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Abstract

In this work, we present MFTIQ, a novel dense long-
term tracking model that advances the Multi-Flow Tracker
(MFT) framework to address challenges in point-level vi-
sual tracking in video sequences. MFTIQ builds upon the
flow-chaining concepts of MFT, integrating an Independent
Quality (IQ) module that separates correspondence qual-
ity estimation from optical flow computations. This decou-
pling significantly enhances the accuracy and flexibility of
the tracking process, allowing MFTIQ to maintain reliable
trajectory predictions even in scenarios of prolonged occlu-
sions and complex dynamics. Designed to be “plug-and-
play”, MFTIQ can be employed with any off-the-shelf opti-
cal flow method without the need for fine-tuning or architec-
tural modifications. Experimental validations on the TAP-
Vid Davis dataset show that MFTIQ with RoMa [16] op-
tical flow not only surpasses MFT but also performs com-
parably to state-of-the-art trackers while having substan-
tially faster processing speed. Code and models available
at https://github.com/serycjon/MFTIQ .

1. Introduction
Point-level visual tracking is a hot research topic [10,12,

27, 31]. Instead of the classical task of tracking objects by
bounding boxes [2, 8, 26] or segmentation masks [28, 43],
the goal is to track arbitrary points lying on surfaces in
the scene. The resulting point correspondences are useful
for various downstream applications, like SLAM [18, 38]
or motion prediction [56]. While most current methods
[10–12, 27, 57] focus on sparse point-tracking, applications
like 3D reconstruction, video editing, or augmented reality,
benefit from dense correspondences, i.e., correspondences
estimated for every pixel of the initial video frame.

Traditionally, long-range dense tracking may be
achieved by sequential chaining of optical flow (OF). How-
ever this approach has major drawbacks. The estimated tra-
jectory drift over time due to error accumulation, and track-
ing stops to be reliable in presence of occlusion since the
sequential chaining has no mechanism to recover. Recently,

Input - frame 1

MFT - frame 80

MFTIQ - frame 80

Figure 1. Dense long-term tracking – MFT and MFTIQ com-
parison. Visualisation of query positions (red) tracked from frame
1 to frame 80. MFTIQ generates a lower number of false re-
detections than MFT, especially on the grass in bottom-left, which
was out-of-view on frame 1. Best viewed zoomed-in and in color.

Multi-Flow Tracker (MFT) [39] revisited flow chaining [6,
7] for not only consecutive frames, but also for temporally
distant frame pairs. MFT produces long, dense trajecto-
ries by selecting the most reliable chain of optical flows for
each tracked point. The flow chain reliability is determined
by accumulating uncertainties and occlusion state computed
for each optical flow in the flow chain. However, this un-
certainty accumulation can lead to error accumulation and
drift. Moreover, MFT is tightly coupled with the RAFT op-
tical flow, but it has been shown [25] that other OF methods
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perform better.

We propose MFTIQ, a dense, long-term tracker. Like
other dense point-trackers [5,25,29,39,53] it is based on op-
tical flow computation. We design the method to be trained
once and then work with an arbitrary optical flow method in
a “plug-and-play” fashion and without any fine-tuning or ar-
chitecture changes. This allows the user to choose a suitable
speed/performance trade-off by using the appropriate flow.
The MFTIQ generalizes to multiple optical flow methods
not seen during training, as we have experimentally eval-
uated. We expect future faster and/or higher quality flows
to improve the proposed tracker performance for free, i.e.
without any re-training needed.

The proposed method replaces the flow-chain-selection
method proposed in MFT, with an improved Independent
Quality and occlusion estimation module (IQ). Unlike the
MFT method, which estimates occlusion and correspon-
dence quality (uncertainty) jointly with optical flow estima-
tion, MFTIQ decouples these estimations from the optical
flow computation. This separation also allows the occlu-
sion and correspondence quality to be estimated directly for
the optical flow chain between the template and the current
frame, without need for error-prone uncertainty accumula-
tion. Figure 1 shows an example where the MFTIQ strategy
produces significantly less false re-detections than MFT.

MFTIQ achieves results comparable to state-of-the-art
trackers when using ROMA [16] as the optical flow estima-
tor and consistently outperforms MFT across most tested
optical flow methods. It is important to note that MFTIQ
was not trained with ROMA, highlighting the “plug-and-
play” functionality of the proposed method. Moreover, for
dense tracking, MFTIQ is significantly faster than state-of-
the-art trackers, even with the slowest optical flow methods
tested. MFTIQ is also causal, i.e., it only uses the current
frame and the previous ones, which is not the case for most
point-trackers.

In this work, we introduce MFTIQ, a novel dense,
long-term tracking method improving on the MFT [39]
flow-chaining idea. Our contributions are as follows:
1) We have developed the Independent Quality (IQ) mod-
ule, which decouples occlusion and correspondence qual-
ity estimation from optical flow computation. This sepa-
ration enhances tracking accuracy and flexibility. 2) MF-
TIQ features “plug-and-play” functionality, allowing inte-
gration with any off-the-shelf optical flow method without
re-training or fine-tuning. This flexibility enables users to
tailor tracker performance to specific needs. 3) We con-
ducted experimental evaluations using multiple optical flow
methods, demonstrating that MFTIQ matches the perfor-
mance of state-of-the-art trackers while being significantly
faster in dense tracking scenarios.

2. Related Work

Optical flow is a fundamental problem [22] in computer
vision in which the pixel-level displacement between pair of
frames is to be densely estimated. Most of the current meth-
ods are based on learning [13, 14, 16, 24, 40, 47, 48, 50, 63].
FlowNet [14] introduced correlation cost-volume (CCV) to
learning based optical flow estimation to provide similar-
ity measurement between neighboring features from con-
secutive frames. Later, RAFT [51] employs 4D CCV for
all pairs of pixel on lower resolution and iteratively esti-
mates optical flow. FLOWFORMER [23, 48] updates RAFT
with transformer blocks. ROMA [16] is a dense wide-
baseline stereo matcher that can be, however, used as op-
tical flow estimator. Both, FLOWFORMER and ROMA
bring higher accuracy for the cost of slower processing time
and bigger memory requirements. This is addressed with
NEUFLOW [63] or SEA-RAFT [54], which focus more on
efficient, higher speed computation.

