
HPAT indexing for fast object/scene recognition
based on local appearance

Hao Shao1, Tomáš Svoboda1, Tinne Tuytelaars2 and Luc Van Gool1,2

1Computer Vision Lab, Swiss Federal Institute of Technology, Zürich, Switzerland
{haoshao,svoboda,vangool}@vision.ee.ethz.ch

2ESAT, PSI, Katholieke Universiteit Leuven, Leuven, Belgium
{tinne.tuytelaars,luc.vangool}@esat.kuleuven.ac.be

Abstract. The paper describes a fast system for appearance based im-
age recognition . It uses local invariant descriptors and efficient nearest
neighbor search. First, local affine invariant regions are found nested at
multiscale intensity extremas. These regions are characterized by nine
generalized color moment invariants. An efficient novel method called
HPAT (hyper-polyhedron with adaptive threshold) is introduced for ef-
ficient localization of the nearest neighbor in feature space.
The invariants make the method robust against changing illumination
and viewpoint. The locality helps to resolve occlusions. The proposed in-
dexing method overcomes the drawbacks of most binary tree-like index-
ing techniques, namely the high complexity in high dimensional data sets
and the boundary problem. The database representation is very compact
and the retrieval close to realtime on a standard PC. The performance
of the proposed method is demonstrated on a public database contain-
ing 1005 images of urban scenes. Experiments with an image database
containing objects are also presented.

1 Introduction

Most content-based image retrieval systems focus on the overall, qualitative sim-
ilarity of scenes. Hence, global aspects like color gamuts and coarse spatial layout
are among the features most often used. This paper deals with a somewhat dif-
ferent kind of retrieval, in the sense that images are sought that contain the
same, prominent objects as the query image. One could e.g. look for images on
the Internet with the same statue as contained in the query image, or the sys-
tem could recognize one’s location, by taking an image and looking for the most
similar image in a large database of images taken all over a city. The latter type
of application is given as an example further in the paper.

For the rather stringent type of similarity search propounded here, global
and qualitative features no longer suffice. Hence, we propose the use of local
color patches as features, which are compared rather precisely. In particular,
we propose to extract so-called invariant regions, which have become popular
recently [1, 5, 2, 7]. Here, we use the intensity-based regions proposed by Tuyte-
laars and Van Gool [7]. Invariant regions correspond to small image patches,



constructed around special seed points (here intensity extrema). These regions
are special in that they automatically adapt their shapes in the image to the
viewpoint of the camera. The crux of the matter is that this adaptation takes
place without any knowledge about the viewpoint and without any compari-
son with other images in which the same regions are visible. Thus, in principle,
the same physical parts are extracted from two images of the same scene, even
if these have been taken from different viewpoints (and possibly under different
illumination as well). In section 2.1, we introduce a multiscale approach that im-
proves the repeatability of these regions. Once such regions have been extracted,
the color pattern that they enclose is described on the basis of invariant features.
The feature vectors make it possible to match invariant regions very efficiently,
using hashing techniques. Such matching lies at the heart of our approach, since
the similarity between images is quantified as the number of matching features.

However, since one image is represented by a large set of local invariant re-
gions, the amount of data in the feature space is much higher than for global
methods. As a result, feature matching becomes more complex and is usually
performed in a high-dimensional space. Under these conditions, finding the near-
est neighbor can become quite time consuming. Nene and Nayar proposed an
efficient method to overcome this problem [4]. We contribute to this method
by proposing a hyper-polyhedron instead of a hyper-cube as a better approxi-
mation of the hyper-sphere. The hyper-polyhedron approximation reduces the
number of feature vectors to be searched for the nearest neighbor, thus saving
computation time.

The structure of the paper is as follows. Section 2 describes the overall system,
with special attention to the way in which more stable invariant regions are
extracted using a multiscale approach. Section 3 discusses the indexing structure
based on the HPAT idea. Finally, section 4 demonstrates experiments on several
public databases. Section 5 concludes the paper.

