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Deep Learning

I Very powerful, expressive differentiable models.

I Flexibility is a double edged sword.



How do we reduce the amount of required samples?

Use Use Prior knowledge (not in a Bayesian sense). This can be in
the form of:

I Model constraint

I Sampling strategy

I Update rule

I Loss function

I etc...



Meta learning

Learning to learn fast.
Essentially learning a prior from a distribution of tasks.
Several recent successful approaches:

I Model based meta-learning [Adam Santoro et al.],
[Jx Wang et al.], [Yan Duan et al.]

I Metric meta-learning
[Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.],
[Oriol Vinyals et al.]

I Optimization based meta-learning
[Sachin Ravi and Hugo Larochelle],
[Marcin Andrychowicz et al.],



MAML

Model Agnostic Metal Learning

Main idea: Learn a parameter initialization for a distribution of
tasks, such that given a new task a small amount of examples
(gradient updates) suffice.



Definitions

Task Ti ∼ p(T ) is defined as a tuple (Hi , qi ,LTi
) consisting of

I time horizon Hi where for supervised learning Hi = 1

I initial state distribution qi (x0) and state transition distribution
qi (xt+1|xt)

I Task loss function LTi
→ R

I Task distribution p



Losses

I θ∗i is the optimal parameter for task Ti

I θ
′
i is the parameters obtained for task Ti after a single update

I 2) is the meta objective



Algorithm



Reinforcement learning



Reinforcement learning adaptation



Sin wave regression

Tasks: Regressing randomly generated sin waves

I amplitudes ranging in [0.1, 5]

I phases [0, 2π]

I Sampled uniformly in range [−5, 5]



Sin wave regression



Classification tasks

Omniglot

I 20 instances of 1623 characters from 50 different alphabets

I Each instance drawn by a different person

I Randomly select 1200 characters for training and the
remaining for testing

MiniImagenet

I 64 training classes, 12 validation classes, and 24 test classes



RL experiment

I Rllab benchmark suite, Mujoco simulator

I Gradient update are computed using policy gradient
algorithms.

I Tasks are defined by the agents simply having slightly
different goals

I Agents are expected to infer new goal from reward after
receiving only 1 gradient update.



Conclusion

I Simple effective meta learning method

I Decent amount of follow up work [?], [?]

I Concept extendable to meta learning other parts of the
training procedure



Thank you for your attention
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