While these methods are state-of-the-art in field of op-
tical flow estimation, their possibility for employment in
long-term tracking are rather limited. There are multi-
frame optical flow approaches, such as VIDEOFLOW [47]
or MEMFLOW [13], but they are still focused on estimation
of optical flow between adjacent frames rather than long-
term optical flow and mentioned limitation of optical flow
chaining remains.

Sparse long-term point-tracking focus on tracking
small number of query points on the object surface through-
out the video. Particle-video [45] tracks only visible query
points and fails to track continuously through occlusions,
instead starting new tracks. Revisiting this, PIPS [20] takes
frames from fixed-size temporal window (8 frames) and es-
timate sparse point tracking with iterative updates. They
propose a strategy for linking the eight-frame tracks over
longer period of time, however their method cannot recover
from longer occlusions. TAP-NET [10] computes CCV for
each query point with each frame of a video and from it
estimate occlusion and position by their two branch net-
work. TAPIR [12] combines per-frame global-matching
prediction of TAP-NET with refining process inspired by
PIPS. Current state-of-the-art – BOOTSTAP [11] is the
TAPIR tracker fine-tuned in a self-supervised fashion on
large amount of in-the-wild videos. The long training using
256 A100 GPUs on the 15M YouTube video clips is how-
ever too costly to reproduce for most researchers.

COTRACKER [27] processes query points with a sliding-
window transformer that enables multiple tracks to influ-
ence each other. However, the best performance is achieved
by tracking single query point at time, supplemented with
auxiliary grid of queries. SPACIALTRACKER [57] builds
upon COTRACKER. Instead of tracking points in 2D, it lifts
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them to 3D using an off-the-shelf monocular depth estima-
tion method. All the mentioned methods can track densely
by tracking the points one-by-one or in batches, but the re-
sulting speed is low.

Dense long-term tracking approaches track all points
from reference frame to current frame simultaneously.
OMNIMOTION [53] employs NERF [35] for modeling of
a dynamic scene, enabling it to produce dense tracking out-
puts. However, it relies on optical flow estimated between
all pairs of frames followed by computationally demanding
test-time training for each video sequence, making it im-
practical for general use.

DOT [30] estimates dense-point tracking by a two-
stage process. First, sparse point-tracks are estimated by
COTRACKER [27]. Then they are densified and serve as
an initialization for RAFT [51] optical flow, which provides
the final dense predictions. FLOWTRACK [5] chains optical
flow and corrects it by error compensation module utilizing
optical flow forward-backward cycle consistency.

Recently, MFT [39] extends optical flow chaining by
not only tracking between consecutive frames but also be-
tween frames that are temporally distant. The chaining
approach over various intervals between frames was ad-
dressed before [6,7], however MFT proposed effective strat-
egy where a long-dense trajectory is computed by evalu-
ating the quality of track estimates among various com-
binations of chained flows, enabling it to maintain accu-
rate tracking over longer sequences than typical flow-based
methods. MFT-ROMA [25] integrates wide-baseline dense
matchers DKM [15] and ROMA [16] into MFT, further in-
creasing its performance.

3. Method
We propose a dense long-term tracker based on chaining

of optical flows computed from neighboring, but also from
more distant frames. We will first explain the flow-chaining
technique that was used before [6, 7] and recently revis-
ited in MFT [39]. Then we describe the proposed MFTIQ
tracker and how it differs from MFT.

Task and notation. The task is to track all points from an
initial frame to the rest of the video. In particular, given a se-
quence of video frames (It)

T
t=1 with H×W resolution, the

MFTIQ tracker computes long-term flow fields (F1→t)
T
t=1

between the initial and the current frame. For a 2D posi-
tion pA = (x, y) in image IA, a flow field FA→B bilin-
early sampled at pA gives a position in the image IB as
pB = pA+FA→B [pA], where · [·] is the bilinear sampling.
MFTIQ also outputs binary segmentation maps (Ot)

T
t=1 in-

dicating that a point p1 is occluded or out-of-view in frame
It when Ot [p1] > 0.5.

I1 I2 I3 I4 I5 I6 I7

F1→5 F5→7

F2
1→7 ← Q

(
F2

1→7,I1,I7
)

∆ = 2

I1 I2 I3 I4 I5 I6 I7

F1→3 F3→7

F4
1→7 ← Q

(
F4

1→7,I1,I7
)

∆ = 4

Figure 2. Example of MFTIQ optical flow chaining strategy
for estimating the flow between I1 and the current frame It=7.
MFTIQ constructs a flow chain F∆

1→7 by going through an in-
termediate frame I7−∆. This is done for multiple values of ∆,
here shown for ∆ = 2 and ∆ = 4. The most reliable flow chain
F∆⋆

1→7 is selected independently in each pixel based on flow qual-
ity Q

(
F∆

1→7, I1, I7
)

assigned to each chain F∆
1→7 by a neural

network, which takes the flow chain, the template frame, and the
current frame as inputs. Note that the flow from the template into
the intermediate frame is itself a previously computed flow chain,
while the flow from the intermediate frame into the current frame
is output of an OF method.

concat
cost

volume

warp

I1 image
features

It image
features

template frame I1, H×W

current frame It, H×W

chained flow F∆
1→t, H×W

flow
features

cost
head

occlusion
head

occlusion O∆
1→t, H×W

cost E∆
1→t, H×W

Independent Quality

estimation module

Figure 3. Overview of the Independent Quality (IQ) estima-
tion network. First, image features are extracted from the tem-
plate frame I1 and the current frame It. Then, the current frame
features are warped using the positions given by the chained flow
F∆

1→t. The now-aligned feature maps are compared with a lo-
cal (displacement up to ±3) correlation cost-volume. Finally a
concatenation of the features extracted from both images and the
flow are concatenated with the cost-volume and processed by two
small CNNs to output the occlusion map and the cost map which
together represent the quality of the input flow chain.

Both the flows F1→t, and the occlusion masks Ot have
the full H×W resolution. To simplify the explanation, we
refer to the first frame I1 of the video as template frame, It
as current frame.

