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Introduction

Dissertation topic: interpretability, explainability
Visualizing the Impact of Feature Attribution Baselines
10.23915/distill.00022

Focus on: generative models, medical imaging (applications)
BraTS, KiTS, RA2, MURA
DeepLesion: automated mining of large-scale lesion annotations and
universal lesion detection with deep learning

Figure: DC-GAN sample of tumour segmentation (KiTS dataset)
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Motivation

Motivation

How does GAN represent a our visual world internally?

What causes artifacts in GAN results?

How do architectural choices affect GAN learning?
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Motivation

Motivation

Does GAN contain internal variables that correspond to the objects that
humans perceive?

If so, do they cause the actual generation or they just correlate?
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Previous work

Previous work

Network dissection: Quantifying interpretability of deep visual
representations (Bau, Zhou, et al., CVPR 17)

Unified perceptual parsing for scene understanding (Zhou et al.,
ECCV 18)

Generative adversarial nets (Goodfellow et al., NIPS 14)

Progressive growing of gans for improved quality, stability, and
variation (Karras et al., ICLR 18)
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Previous work

Generative Adversarial Networks

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log (1− D(G (z)))]
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Previous work
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Method Overview

Method

1. The information is present, but how?

2. Characterizing units by dissection

3. Measuring causal relationships using intervention
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Method Overview

tensor r from layer from G

r = h(z)

image x from random z through a composition of layers

x = f (r) = f (h(z)) = G (z)

so x is a function of r
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Method Overview

feature map rU,P

universe of concepts c ∈ C
can we factor r at locations P?

rU,P = (rU,P , rU,P)

where P depends on rU,P and not on rU,P
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Method Dissection
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Figure: Which units correlate to a object class?
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Method Dissection

Characterizing units by dissection

Intersection-over-union measure for spatial agreement between unit u’s
thresholded featuremap and c’s segmentation

IoUu,c ≡
Ez |(r↑u,P > tu,c) ∧ sc(x)|

Ez |(r↑u,P > tu,c) ∨ sc(x)|

tu,c = arg max
t

I (r↑u,P > sc(x))

H(r↑u,P > sc(x)
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Method Causality intervention

After we identified units that match closely with object class, we want to
know which ones are responsible for triggering the rendering of the object.
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Figure: Insert and remove units and observe causality.
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Method Causality intervention

Causal relationships intervention

Original image

x = G (z) ≡ f (r) ≡ f (rU,P rU,P)

U ablated at P
xa = f (0, rU,P)

U inserted at P
xi = f (k , rU,P)
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Method Causality intervention

Average causal effect of units u on c

δU→c ≡ Ez,P [sc(xi )]− Ez,P [sc(xa)]

Relaxed to partial ablations/insertions

xa = f ((1− α)� rU,P , rU,P)

xi = f (α� k + (1− α)� rU,P , rU,P)

Optimize α, SGD, L2

α∗ = arg min
α

(−δα→c + λ||α||2)
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Method Causality intervention

J.Žitný GAN Dissection 16/ 20



Method Causality intervention
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Method Causality intervention
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Method Results

Results

Practical implications

Debugging, monitoring, tracing
Controlling — tuning / composing GAN outputs

Observations

Usually multiple units are responsible for generating an object
First has no units that match semantic objects
Later layers are dominated by low-level materials, edges and colors
Network learns the context of object location (e.g. windows can be on
building, but not in the sky)
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Method Results

DEMO
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http://gandissect.res.ibm.com/ganpaint.html?project=churchoutdoor&layer=layer4


Questions?

Thank you
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