2 Retrieving Images

2.1 A more stable invariant region extractor

In [7], Tuytelaars and Van Gool describe a practical method to extract local
invariant features. More precisely, they extract elliptical regions constructed
around intensity extrema. Here, we present a slight modification to this method,
which from our experiments seems to significantly improve the stability or re-
peatability of the method. More precisely, we select the intensity extrema used
as seed points in a more stable way. To this end, we apply a Gaussian scale
space. This can be constructed very efficiently thanks to the separability of the
Gaussian kernel. We use five different scale level representations (the original
image, plus four smoothed versions with a scale factor of 1.2, 1.4, 1.8 and 2.2).
Then, a non-maximum suppression algorithm finds the local intensity extrema
at each scale level, as in the original method. However, only those local extrema
which are repeated at different scales are considered as stable and are used to
extract invariant regions. Fig. 1 shows an example of the regions extracted with



(a) (b) (c) (d)

Fig. 1. Two different views of the same object, with some invariant regions overlayed
(red: regions that have been extracted in both images, yellow: regions that have been
extracted in only one image). Note how the red regions cover the same physical parts
of the scene. (a, b) regions extracted with the method of [7], (c,d) regions extracted
with more stable intensity extrema.

the proposed method as well as those extracted with the original method. In to-
tal, the improved method extracts 20 and 16 regions on the two views, with 8 of
them being repeated, while the original method extracts 26 and 21 regions, with
the same number of repeated regions. The repeatability has clearly improved,
which not only saves computation time during the retrieval process but also may
improve the recognition accuracy.

One could argue that the extracted intensity extrema are not really invariant
under affine transformations, due to the isotropic Gaussian smoothing. However,
intensity extrema that are found over several scales will also be found after an
affine transformation with anisotropic scaling smaller or comparable to the scale
change between the scale levels. Moreover, the method does not strictly rely on
the affine-invariance of the seed points, as the next step of the region extraction
method is robust to their inaccurate localization[7].

2.2 Matching invariant regions

Finding correspondences between two views is then performed by means of a
nearest region classification scheme, based on feature vectors of invariants com-
puted over the affine invariant image regions. As in the region extraction step, we
consider invariance both under affine geometric changes and linear photometric
changes, with different offsets and different scale factors for each of the three
color bands. More precisely, each region is described by a set of nine generalized
color moment invariants, as described in [3].

The Mahalanobis distance is a good measure to compare such feature vectors,
as it correctly takes into account the different variability of the elements of the
feature vector as well as their correlation. During the offline construction of the
database, the original space is rotated based on the covariance matrix, such that
Mahalanobis distance is reduced to Euclidean distance.



2.3 Retrieving images

The actual recognition of objects or scenes then goes as follows. First, we build
a database with representative images for all the known objects or scenes (with
possibly more than one image per object or scene). Then, in the offline pre-
processing, we extract invariant regions and invariant feature vectors for all the
images in the database, compute the covariance matrix, and store the rotated
feature vectors in the database as well, with pointers to the corresponding image.
Then, during the online recognition phase, a query image is processed in exactly
the same way (extraction of invariant regions, computation of feature vectors,
and rotation according to the covariance matrix). For each feature vector, we
look for the nearest neighbor in the database, using fast indexing methods as
explained in section 3, and add a vote to the corresponding image. This way,
images in the database showing the same object or scene as the query image will
get a high number of votes. Simply ranking the database images based on the
number of matches finishes the retrieval.