3.1. Optical Flow Chaining

On each frame the proposed MFTIQ constructs flow
fields F∆

1→t as a chain of flow field F1→(t−∆) computed
previously in an intermediate frame number t−∆ and a flow
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field from the intermediate to the current frame F(t−∆)→t.
The chaining operation samples the second flow field at the
positions given by the first one such that

F∆
1→t [p1] = F(t−∆)→t

[
p1 + F1→(t−∆) [p1]

]
(1)

Note that this can form an arbitrarily long chain of flows, as
the F1→(t−∆) was itself formed as a chain of flows.

Like in MFT, the proposed MFTIQ computes a small
number of such flows for varying logarithmically spaced
time deltas ∆ ∈ D = {1, 2, 4, 8, 16, 32} ∪ {t − 1}, where
the {t−1} stands for direct match, in which the optical flow
is computed in single step between the template and the cur-
rent frame. Flows for ∆ ≥ t are not computed. This results
in a set of candidate optical flow chains (each represented
by a single flow field), from which the most reliable one is
selected according to its quality.

In the original MFT [39], the quality was measured
by flow uncertainty and occlusion. In particular, the
RAFT [51] optical flow network was extended by two addi-
tional CNN heads, estimating the occlusion state and posi-
tional uncertainty in each pixel. These two quantities were
aggregated during the chaining of the flow fields to produce
the overall positional uncertainty U∆

t and occlusion state
O∆

t of the whole flow chain. Finally these were used to
select the most reliable flow chain F∆⋆

1→t per-pixel as

∆⋆ [p1] = arg min
∆∈D

U∆
t [p1] +∞ ·O∆

t [p1] , (2)

where multiplying the occlusion by infinity ensures that a
flow chain that was occluded at any time is only selected if
there is no unoccluded, i.e., better chain.

The MFT approach has three major drawbacks. First,
the uncertainty estimation and the chaining of the uncer-
tainty scores need to be well calibrated not to be overly op-
timistic or pessimistic. This is not the case in MFT which is
slightly pessimistic, leading to a strong preference of flow
chains with small number of links, i.e., a preference of ∆⋆

being large. In our experience, this often happens even
though there are more accurate longer chains (more links
with smaller ∆⋆s) available. On the other hand, when the
uncertainty of a single incorrect chain link is optimistically
low, the tracker drifts and tracks a different point from that
moment on. Finally, it is not straightforward to use different
optical flow methods due to the direct integration of occlu-
sion and uncertainty into the flow network architecture.

The proposed MFTIQ, addresses these issues with its
Independent Quality (IQ) module, which replaces the prob-
lematic chaining of uncertainties with a direct estimation of
the quality of the chained optical flow. The best delta is
again selected per-pixel similarly to Eq. (2) as

∆⋆ [p1] = arg min
∆∈D

E∆
t [p1] +M ·O∆

t [p1] , (3)

where M is a large constant used instead of the∞ in Eq. (3).
This still ensures that unoccluded chains are always pre-
ferred, but also preserves the ordering by E∆

t [p1] when all
the candidate flow chains contain an occlusion. The cost
map E functions analogously to the MFT flow chain uncer-
tainty U, but is trained with a different cost function. Cost
E is analogous to MFT uncertainty U in that the lower val-
ues means higher positional accuracy.

Most importantly, we propose to estimate the cost E and
the occlusion map O directly as a function of the chained
flow F∆

1→t and the two images it relates to, I1 and It.

{E∆
t ,O

∆
t } = Q

(
F∆

1→t, I1, It
)
. (4)

The independent quality estimation function Q is imple-
mented as a neural network. It takes the chained optical
flow, the template frame, and the current frame as inputs
and estimates the cost map E ∈ RH×W

0+ and the occlusion
map O ∈ {0, 1}H×W . An example diagram of the MFTIQ
flow chaining and selection is shown in Fig. 2.

3.2. Flow Quality Estimation

In this section, we detail the architecture and the train-
ing of the proposed quality estimation networkQ, shown in
overview in Fig. 3. First, we extract image features to pro-
duce a H

4 × W
4 feature map. In particular, both I1 and It are

processed by the DINOV2 [41] network. We bilinearly up-
scale the resulting coarse H

14×W
14 feature map into the target

H
4 × W

4 resolution. To add more spatially fine-grained in-
formation, we also compute the IMAGENET1K-pre-trained
RESNET50 [21] CNN features and features from a shallow
CNN. See Sec. A in supplementary for more details. We
resize all the resulting feature maps into the 1

4 resolution
and compress them with a convolutional layer to have 32
channels each.

Warping + Cost Volume The next stage in our process
is the formation of a local Correlation Cost Volume (CCV),
which serves to measure the similarity between the corre-
sponding (as predicted by the optical flow chain) features,
while also considering adjacent pixel information. To per-
form this, the feature maps from the current frame It, are
warped to the template frame I1 using the chained optical
flow F1→t, which is scaled to match the featuremap resolu-
tion. Then a local CCV (maximum displacement of 3px on
the featuremap resolution) is independently computed for
each input feature map, like in FLOWNET [14].

Finally, we concatenate the feature similarities computed
by the cost-volumes with the image features and features
computed from the chained optical flow, more details in
supplementary Sec. B. The resulting H

4 × W
4 featuremap

with 422 channels is then used to estimate the flow-chain
quality.
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Flow-Chain Quality Estimation We use two three-layer
CNN heads, each followed by a bilinear upsampling to the
full image resolution, to estimate the cost and occlusion
maps. The occlusion estimation CNN classifies each pixel
as either occluded or non-occluded and is trained using stan-
dard binary cross-entropy loss, denoted as Loccl.

The cost is constructed from M = 5 binary classifiers
again trained by binary cross-entropy loss Lmatch θ. Pixels
that have the flow end-point-error (EPE, euclidean distance
from the ground-truth) over θpx or are occluded belong to
the positive class, while the visible and precisely matched
(EPE under θpx) belong to the negative class. The binary
classifiers differ in the EPE threshold θ ∈ {1, 2, 3, 4, 5},
ranging from 1 to 5px.

During inference, the final cost map is constructed as a
weighted average of the soft (Sigmoid activation) classifi-
cation maps Eθ,

E =

M∑

θ=1

2θ−1Eθ. (5)

The E should be low for well matched points and high for
poorly matched or occluded points.

