Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn, Pieter Abbeel, Sergey Levine Presented by: Teymur Azayev

CTU in Prague

17 January 2019

Deep Learning

- Very powerful, expressive differentiable models.
- Flexibility is a double edged sword.

How do we reduce the amount of required samples?

Use Use Prior knowledge (not in a Bayesian sense). This can be in the form of:

- Model constraint
- Sampling strategy
- Update rule
- Loss function
- ▶ etc...

Meta learning

Learning to learn fast.

Essentially learning a prior from a distribution of tasks. Several recent successful approaches:

- Model based meta-learning [Adam Santoro et al.], [Jx Wang et al.], [Yan Duan et al.]
- Metric meta-learning [Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.], [Oriol Vinyals et al.]
- Optimization based meta-learning [Sachin Ravi and Hugo Larochelle], [Marcin Andrychowicz et al.],

Model Agnostic Metal Learning

Main idea: Learn a parameter initialization for a distribution of tasks, such that given a new task a small amount of examples (gradient updates) suffice.

Definitions

Task $T_i \sim p(T)$ is defined as a tuple $(H_i, q_i, \mathcal{L}_{T_i})$ consisting of

- time horizon H_i where for supervised learning $H_i = 1$
- initial state distribution $q_i(x_0)$ and state transition distribution $q_i(x_{t+1}|x_t)$
- Task loss function $\mathcal{L}_{T_i} \to \mathbb{R}$
- Task distribution p

Losses

1)
$$\theta'_{i} = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta}).$$

2) $\min_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta'_{i}})$
3) $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta'_{i}})$

- θ_i^* is the optimal parameter for task T_i
- θ'_i is the parameters obtained for task T_i after a single update
- 2) is the meta objective

Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
- 9: end while

Reinforcement learning

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = -\mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t \sim f_{\phi}, q_{\mathcal{T}_i}} \left[\sum_{t=1}^H R_i(\mathbf{x}_t, \mathbf{a}_t) \right]$$

Reinforcement learning adaptation

Argorithm 5 WAME for Remorement Learning
Require: $p(\mathcal{T})$: distribution over tasks
Require: α , β : step size hyperparameters
1: randomly initialize θ
2: while not done do
3: Sample batch of tasks $T_i \sim p(T)$
4: for all \mathcal{T}_i do
5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, \dots, \mathbf{x}_H)\}$ using f_{θ}
in \mathcal{T}_i
6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
7: Compute adapted parameters with gradient descent:
$ heta_i' = heta - lpha abla_{ heta_i}(f_ heta)$
8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, \dots, \mathbf{x}_H)\}$ using $f_{\theta'}$
in \mathcal{T}_i
9: end for
10: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T} \in \mathcal{T}} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'})$ using each \mathcal{D}'_i
and \mathcal{L}_{τ} in Equation 4

Algorithm 2 MANT for Deinforment Learning

11: end while

Tasks: Regressing randomly generated sin waves

- ▶ amplitudes ranging in [0.1,5]
- ▶ phases [0, 2*π*]
- ▶ Sampled uniformly in range [-5,5]

Sin wave regression

Classification tasks

Omniglot

- > 20 instances of 1623 characters from 50 different alphabets
- Each instance drawn by a different person
- Randomly select 1200 characters for training and the remaining for testing

MiniImagenet

▶ 64 training classes, 12 validation classes, and 24 test classes

RL experiment

- Rllab benchmark suite, Mujoco simulator
- Gradient update are computed using policy gradient algorithms.
- Tasks are defined by the agents simply having slightly different goals
- Agents are expected to infer new goal from reward after receiving only 1 gradient update.

Conclusion

- Simple effective meta learning method
- Decent amount of follow up work [?], [?]
- Concept extendable to meta learning other parts of the training procedure

Thank you for your attention

References

Marcin Andrychowicz et al.

Learning to learn by gradient descent by gradient descent. *NIPS 2016*

Yan Duan et al.

RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese Neural Networks for One-shot Image Recognition ICML 2015

Zhenguo Li et al.

Meta-SGD: Learning to Learn quickly for few shot learning. 2017

Matthias Plappert et al.

Meta-SGD: Parameter Space Noise for Exploration 2017

Sachin Ravi and Hugo Larochelle

Meta-SGD:Optimization as a Model for Few-shot Learning ICLR 2017

Adams Company of all

References I