance.

13.5. Time and timers
Time resolution

Users can configure ticks per second for real-time clocks. The define TICKSPERSEC
in the /usr/include/conf.h file defaults to 100 ticks per second (which leads to
10ms between ticks).

Recommended minimum and maximum ticks per second are 20 (50 ms between
ticks) and 500 (2ms between ticks).These numbers can vary depending on a systems
hardware limitations.

Facilities to add new hardware timers

It is possible to add hardware timers, they are handled by specific drivers interfaced
with the POSIX timer.

13.6. Driver programming
Drivers can use POSIX-style threads of execution within the kernel for interrupt han-
dling. LynxOS® treats these threads like normal users threads with software priorities
not interrupt priorities. The driver interrupt handler does a minimum of work and sig-
nals the kernel thread that interrupt-related data is available.

LynxOS® implements priority tracking. Kernel threads begin their existence with a
very low priority as created by a driver. When a user thread opens the device, the ker-
nel thread promotes its own priority and inherits the priority of the user thread open-
ing the device. If another user thread of higher priority opens the device, the kernel
thread bumps its priority up to match the other thread; when I/O is complete the kernel
thread returns to the next pending threads’s priority level, or to its starting level. Ker-
nel threads may use 1/2 priority steps and priority tracking so they execute before the
user task they serve, but after higher priority user tasks.

13.7. Quality of Service
Every OS component is designed for absolute determinism. This means that they abso-
lutely must respond within a known period of time. This predictable response is ensured
even in the presence of heavy I/O due to the kernel’s threading model enabling interrupt
routines to be extremely short and fast.

OCERA. IST 35102 78

Chapter 13. LynxOS

13.8. Network
TCP/IP Technology has been available for many years. Based upon FreeBSD 4.2 network
stack, it includes high level features (IPSec,IPv6, Integrated firewall, NAT (Network
Address Translation).

Zebra routing protocols are supported.

SNMP support is available.

Other network facilities supported are : DHCP,NTP,XNTP,OpenSSL,NFS,Samba.

13.9. Filesystems
List of block filesystems supported (if any): ROMFS, RAMFS, Flash, NFS, etc.

Access from and to DOS possible using ntools .

13.10. Trace and debug
A LynxOS® integrated version of gdb called Total/db is available to help debugging
embedded/real-time applications. It is included in the LynuxWorks Open DEvelopment
Environment (ODE) described in the next section.

LynuxWorks has extended gdb capabilities to include :

• Multi-threaded applications debugging:

• LynxOS® thread ID display

• Thread context switching

• Thread-specific breakpoints

• System and device driver debug (with LynusWorks skdb Simple Kernel Debugger)

• Remote network and serial target connections

• Cross hosted and LynxOS® native debugging

• Optional INSIGHT graphical debugger user interface

13.11. Miscelanea
The graphic environment is compatible with the X11 and Motif® standards.

A large offer of development and debugging tools are available (see
http://www.lynusworks.com) The LynuxWorks Open Development Environment (ODE)
includes a variety of open-source tools and utilities, including many derived from the
Free Software Foundations’s GNU family.The GNU Toolchain. A complete suite of
open-source GNU solutions

GNU compilation and debugging tools including standard gcc g++ ANSI C and C++
compilers as well as the gas assembler for the PowerPc family. Versions of GNAT are
available from Ada Core Technologies and g77 from LynuxWorks ftp site. Other Ada
compilers from Rational, Aonix,Irvine Compiler and DDCI are available.

Exceptions handling are managed by the kernel. Specific High Availability Packages can
be purchased from LynusWorks, they provide enhanced capabilities for this purpose.

LynxOS® provides API and ABI compatibility especially with Linux® Kernel v2.4.x.

OCERA. IST 35102 79

Chapter 13. LynxOS

LynxOS® is a UNIX® / POSIX conforming RTOS. It is fully conformant with POSIX in-
terfaces for core services (1003.1), real-time extensions(.1b), and thread extensions(.1c).
Moreover, it provides ABI compatibility with Linux®. Linux® application binaries can
run unchanged in the LynxOS® environment without necessitating source code recom-
pilation thanks to enhanced API compatibility and specific Dynamic Linked Libraries.

It has over 150 system calls that are similar with the Linux® system call API. In order to
enhance compatibility, some system calls have been added to LynxOS® API (e.g. fchdir,
setresuid, setresgid, wait4). Signal numbers were changed to match with the Linux®
numbering scheme, constants used for IOCTL were changed to match Linux®, the error
numbers returned by systm calls (errno) were changed to match Linux®.

LynxOS® v4.0 uses a modified version of the Linux® GLIBC dynamic library to resolve
application calls at run-time. This modified GLIBC library provides the translation be-
tween Linux® and LynxOS® system calls. This permits the use of a broad spectrum
of Linux® system calls including Pthread interfaces,Asynchronous IO, Networking and
other POSIX interfaces.