3 Indexing based on a hyper-polyhedron approximation
of the hypersphere and with an adaptive threshold

Nene and Nayar [4] proposed an efficient algorithm for nearest neighbor search.
It uses a hyper-cube as an approximation of the hyper-sphere. The algorithm
begins with selecting the points that are in between a pair of parallel planes
X1 and X3 perpendicular to the first coordinate axis (see Fig. 2) and adds
them to a list, called the candidate list. Next, it trims the candidate list by
discarding points that are not in between another pair of parallel planes X2
and X4, corresponding to the second dimension. This procedure is repeated for
each dimension to end up with a hypercube of size 2r centered around the query
point. Once we have this trimmed candidate list, the closest point is found
using an exhaustive search. The method can be implemented very efficiently.
However, the hyper-cube approximation of the hyper-sphere deteriorates very
quickly with increasing dimensions. For instance, in case of 9 dimensions, the
volume of the hyper-sphere is only 0.7% of the hyper-cube volume. This results in
unnecessary computation during the exhaustive search phase. Here, we propose a
more accurate approximation of the hyper-sphere based on a hyper-polyhedron.

3.1 Hyper-polyhedron

We explain the proposed hyper-polyhedron approximation in 2D space, although
the ideas hold for higher dimensional spaces as well. As can be seen in Fig. 2, left,
the point Pc is not within the circle even though it falls inside the square. For
higher dimensions, there will be many more such points. As a result, using the
hyper-cube method, the candidate list includes many useless corner points such
as Pc. Instead of using two pairs of parallel planes, we propose to use four, see
Fig. 3. The additional four planes are perpendicular to two new lifted coordinates



Pc

X2X4

X1

X3

2r

(X,y,z,...)

2r

Fig. 2. Two and three dimensions case of Hypercube. The corner points like pc fall
within the hyper-cube but not within the hyper-sphere

x12 and x21. These lifted coordinates are projections of the x1, x2 coordinates
onto a rotated coordinate axes frame:

x12 = (x1 + x2)/
√

2 , and x21 = (x1 − x2)/
√

2 . (1)

In general, for the n-dimensional case we need n(n − 1) auxiliary dimensions.
The lifted coordinates are used only for trimming the space, i.e., to construct
the hyperpolyhedron. This phase is very efficient. Only the “true” n coordinates
are used during the (time-consuming) exhaustive search.

It is clear that the hyper-polyhedron is a much better approximation of the
hypersphere than the hypercube. The volume of the hypercube is given by

Vhc = (2r)n (2)

with r the radius of the inscribed hypershere, while the volume of the hyper-
polyhedron is given by (see the appendix for a derivation of this formula)

Vhp = (2r)n(
√

2− 1)n

[

1 +

n
∑

k=1

(

n
k

)

21−k/2

]

(3)

The volume of the hyperpolyhedron grows much slower with increasing number
of dimensions than the hypercube, which grows exponentially. The volume of
the hypersphere, on the other hand, remains more or less constant and even
decreases for high dimensional spaces. For the 9-dimensional case, the hyper-
polyhedron takes only 8.8% of the hypercube volume. Of course, constructing the
hyper-polyhedron has its price: it needs n(n− 1) more candidate list trimmings
(scalar comparisons) than the original hyper-cube method. In return, we save



Q

X1

X2

X3

X4

X7

X6
X8

X5

2r

Fig. 3. Reduction the volume by using more planes in two dimensions and the illus-
tration of three dimensions

(1 − Vhp

Vhc
) ∗ m distance computations, with m the average number of feature

vectors inside the hypercube after trimming. Approximately, our method is more
efficient if

n(n − 1) <
m(1 − Vhp

Vhc
)Od(n)

2Oc
. (4)

with Od(n) the computational complexity of the distance computation and Oc

complexity of the scalar comparisons. The ratio Od(n)/Oc varies on different
computer platforms. Our experiments on PC showed that Od(n)/Oc ≈ 150 for
n = 9. On a PDA, without a floating point unit, this number will be even higher
and our method even more desirable.

3.2 Ranking the dimensions

The order of the dimensions in the trimming procedure may be arbitrary. We
always end up with the same hyper-polyhedron. However, proper ranking may
save some computation time. We use the ranking suggested by Nene and Na-
yar [4]. More precisely, we start slicing in the dimension that discards the highest
number of points from the trimmed list.