The overall training loss, L, is computed as follows:

L =
1

H ×W

H×W∑

i=1

Vi

(
Loccl
i +

1

M

M∑

θ=1

Lmatch θ
i

)
, (6)

where Vi is a binary ground-truth validity flag of pixel i.

3.3. Implementation Details

We trained the independent quality network using a syn-
thetic dataset from the Kubric rendering tool [19]. The
dataset includes 200 sequences with a variable number of
static and dynamic objects rendered at a 1024×1024 reso-
lution, each 240 frames long. The sequence length is much
longer than the typically used 24 or 48 frames. We had
to ensure that the objects do not become static after falling
to the ground as in the default Kubric scenario, otherwise
the long sequences would not bring much. To do this and
keep the objects non-intersecting, we left the default Kubric
physical engine to simulate the scene for 48 frames, after
which we disabled it and replayed the simulated motions
back and forth for the rest of the video. The camera motion
is generated independently, with the panning from TAPIR
and a random camera shake to introduce motion blur and
make the camera movement more realistic. Due to the in-
dependent non-looping motion of the camera, the resulting
video is not repetitive and information-rich for the whole
duration.

The training involved sampling random image pairs with
temporal separations, i.e., the flow ∆, ranging from 2 to 150
frames. We generated a pre-sampled set of 20,000 training

pairs with dense1 ground truth optical flow, occlusion, and
validity masks V. The input OFs were uniformly drawn
from the ground truth flow, RAFT [51], and ground-truth-
initialized FLOWFORMER++ [48], computed directly be-
tween the two input images. This generates plausible long-
term input OFs without tracking the whole sub-sequence in
each training step.

Both the optical flow and the input images were aug-
mented and resized to 368× 768 pixels.

The training was conducted on a single RTX A5000
GPU for approximately one day using a batch size of 8 for
200,000 iterations, with an initial learning rate of 2.5×10−3

and OneCycleLR [49] learning rate policy.
We set ∆ ∈ {1, 2, 4, 8, 16, 32, t− 1}, i.e., the same as in

MFT. See Sec. D in supplementary for experimental eval-
uation of different ∆-set configurations.

Inference-time caching To speed up the proposed
MFTIQ tracker, we cache and re-use intermediate results
where possible. Namely, the image features are needed
multiple times per frame and especially the DINOV2 net-
work is slow, so we cache them in GPU memory. We also
cache the optical flows, which is useful when tracking from
multiple query frames, like in the strided TAP-VID. If the
application allows it, both the image features and the opti-
cal flows can be precomputed to get fast tracking. Timing
details are reported in supplementary Sec. C.

4. Experiments

Since there is no dense long-term tracking bench-
mark, we evaluate the proposed MFTIQ tracker on stan-
dard sparse point-tracking datasets TAP-VID [10] and
ROBOTAP [52]. We also evaluate on the POT-210 [34]
dataset for planar object tracking, which contains challeng-
ing scenarios different from TAP-VID and was not lever-
aged for point-tracking evaluation before.

4.1. Point-Tracking Benchmark

The point-tracking is typically evaluated using three met-
rics introduced in TAP-VID [10]. The <δxavgmeasures the
percentage of cases where the euclidean distance between
the predicted and the ground-truth position is smaller than
a threshold, averaged over five thresholds of 1, 2, 4, 8, and
16 pixels. This evaluation is done on coordinates re-scaled
to 256 × 256 resolution. The quality of occlusion predic-
tion – occlusion accuracy (OA) – is measured by standard
binary classification accuracy. Finally, the average Jaccard
(AJ) metric combines the position and occlusion accuracy
into an unified score. Please refer to [10] for details.

1The original version of the Kubric tool supports only sparse ground
truth generation for point-tracking tasks.
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OF runtime [ms] ↓
method AJ ↑ <δxavg↑ OA ↑ 512x512 720x1080

MFT [39] 56.28 71.03 86.96 47 142

MFTIQ with
RAFT [51] 60.54 74.22 84.42 47 142
GMFLOW [58] 55.28 69.83 83.55 24 137
NEUFLOW [63] 55.73 70.26 80.87 10 18
GMFLOW-R [58] 59.57 73.38 86.49 69 335
NEUFLOWV2 [62] 56.92 70.97 81.59 7 8
RAPIDFLOW [36] 59.56 73.14 84.37 32 55
LLA-FLOW [59] 61.78 75.18 85.44 117 475
MEMFLOW [13] 62.30 75.97 85.95 121 610
FFORMER++ [48] 62.72 76.22 86.34 142 782
RPKNET [37] 62.78 76.61 86.39 126 174
SEA-RAFT [55] 63.51 77.18 86.22 34 105
ROMA [16] 65.67 79.82 87.75 714 729

Table 1. TAP-VID DAVIS [10] (strided) evaluation with single
MFTIQ model using various OF methods. The first two rows
compare the original MFT with the proposed MFTIQ both using
the RAFT [51] OF. The rest of the table shows MFTIQ results
when used with different OF methods. Runtime of a single OF
computation shown on right.

There are two evaluation modes, first and strided. In the
first mode, trackers are initialized on the first frame where
the particular point is visible and left to track until the end of
the video. In the strided mode, every fifth frame is taken as
an initialization frame. Trackers are initialized on all anno-
tated points visible in the particular frame and left to track in
both directions until the start and until the end of the video.
The resulting tracks are shorter (half the video length on av-
erage), making the task simpler. Also, in the first mode, the
query points are often on the object boundary or just after
de-occlusion, further complicating the tracking.

The TAP-VID DAVIS [10] dataset contains 30 videos
from [44], mostly containing people and animals, with
one or a few salient objects moving against a back-
ground. The TAP-VID KINETICS [10] has 1189 videos
from Kinetics-700 [3, 4] human action recognition dataset.
The ROBOTAP [52] dataset contains 265 videos of robotic
arms picking up and dropping objects in a lab scenario. All
the datasets have point tracks semi-automatically annotated
for around 20 points in each video, including the visibility
state.

