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Abstract. With the emergence of autonomous navigation systems, image-
based localization is one of the essential tasks to be tackled. However,
most of the current algorithms struggle to scale to city-size environments
mainly because of the need to collect large (semi-)annotated datasets for
CNN training and create databases for test environment of images, key-
point level features or image embeddings. This data acquisition is not
only expensive and time-consuming but also may cause privacy concerns.
In this work, we propose a novel framework for semantic visual local-
ization in city-scale environments which alleviates the aforementioned
problem by using freely available 2D maps such as OpenStreetMap. Our
method does not require any images or image-map pairs for training
or test environment database collection. Instead, a robust embedding is
learned from a depth and building instance label information of a partic-
ular location in the 2D map. At test time, this embedding is extracted
from a panoramic building instance label and depth images. It is then
used to retrieve the closest match in the database.

We evaluate our localization framework on two large-scale datasets con-
sisting of Cambridge and San Francisco cities with a total length of
drivable roads spanning over 500 km and including approximately 110k
unique locations. To the best of our knowledge, this is the first large-scale
semantic localization method which works on par with approaches that
require the availability of images at train time or for test environment
database creation.

1 Introduction

In this work, we propose a novel framework for semantic visual localization in
2D maps. Our work is motivated by the need for easy-to-use, scalable localiza-
tion methods. One of the biggest challenges in achieving this goal includes the
need of collecting large semi-annotated datasets of images [1-5], point clouds [6,
7] or key-point level features [8] which is not only computationally expensive
but also causes additional privacy concerns. In localization task, image datasets
are collected for two reasons: (i) to learn image or key-point level features and
embeddings [4, 5,9, 3], and (ii) to collect a database of images, image-level em-
beddings or 2D features of the test environment [4,5,9, 3,10, 11, 7]. In most deep
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Fig. 1. This figure illustrates the typical results of our large scale semantic localization
method. The top two rows show input query images with overlayed estimated building
instances and estimated depth images for five locations of the query trajectory (marked
by black circles). The bottom image shows the map locations similarity score for the
last trajectory location encoded as a heat map (blue - low, red - high). The red circle
marks the estimated most confident location for the 16*" query image and the ground
truth location is marked in purple.

network approaches [10,11,7] or in conventional feature-based approaches [12,
13], images from the same or sometimes similar [3] environments are used. In
contrast, our method does not require any images in order to train our embed-
ding network or to build a database of test environments. Instead, it leverages
the freely available 2D maps (e.g. OpenStreetMap [14]). Hence, our approach
allows us to train a framework for localization on large cities in less than 24
hours effortlessly following the steps explained below.

Our method consists of four key steps. Firstly, a 2D map of a city of interest
is downloaded from OpenStreetMap [14]. Secondly, a set of 2D map locations are
sampled from the map. For each location, a semantic descriptor which encodes
surrounding building presence as well depth profile is extracted. Thirdly, an em-
bedding network is trained to learn the mapping of semantic descriptors to a low
dimension space. The mapping ensures that descriptors of spatially close loca-
tions in the 2D map are similar in the embedding space and vice-versa. Finally,
at test time, embeddings are calculated on semantic descriptors extracted from
the building instance label [15,16] and depth images [17] of the query image.
They are then compared to the database of embeddings of the test environment
locations to retrieve the most similar location.

The contributions of our work are as follows: (i) a novel semantic descriptor
which encodes building instances and depth which can be efficiently extracted
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from both 2D map as well as from an RGB image, and (ii) a novel efficient
localization framework which can be trained fully from 2D map data without any
annotated images for training or for building a database for the test environment.

We evaluate our method on 110k Google StreetView images from Cambridge
and San Francisco cities. Our dataset covers more than 500km of the total driv-
ing length, of which query trajectories cover 200km. We significantly outper-
form binary semantic descriptor (BSD [18,19]) on both single location retrieval
and trajectory retrieval. A typical trajectory localization result obtained by our
network is shown in Figure 1. We also outperform the most recent large scale
localization approach [3], which requires the collection of images for training of
their method, at the task of trajectory retrieval and demonstrate less sensitivity
to the miss-match between training and test datasets. To the best of our knowl-
edge, this is the first large scale semantic localization method which does not
require images to train embedding network nor to build a representation of the
test environment and works on par with localization techniques [3] which require
the availability of images for training.

The rest of this work is divided as follows. Section 2 discusses relevant work
in localization. Section 3 provides details of our proposed localization method.
Sections 4 and 5 describe the experiment setup and corresponding results.

2 Related Work

In this section, we provide a description of related work for retrieval-based, end-
to-end trained, and very large-scale localization methods.