3.3 Adaptive threshold

It is apparent that the cost of the proposed algorithm depends critically on the
radius r. Setting r too high results in a huge increase in cost, while setting r too
small may result in an empty candidate list [4]. Nene and Nayar proposed a so-
lution for two special cases — normal and uniform distribution of the point sets.
Here, we propose a general solution for any distribution p(xi). The computation



of distributions is expensive, but it can be computed beforehand. Based on the
above analysis, our goal is to find the smallest r for which the candidate list is
non-empty. Let us assume a specific query point Q(x1, x2, x3, ..., xn). Assuming
the different dimensions are uncorrelated, the joint probability is defined as

p(x) =

n
∏

i=1

p(xi) . (5)

If we select r such that

n
∏

i=1

∫ xi+r

xi−r

p(xi)dxi × N ≥ 1 , (6)

with N the total number of points in the database, the expected number of
points inside the hyperpolyhedron ≥ 1. We can approximate the integral for a
small neighborhood around Q by a rectangle which yields

n
∏

i=1

2rp(xi) × N ≥ 1 . (7)

To overcome the problem of hypercube corner point mentioned in [4], we use
r/
√

2 to replace r and do exhaustive search in the hyper-polyhedron illustrated
in the Fig. 3 right. To ensure the hyper-polyhedron is not empty, a safe factor k
is introduced into Eq. 7. The desired function which selects the right r is

r ≥ n

√

k
√

2

2N ×
∏n

i=1 p(xi)
. (8)

4 Experiments

We experimented with our system on several databases. First, we use the often
used coil-100 object database. For each object, 5 views(view 0, 100, 215, 270,
325) were included in our database, and another 3 views (view 25, 250, 255) were
used as query images. The recognition rate is about 59.5%. The main reason
for such a poor performance is that some objects are too simple to extract
enough affine regions. If the simple objects for which less than four regions
can be extracted are not included, the recognition rate goes up to 77.3%. We
designed the proposed method with respect to real world conditions. It is robust
to affine transforms, partial occlusions, background changes and (to some extent)
illumination changes.

We are mainly motivated by a virtual tourist guide application. We created
a rather representative database containing 201 buildings in Zürich [6]. Each of
the buildings has been photographed from five different viewpoint. These 1005
images have been captured in different seasons and different weather. The im-
ages are subsampled to the resolution 320 × 240. In total, 57095 affine regions



Fig. 4. Retrieval results on ZuBuD database. First one is query image, others are
returned images with descending order of matches. Top row: Best match is the correct
one. Mid row: Correct image is not at top fist position but second. Bottom row: Failure.
The query image which is highly occluded by a tree.

have been located in the database images. The 115 query images are not in-
cluded in the database. They have been captured with a different camera and
under different photometric conditions. Our method returns the correct match
for 99 images. For an additional 10 images, it gives the correct match within the
top five. Only 6 images have not been recognized among the first five and are
considered as failures. The complete recognition process needs about 1.5 - 1.7
seconds for one query image on PIII at 1GHz. Most of the time is spent on the
invariant region extraction. It should be noted that our code is not yet well op-
timized, so there is still room for improvement. The top row in Fig.4 shows one
recognition example in which the query image was occluded by a tram. The mid
row illustrates one retrieval result in which the correct result is not at the top
first position but at the second. The bottom row demonstrates a failure because
of significant occlusions in the query image.