Plug-n-Play Optical Flow After training the MFTIQ
flow quality estimation with RAFT [51] and ground-truth
initialized FLOWFORMER++ [48], we fixed the model and
evaluated it with various different OF methods. The Tab. 1
shows that the RAFT-based MFTIQ already outperforms
the original MFT. More importantly, we get even bet-
ter results when using other off-the-shelf optical flows and
dense matchers. The best performance is achieved with
the wide-baseline matcher ROMA [16] thanks to its abil-

ity to match densely both between consecutive and be-
tween more distant frames. Table 1 also lists the runtime
of the respective OF methods, measured on a RTX A5000
GPU. While the best-performing ROMA is also the slow-
est on smaller images, it scales better than the second-best
FLOWFORMER++ to larger images. Depending on the in-
tended application, one could also use a fast optical flow
method, such as NEUFLOW [63], for a cost of reduced
tracking quality. For the rest of the experiments we use the
ROMA-based MFTIQ.

Main point-tracking results The overall results of
the proposed ROMA-based MFTIQ tracker are shown
in Tab. 2. MFTIQ achieves the best (DAVIS) and
the second-best (ROBOTAP, KINETICS) position accuracy
<δxavg. This is thanks to the quality of the used ROMA
dense matcher. Note that ROMA was used with the original
MFT in MFT-ROMA [25], however due to better flow qual-
ity estimation the proposed MFTIQ performs much better
on all metrics. Also we have designed MFTIQ to be inde-
pendent on the OF method, so we expect it to get better with
future even-higher-quality optical flows and dense matchers
without re-training.

The occlusion accuracy (OA) of MFTIQ is compara-
tively lower, also affecting the overall AJ score. While it
is an improvement over MFT, achieving state-of-the-art oc-
clusion accuracy is yet an open challenge.

While MFTIQ does not achieve performance as good as
the recent sparse point-trackers, it tracks densely and out-
performs the original MFT. Note that the point-trackers
in 2 are not causal, i.e., the trackers can “see” into the fu-
ture which is helpful to resolve occlusions. Both MFT and
MFTIQ only use the previous frames. For dense tracking
the inference time is significantly faster than methods with
similar accuracy, as measured by the points-per-second met-
ric in Tab. 2, more timing details in supplementary Sec. C.

MFTIQ vs MFT Chain Selection We further evaluate
the MFTIQ chain selection and how it compares to the
original MFT on TAP-VID DAVIS. The Fig. 4 shows that
the uncertainty score chaining of MFT leads to a signifi-
cant preference of selecting short chains with big ∆s. In
particular, the optical flow matching directly between the
template and the current frame (∆ = t − 1) without chain-
ing is selected with probability increasing with the current
frame number. However the probability of this selection
being accurate decreases rapidly during the video. On the
other hand MFTIQ selects the short chains with big deltas
conservatively, keeping the result accuracy high. In other
words, given the same optical flows, MFTIQ selects chains
leading to better accuracy.
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Figure 4. Comparison of flow candidate selection in MFT (left) and MFTIQ (right). MFT often selects (bottom left) the direct optical
flow, i.e. the flow chain with ∆ = t − 1 with probability increasing during the video. The probability of the selected direct flow to
be accurate as measured by Average Jaccard (AJ) is, however, decreasing with time (orange). In contrast, the proposed MFTIQ (right)
chooses the direct optical flow more conservatively (bottom) and mostly when it has high accuracy (orange). Both methods are evaluated
on TAP-VID DAVIS strided using RAFT OF. Non-direct OF accuracy (green) represents the average over all cases, when some ∆ ̸= t−1
was selected.

DAVIS strided DAVIS first ROBOTAP first KINETICS first
method PPS↑ AJ↑ <δxavg↑ OA↑ AJ↑ <δxavg↑ OA↑ AJ↑ <δxavg↑ OA↑ AJ↑ <δxavg↑ OA↑
TAP-NET [10] † 555 38.4 53.1 82.3 33.0 48.6 78.8 45.1 62.1 82.9 38.5 54.4 80.6
COTRACKER [27] ‡ 0.8 64.8 79.1 88.7 60.6 75.4 89.3 54.0 65.5 78.8 48.7 64.3 86.5
TAPIR [12] † 200 61.3 72.3 87.6 56.2 70.7 86.5 59.6 73.4 87.0 49.6 64.2 85.0
BOOTSTAP [11] – 66.4 78.5 90.7 61.4 74.0 88.4 64.9 80.1 86.3 54.7 68.5 86.3
DOT [30] 2473 65.9 79.2 90.2 60.1 74.5 89.0 - - - 48.4 63.8 85.2
FLOWTRACK [5] ∗ 499 63.2 76.3 89.2 - - - - - - - - -

MFT [39] 10671 56.3 71.0 87.0 51.1 67.1 84.0 – – – 39.6 60.4 72.7
MFT-ROMA [25] – 58.0 77.2 80.5 52.1 72.7 77.1 – – – – – –
MFTIQ (ours) 709 65.7 79.8 87.8 59.9 75.5 84.5 60.0 77.5 85.2 48.7 65.9 85.2

Table 2. MFTIQ ROMA evaluation on TAP-VID [10] and ROBOTAP [52] benchmarks. On the KINETICS dataset, MFTIQ was evaluated
only on the first 465 sequences due to time constraints. Results of the other trackers were taken from their papers and from [11] in
case of ROBOTAP. The ROMA-based correspondences chained by MFTIQ provide a very good position precision (<δxavg) - best on
DAVIS, second on ROBOTAP and KINETICS. The occlusion accuracy (OA) is lower, also affecting the AJ score. The speed is compared
with points-per-second (PPS). Timing computed on RTX A5000. Timing with † obtained from [12] (TESLA V100), with ‡ from [31]
(TESLA A100), and with ∗ from [5] (RTX 3090) and recalculated to PPS.

4.2. Planar Object Tracking Dataset

In addition to the point-tracking benchmark, we have
evaluated the proposed MFTIQ on the POT-210 [34] pla-
nar object tracking dataset. The POT-210 contains 210
videos capturing rigid flat objects. The target is specified
by coordinates of four control points forming a rectangle on
the first frame of each video. The tracker is to output the
positions of these control points on each frame of the video.
There are 30 objects in total in POT-210, each captured in

seven scenarios: motion blur, occlusion, out-of-view, per-
spective distortion, in-plane rotation, scale change, and un-
constrained combining all of the previous challenging fac-
tors. From these only the partial occlusion factor is present
in TAP-VID point-tracking benchmark.