LynxOS®-Linux® ABI compatibility is currently dependent on a Linux® kernel and
GLIBC pair. LynxOS® v4.0 supports applications based on Linux® kernel v2.4.x and
GLIBC v2.2.2/v2.2.4

New facilities have been added to facilitate dynamic library linkage. Build on reloca-
tion capabilities of ELF it may save considerable memory if many applications reuse a
same code base. It also helps maintenance upgrades because applications need not be
recompiled when the library is updated (providing API doesn’t change as well).

LynxOS® doesn’t support lazy linking. A spawn application is always linked completely
at initialization. Default in LynxOS® is statically linked applications.

dlopen() and other standard interfaces are also supported.

13.12. Modularity
The ancient LynxOS® monolithic kernel has become a real micro_kernel on which KPIs
(Kernel Plug-Ins) can be added. By default the micro-kernel offers the start-up and shut-
down services, the low-level memory management,the interrupts management, synchro-
nisation.

OCERA. IST 35102 80

Bibliography

POSIX
[POSIX4] Bill Gallmeister, 1st Edition September 1994, O’Reilly Associates, Inc.,

POSIX.4 Programming for the Real World, 1-56592-074-0.

[POSIX] 2001, The Open Group Base Specifications Issue 6. IEEE Std 1003.1-2001.

OSEK/VDX
[osek] 2001, OSEK/VDX Operating System Specification, 2.2.

Linux
[ULK] Daniel P. Bovet and Marco Cesati, 2001, O’Reilly Associates, Inc., Understanding

the LINUX Kernel, 0-596-00002-2.

[ToLinux] Bill Weinberg and Marco Cesati, MontaVista Software, Inc., 2001, Moving
from a Proprietary RTOS To Embedded Linux®.

[POSIX4] Bill Gallmeister, 1st Edition September 1994, O’Reilly Associates, Inc.,
POSIX.4 Programming for the Real World, 1-56592-074-0.

[LowLat] Andrew Morton, Linux Scheduling Latency
(http://www.zip.com.au/~akpm/linux/schedlat.html) .

[kpreem] Robert Love, The Linux Kernel Preemption Project
(http://kpreempt.sourceforge.net) .

[TimeSys] TimeSys, TimeSys Linux.

[FT] Systems Software Lab --- Oregon Graduate Institute , The Firm Timers Home
Page (http://www.cse.ogi.edu/~luca/firm.html) .

RTLinux
[RTLinux1] Michael Barabanov, 2001, FSM Labs, Inc., Getting Started with RTLinux.

[RTLtutorial] Ismael Ripoll, 2000, Tutorial del API de RTLinux.

RTAI
[RTAIGuide] Paolo Mantegazza, E. Bianchi, L. Dozio, Mike Angelo, and David Beal,

September, 2000, Lineo, Inc, DIAPM. RTAI Programming Guide 1.0.

[Pierre00] Pierre Cloutier, Paolo Mantegazza, Steve Papacharalambous, Ian Soanes,
Stuart Hughes, and Karim Yaghmour, November, 2000, Real Time Operating Sys-
tems Workshop, DIAPM-RTAI POSITION PAPER.

QNX
[WebQNX] QNX Documentation www.qnx.com.

81

Appendix A. GNU Free Documentation
License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

A.1. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals pro-
viding the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

A.2. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The "Docu-
ment", below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License.

82

Appendix A. GNU Free Documentation License

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, whose contents can be
viewed and edited directly and straightforwardly with generic text editors or (for im-
ages composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A.3. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

A.4. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may add other material on the cov-
ers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network lo-
cation containing a complete Transparent copy of the Document, free of added mate-

OCERA. IST 35102 83

Appendix A. GNU Free Documentation License

rial, which the general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quan-
tity, to ensure that this Transparent copy will remain thus accessible at the stated loca-
tion until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

A.5. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

OCERA. IST 35102 84

Appendix A. GNU Free Documentation License

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative defi-
nition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

A.6. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, un-
der the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, un-
modified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitled "History"; likewise combine any sec-
tions entitled "Acknowledgements", and any sections entitled "Dedications". You must
delete all sections entitled "Endorsements."

OCERA. IST 35102 85

Appendix A. GNU Free Documentation License

A.7. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various doc-
uments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.

A.8. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as
a whole count as a Modified Version of the Document, provided no compilation copyright
is claimed for the compilation. Such a compilation is called an "aggregate", and this Li-
cense does not apply to the other self-contained works thus compiled with the Document,
on account of their being thus compiled, if they are not themselves derivative works of
the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the ag-
gregate. Otherwise they must appear on covers around the whole aggregate.

A.9. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

A.10. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or dis-
tribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this Li-
cense will not have their licenses terminated so long as such parties remain in full com-
pliance.

A.11. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified

OCERA. IST 35102 86

Appendix A. GNU Free Documentation License

version or of any later version that has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify a version number of this License, you
may choose any version ever published (not as a draft) by the Free Software Foundation.

A.12. How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free Documentation License, Version 1.1 or any
later version published by the Free Software Foundation; with the Invariant Sections being
LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST. A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying
which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts"
instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

OCERA. IST 35102 87