5 Conclusions

In this contribution, a method to retrieve images from a database based on local
features was proposed. It makes it possible to search in a database for images
containing the same object or scene as shown in a query image, even in case
of large changes in viewpoint, occlusions, partial visibility, changes in the illu-
mination conditions, etc. The use of invariance together with efficient indexing
allow close to realtime performance. By approximating a hypersphere by a hy-
perpolyhedron and including an adaptive threshold, the amount of expensive
distance computations can be reduced, at the cost of extra scalar comparisons.
This is particulary useful in the foreseen application on PDA which typically
has no floating point unit. The effective indexing technology provides acceptable
searching speed for most applications. It is suitable for two types of queries: range



search and k-nearest-neighbor search. When the database becomes bigger, cor-
rect recognition rates decline because too many similar regions are found in other
images, especially since most buildings have similar colors and features. Adding
a re-ranking procedure as a postprocessing step that would include more ex-
pensive operations like epipolar geometry verification or cross-correlation could
probably further improve the retrieval accuracy.

Acknowledgement

This work is supported by Polyproject-Wearable computing of Swiss Federal
Institute at Zurich and the National Fund for Scientific Research Flanders (Bel-
gium).

Appendix: Volume of the hyperpolyhedron

b a b

b

a

b

r

Fig. 5. Two-dimensional hyperpolehydron

To find the total volume of the n-dimensional hyperpolyhedron, we subdivide
the n-dimensional hypercube into a set of rectangular boxes as illustrated in
figure 5 for the two-dimensional case, and compute for each of these boxes how
much of its volume is occupied by the hyperpolyhedron. More precisely, the
hypercube is divided by intersecting it with 2n hyperplanes Πi given by the
equation

xi = ±a/2, i = 1..n ,

a = 2(
√

2 − 1)r ,

b =
√

2(
√

2 − 1)r .

This way, the volume of the n-dimensional hyperpolyhedron can be written as

Vn(r) =

n
∑

k=0

Nkvkan−kbk



with Nk the number of boxes with dimensions an−kbk and vk the percentage
of the subvolume occupied by the hyperpolyhedron. Indeed, due to symmetry
reasons all the subvolumes with the same dimensions will have similar positions
relative to the hyperpolyhedron and hence will have a similar percentage of their
volume occupied by the hyperpolyhedron.

The number Nk of boxes with dimensions an−kbk is given by

Nk =

(

n
k

)

2k, k = 1..n

with

(

n
k

)

= n!
(n−k)!k! the number of combinations of k out of n.

The percentage of each subvolume occupied by the hyperpolyhedron vk can
be shown to be

v0 = 1 ,

vk = (1/2)k−1, k = 1..n .

Combining all these equations, the volume of a n-dimensional hyperpolyhe-
dron can be written as

Vn(r) = an +

n
∑

k=1

(

n
k

)

2an−kbk

= 2nrn(
√

2 − 1)n

[

1 +
n

∑

k=1

(

n
k

)

21−k/2

]

.

References

1. A. Baumberg. Reliable feature matching across widely separated views. In Computer

Vision and Pattern Recognition, pages 774–781, 2000.
2. Krystian Mikolajczyk and Cordelia Schmid. An affune invariant interest points

detector. In European Conference on Computer Vision, pages 128–142, 2002.
3. F. Mindru, T. Moons, and L. Van Gool. Recognizing color patterns irrespective of

viewpoint and illumination. In Computer Vision and Pattern Recognition, pages
368–373, 1999.

4. Sameer A. Nene and Shree K. Nayar. A simple algorithm for nearest neighbor
search in high dimensions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19, 1997.
5. J. Matas O. Chum, M. Urban and T. Pajdla. Robust wide baseline stereo from

maximally stable extremal regions. In British Machine Vision Conference, 2002.
6. Hao Shao, Tomáš Svoboda, and Luc Van Gool. ZuBuD — Zürich buildings database

for image based recognition. Technical Report 260, Computer Vision Laboratory,
Swiss Federal Institute of Technology, March 2003. Database downloadable from
http://www.vision.ee.ethz.ch/showroom/.

7. T. Tuytelaars and Van Gool. Wide baseline stero based on local affinely invariant
regions. In British Machine Vision Conference, 2000.