Since there is no occlusion ground-truth available on
POT-210, we evaluate only the <δxavgTAP-VID metric.
Also we discard points outside the initialization region on
the first frame as we only have ground-truth for the pla-
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ROMA MFTIQ
challenge <δxavg↑ <δxavg↑
blur 88.4 86.9 (−1.5)

occlusion 99.2 96.9 (−2.3)

out-of-view 90.7 89.2 (−1.5)

perspective 96.8 94.8 (−2.0)

rotation 72.8 96.5 (+23.7)

scale 92.2 98.0 (+5.8)

unconstrained 93.5 93.3 (−0.2)

all 90.5 93.7 (+3.2)

Table 3. MFTIQ ROMA performance on POT-210 using a point-
tracking metric, compared to plain ROMA. While the plain ROMA

performs slightly better on some of the challenging scenarios,
MFTIQ is significantly better on rotations and scale change due
to the flow chaining, making it better on average – all.

nar object. We scale the output coordinates to 256 ×
256 resolution as usual [10] and evaluate with the stan-
dard 1, 2, 4, 8, 16 point error thresholds. The results in
Tab. 3 indicate overall good performance, with ROMA-
based MFTIQ being particularly good on rotation and scale
change scenarios compared to the plain ROMA.
MFTIQ Homography Tracking. On top of the point-
tracking evaluation, we also propose and evaluate a sim-
ple MFTIQ-based planar homography tracker. We initialize
MFTIQ on the initial frame and let it tracking all the ini-
tial frame pixels to get dense correspondences between the
first and the current frame. On each frame we mask out the
background correspondences, i.e. outside the initial rectan-
gle on the first frame. Finally we use the correspondences to
robustly (with RANSAC [1, 17]) estimate a planar homog-
raphy H ∈ R3×3 mapping from the initial to the current
frame and transfer the control points from the initial frame
into the current frame with H∗ to get their current position.

This MFTIQ ROMA homography tracker out-performs
the state-of-the-art on the POT-210 benchmark as shown
in Tab. 4. The MFTIQ planar tracker performs particularly
well on the blur subset of POT-210, which contains many
frames on which trackers fail due to big motion blur. MF-
TIQ is able to recover from such failures by “jumping” over
the problematic frames using the optical flows with bigger
frame delta. Note that the resulting planar tracker is only
practical for real-time online application when the optical
flows and IQ module features are precomputed.

5. Conclusion

In this work, we propose MFTIQ, a novel method for
dense long-term tracking of points in video sequences. By
leveraging flow-chaining of the Multi-Flow Tracker (MFT)
and enhancing it with our Independent Quality (IQ) mod-

method BL OCCL OOV PERS ROT SC UNC all

LISRD [33, 42] 54.1 93.8 83.7 65.0 86.3 30.0 67.1 68.3
HDN [60] 48.8 78.2 66.1 54.4 91.4 94.8 60.7 70.9
CGN [32] 41.6 88.1 82.8 76.5 96.1 90.3 72.4 78.5
WOFT [46] 60.4 98.6 96.3 95.4 99.3 94.0 88.2 90.4
HVC-NET [61] 60.5 98.6 97.2 92.7 99.3 100.0 90.1 91.4
MFTIQ (ours) 72.0 98.6 95.0 96.6 99.5 100.0 89.1 93.1

Table 4. MFTIQ evaluation on planar tracking POT-210 [34]
benchmark. Percentage of frames with alignment error under 5px
threshold evaluated on the improved ground-truth from [46]. The
RoMa-based MFTIQ followed by a RANSAC homography esti-
mation on the resulting correspondences sets a new state-of-the-
art performance. It achieves the most significant performance gain
+11.5% on the BLur sequences.

ule, MFTIQ significantly improves tracking accuracy and
flexibility compared to existing methods. Our approach ef-
fectively decouples the estimation of correspondence qual-
ity from the optical flow computations, enabling MFTIQ to
handle complex occlusions and maintain accurate trajecto-
ries over extended period of time.

The “plug-and-play” nature of MFTIQ, which allows
for seamless integration with any off-the-shelf optical flow
method, further exemplifies its practical utility. This flexi-
bility enables users to choose the most suitable optical flow
method based on their specific performance or computa-
tional efficiency needs without the requirement for addi-
tional fine-tuning or architectural adjustments.

Our experimental results demonstrate that MFTIQ not
only matches but often surpasses current state-of-the-art
point-tracking methods in terms of accuracy and speed. Par-
ticularly, it shows significant improvements over the base-
line MFT method. The capability of MFTIQ to operate ef-
ficiently with various optical flow methods underscores its
robustness and adaptability. Looking forward, we antici-
pate that future advancements in optical flow technology
will further enhance the performance of MFTIQ. The archi-
tecture’s compatibility with evolving flow estimation tech-
niques promises continual improvements in tracking preci-
sion and computational efficiency. We publish2 the MFTIQ
code and models.

Acknowledgements. This work was supported
by Toyota Motor Europe, and by the Grant Agency
of the Czech Technical University in Prague, grant
No.SGS23/173/OHK3/3T/13.

References
[1] Daniel Barath, Jana Noskova, Maksym Ivashechkin, and Jiri

Matas. MAGSAC++, a fast, reliable and accurate robust
estimator. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1304–1312,
2020. 8

2https://github.com/serycjon/MFTIQ

8

https://github.com/serycjon/MFTIQ


[2] David S Bolme, J Ross Beveridge, Bruce A Draper, and
Yui Man Lui. Visual object tracking using adaptive corre-
lation filters. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 2544–2550.
IEEE, 2010. 1

[3] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zis-
serman. A short note on the kinetics-700 human action
dataset. arXiv preprint arXiv:1907.06987, 2019. 6

[4] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 6

[5] Seokju Cho, Jiahui Huang, Seungryong Kim, and Joon-
Young Lee. FlowTrack: Revisiting optical flow for long-
range dense tracking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
19268–19277, 2024. 2, 3, 7

[6] Pierre-Henri Conze, Philippe Robert, Tomas Crivelli, and
Luce Morin. Multi-reference combinatorial strategy towards
longer long-term dense motion estimation. Computer Vision
and Image Understanding, 150:66–80, 2016. 1, 3

[7] Tomas Crivelli, Pierre-Henri Conze, Philippe Robert, and
Patrick Pérez. From optical flow to dense long term cor-
respondences. In 2012 19th IEEE International Conference
on Image Processing, pages 61–64. IEEE, 2012. 1, 3

[8] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. Atom: Accurate tracking by overlap max-
imization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 4660–4669,
2019. 1

[9] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, June 2009. 12

[10] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Re-
casens Continente, Lucas Smaira, Yusuf Aytar, Joao Car-
reira, Andrew Zisserman, and Yi Yang. TAP-Vid: A bench-
mark for tracking any point in a video. Advances in Neural
Information Processing Systems, 2022. 1, 2, 5, 6, 7, 8, 12,
13

[11] Carl Doersch, Yi Yang, Dilara Gokay, Pauline Luc, Skanda
Koppula, Ankush Gupta, Joseph Heyward, Ross Goroshin,
João Carreira, and Andrew Zisserman. BootsTAP: Boot-
strapped training for tracking-any-point, 2024. 1, 2, 7

[12] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush
Gupta, Yusuf Aytar, Joao Carreira, and Andrew Zisserman.
TAPIR: Tracking any point with per-frame initialization and
temporal refinement. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
10061–10072, October 2023. 1, 2, 7

[13] Qiaole Dong and Yanwei Fu. MemFlow: Optical flow es-
timation and prediction with memory. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19068–19078, 2024. 2, 6, 12

[14] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
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for dense tracking. In Proceedings of the 27th Computer
Vision Winter Workshop (CVWW 2024), 2024. 1, 2, 3, 6, 7

[26] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.
Tracking-learning-detection. IEEE transactions on pattern
analysis and machine intelligence, 34(7):1409–1422, 2011.
1

9



[27] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
Tracker: It is better to track together. arXiv preprint
arXiv:2307.07635, 2023. 1, 2, 3, 7

[28] Matej Kristan, Aleš Leonardis, Jiří Matas, Michael Fels-
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bohlav, et al. The eighth visual object tracking vot2020 chal-
lenge results. In European Conference on Computer Vision,
pages 547–601. Springer, 2020. 1

[29] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid.
Dense optical tracking: connecting the dots. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19187–19197, 2024. 2

[30] Guillaume Le Moing, Jean Ponce, and Cordelia Schmid.
Dense optical tracking: Connecting the dots. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19187–19197, 2024. 3, 7

[31] Hongyang Li, Hao Zhang, Shilong Liu, Zhaoyang Zeng,
Tianhe Ren, Feng Li, and Lei Zhang. TAPTR: Tracking
any point with transformers as detection. arXiv preprint
arXiv:2403.13042, 2024. 1, 7

[32] Kunpeng Li, He Liu, and Tao Wang. Centroid-based graph
matching networks for planar object tracking. Machine Vi-
sion and Applications, 34(2):31, 2023. 8

[33] Pengpeng Liang, Haoxuanye Ji, Yifan Wu, Yumei Chai,
Liming Wang, Chunyuan Liao, and Haibin Ling. Planar
object tracking benchmark in the wild. Neurocomputing,
454:254–267, 2021. 8

[34] Pengpeng Liang, Yifan Wu, Hu Lu, Liming Wang, Chun-
yuan Liao, and Haibin Ling. Planar object tracking in the
wild: A benchmark. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 651–658. IEEE,
2018. 5, 7, 8

[35] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[36] Henrique Morimitsu, Xiaobin Zhu, Roberto M Cesar, Xi-
angyang Ji, and Xu-Cheng Yin. RAPIDFlow: Recurrent
Adaptable Pyramids with Iterative Decoding for Efficient
Optical Flow Estimation. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2946–
2952. IEEE, 2024. 6, 12

[37] Henrique Morimitsu, Xiaobin Zhu, Xiangyang Ji, and Xu-
Cheng Yin. Recurrent partial kernel network for efficient
optical flow estimation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pages 4278–4286,
2024. 6

[38] Gokul B Nair, Swapnil Daga, Rahul Sajnani, Anirudha
Ramesh, Junaid Ahmed Ansari, and K Madhava Krishna.
Multi-object monocular slam for dynamic environments.
arXiv preprint arXiv:2002.03528, 2020. 1

[39] Michal Neoral, Jonáš Šerých, and Jiří Matas. MFT:
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clusion and optical flow estimation. In Asian Conference on
Computer Vision, pages 159–174. Springer, 2018. 2

[41] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al.
Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023. 4

[42] Rémi Pautrat, Viktor Larsson, Martin R Oswald, and Marc
Pollefeys. Online invariance selection for local feature de-
scriptors. In European Conference on Computer Vision,
pages 707–724. Springer, 2020. 8

[43] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
Computer Vision and Pattern Recognition, 2016. 1

[44] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675v2, 2017. 6

[45] Peter Sand and Seth Teller. Particle video: Long-range mo-
tion estimation using point trajectories. International Jour-
nal of Computer Vision, 80:72–91, 2008. 2
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Supplementary Materials

A. Image Feature Extraction
For the DINOV2 features we use the author-provided

ViT-S/14-reg network checkpoint. The ResNet50 [21]
network, pre-trained on the ImageNet1K [9] dataset, is used
to extract features from its first three blocks: the input
block, residual block 1, and residual block 2. Each out-
put feature is up-sampled to H

4 × W
4 and compressed to 32

channels using a convolutional layer.
The custom image features CNN is trained from scratch,

and it is inspired by NEUFLOW’s feature CNN [63]. Ini-
tially, an image pyramid is created by subsampling the input
image at different scales (1/1, 1/2, 1/4). For each level of the
image pyramid, a convolutional layer is applied with spe-
cific kernel sizes, strides, and padding to ensure the output
resolution is H

4 × W
4 (k4:s4:p0 | k8:s2:p3 | k7:s1:p3). The

outputs from each pyramid level are concatenated and com-
pressed to 32 channels using an additional convolutional
layer.

The features from all the feature providers (DINOV2,
RESNET, custom CNN) are aggregated and compressed
through a convolutional operation (from 5 × 32 channels
down to 32 channels) to produce an additional fused feature
for the cost-volume.

The impact of feature extractors on performance is
demonstrated in Tab. 6. Excluding DINOV2 features causes
a decrease in AJ from 65.7 to 64.6. Further removing
both DINOV2 and RESNET features, leaving only the cus-
tom shallow CNN features, results in a more pronounced
drop to AJ 61.5. Since the overall runtime is dominated
by optical flow computation, it remains nearly unchanged
(≈ −0.01 FPS) without the DINO and the RESNET back-
bones. Thus, we keep all three feature extractors.
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Figure 5. Probability of selecting OF with a given ∆ on
TAP-VID DAVIS [10], evaluated on frames more than 32 frames
distant from template. Statistics are similar for RAFT and ROMA,
but long jumps ∆ = t− 1 are selected more often with ROMA.

B. Feature Concatenation and Flow Features

The final featuremap contains 6 (DINO, 3× RESNET,
custom CNN, fused) cost-volumes, each flattened to 49
channels from the ±3 range 7 × 7 cost-volume response
maps, resulting in a total of 294 channels. In addition to
that it contains 2 × 32 channels of the fused features from
the template and the current frame (warped by the flow).
Finally it has 64 channels of flow features derived from the
input F1→t flow chain by a small CNN, for a grand total of
422 channels.

C. Timing

As mentioned in Section 3.3, we implement caching for
optical flow estimates and image features to improve effi-
ciency. Table 5 reports the overall tracking timing for re-
sults shown in Tab. 1 and Tab. 2 in the paper both with
standard caching during computation and with the caches
pre-computed offline. With optical flow and image fea-
tures computed in advance, MFTIQ runs at 3.7 FPS on
720 × 1080 and at over 10 FPS on 512×512 video reso-
lution.

FPS ↑ PPS ↑ FPS pre-computed ↑ PPS pre-computed ↑
MFTIQ with 512×512 720×1080 512×512 720×1080 512×512 720×1080 512×512 720×1080
RAFT [51] 2.66 0.90 8234 8897 10.95 3.76 26944 33921
NEUFLOWV2 [62] 5.67 2.03 16446 19348 10.56 3.59 27589 32175
RAPIDFLOW [36] 3.06 1.35 9603 13058 10.65 3.49 28396 31960
GMFLOW [58] 3.63 0.76 11365 7638 10.31 3.47 27304 32075
SEA-RAFT [55] 2.93 0.93 9285 9195 10.24 3.40 27296 31591
MEMFLOW [13] 1.16 0.29 3836 2985 10.95 3.71 27412 32907
FFORMER++ [48] 1.04 0.24 3457 2437 10.47 3.76 27183 33303
ROMA [16] 0.21 0.19 709 1948 10.10 3.67 24986 32703

Table 5. Runtime evaluation of the whole MFTIQ tracker with various OF methods with (right) and without (left) OF and features
pre-computed. All results shows processing speed in frames-per-second (FPS) and points-per-second (PPS) for two different resolutions of
images. PPS were evaluated for a sequence of 80 images. In the case of pre-computed optical flow and image feature cache, speed is the
same regardless of the OF method used up to a measurement noise.
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method AJ ↑ <δxavg↑ OA ↑
(1) Full MFTIQ (ROMA) 65.67 79.82 87.75
(2) -DINO 64.61 79.59 87.80
(3) -DINO -RESNET 61.54 78.58 85.02

Table 6. Influence of IQ feature extractors in the MFTIQ model. The table shows the performance variations when different backbones are
omitted, with the remainder of the network held constant. All models followed identical training and evaluation protocols. The evaluation
was conducted using the TAP-VID DAVIS [10] (strided) dataset.

runtime [FPS] ↓
∆-set hyper-parameter AJ ↑ <δxavg↑ OA ↑ 512x512 720x1080

∆ ∈ {1, 2, 4, 8, 16, 32, t− 1} 65.67 79.82 87.75 0.21 0.19
∆ ∈ {1, 4, 16, t− 1} 65.50 79.57 87.42 0.35 0.32
∆ ∈ {1, 8, 32, t− 1} 59.03 72.79 82.34 0.35 0.32
∆ ∈ {t− 1} 57.46 70.08 78.73 1.31 1.14
∆ ∈ {1} 54.67 70.99 73.35 1.31 1.14

Table 7. Ablation of different sets of ∆ used for optical flow chaining. The default set of ∆s (first row) (same as in MFT) performs the
best. The base-4 (second row) set achieves a better speed / performance trade-off. MFTIQ ROMA evaluated on TAP-VID DAVIS [10]
(strided). Performance measured by average Jaccard (AJ), position accuracy (<δxavg), and occlusion accuracy (OA). Speed of tracking
densely measured by average frames per second (FPS).

D. Delta Set Ablation
Tab. 7 shows the effect of using different sets of ∆s. Our

default base-2 configuration, ∆ ∈ {1, 2, 4, 8, 16, 32, t− 1},
follows the MFT setup [39]. However, we found that us-
ing a base-4 set, ∆ ∈ {1, 4, 16, t− 1}, achieves a 1.6×
speedup with only a minimal performance decrease on the
TAP-VID DAVIS dataset [10]. Both direct matching be-
tween the template and the current frame (∆ ∈ {t− 1})
and consecutive frame chaining (∆ ∈ {1}) result in a sig-
nificant performance decrease across all evaluated metrics.

We have also evaluated (Fig. 5) the frequency of selec-
tion for each ∆ in MFTIQ RAFT and MFTIQ ROMA in
the default ∆-set. The results show similar statistics be-
tween the two OFs, though the direct jump (∆ = t−1) is se-
lected more frequently in ROMA. This is expected since the
ROMA was trained on wide-baseline matching data, mak-
ing it more reliable with more distant pairs of frames. Only
frames beyond timestep 32 are evaluated to avoid biasing
the results with smaller ∆s at the beginning of the sequence,
where longer ∆s are not yet available for matching.
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