Localization by image retrieval. Image retrieval localization methods [8, 20,
21,1,2,4,5,9] work by finding the visually most similar image in a database of
previously collected set of images and reporting the associated image pose of the
best match. Images in the database are commonly represented by a collection of
local features (e.g. SIFT [22]) which are often aggregated to a single feature vec-
tor per image (e.g. bag-of-visual-worlds [12], Fisher Vector [13]). To reduce the
storage of the database, the compression of aggregated features is proposed [23]
for efficient storage and fast matching of query images. To improve the local-
ization pipeline, feature extraction, aggregation and compression stages can be
replaced by end-to-end learned image representations [4,5,9] which yield bet-
ter performance than the methods using hand-crafted features. The accuracy of
the localization, assuming that correct closest database images can be retrieved,
depends significantly on how densely the environment is sampled in order to
build comprehensive database of the images. To refine the localization accuracy,
several approaches have been proposed [6, 24, 25] that extend the retrieval-based
localization by 3D information enabling precise 6-DoF camera pose estimation.
These methods use either (i) global 3D reconstruction [26-29] from all database
images [6,24] and then establish 2D-3D matches to estimate the query image
camera pose by PnP [30, 31] algorithms or (ii) local 3D reconstruction from re-
trieved images [25] followed by a resection of the query image into the local
reconstruction. There are two common issues which are encountered when per-
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forming large-scale localization: (i) the requirement of large storage space for the
database, which is usually tackled by trying to compress the database without
the loss in localization accuracy [32,25] and (ii) the high self-similarity of feature
descriptors and local geometry [33] of unrelated images in large-scale datasets,
which hinders the accuracy of successful retrieval of closest images.

End-to-End localization. There are two general approaches in end-to-end
deep learning based localization. The first set of approaches can be described
as direct pose regression [34, 10,35, 36] methods. These methods train an end-
to-end network to regress camera pose for a given input image. The training
data consist of pairs of images and corresponding camera poses, where the cam-
era pose is usually represented by GPS coordinates (coarse localization [36])
or camera position and orientation (6-DoF accurate localization [34, 10, 35]). It
was shown recently by [37,7], that these direct pose regression approaches are
more similar to image-based retrieval methods. The results for unseen test im-
ages are internally computed by interpolating poses of training images rather
than by estimating accurate camera pose via the 3D structure of the scene. The
training data size and the distribution of the training poses in the test environ-
ment are crucial for these methods. The second set of approaches attempt to
regress 3D scene coordinates [11,7] for each image pixel followed by absolute
pose estimation algorithm (whether differentiable [38] or not [30,31]) for accu-
rate 6-DoF camera pose estimation. These methods generalize better for unseen
test images than direct pose regression methods, but require structured training
data (e.g. 3D mesh or point cloud) and are hard to scale to large scenes [38]
because of training convergence difficulty or lack of training data. The scaling
problem was partially addressed by [7] where the task of global scene coordinate
regression was separated into two tasks of object recognition and local coor-
dinate regression. This approach granted increased convergence speed and test
accuracy. However, long training times and storage requirements of the 3D scene
coordinates still prevent the scene coordinate regression works from being easily
applied for city-size level environments.

Very large scale localization. There are very few approaches which tackle
very large-scale localization problems on maps of size larger than 5km x 5km.
Examples of such works include [39], who proposed a method for localization by
matching a query trajectory estimated by visual odometry [40] to a GPS map
of road segments. This method is complementary to ours rather than a direct
competitor. Also, note, they use trajectory shapes to localize and need ”unique”
road topology to be successful, where our method can work in urban environ-
ment with Manhattan-like road topology, as demonstrated in San Francisco city
(see Section5). Methods proposed in [18,19] use a very small and efficient-to-
compute hand-crafted 4-bit binary semantic descriptor (BSD), which encodes
the presence of junctions and building gaps in panoramic images. While Abonce
et al. [3] proposed utilising a twin CNN-based embedding architecture for image
and map-tile respectively for fast and efficient retrieval. The main disadvantage
of [3] compared to our method is that it requires GPS annotated images for
training, whereas we need only the map data. The method [3] also relies on the
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network to learn geometric and semantic information from images and map-tiles
in a way suitable for this cross-modality matching, which is prone to overfit-
ting. On the other hand, we explicitly provide structured semantic information
during training (depth and building labels), which improves generalization (see
Section 5). Moreover, our method is easily adaptable to a new city (download-
ing a 2D map and training) where [3] needs to collect a new set of training
images. Our work is most similar to BSD [18,19] as we do not use images at
train time, which enables us to very quickly deploy our localization method in
new large-scale environments. However, unlike [18, 19], our method outperforms
image-based approache [3], which use images at train time, on several trajectory
retrieval metrics.

3 Method

Our proposed semantic localization method consists of four key steps: (i) collect-
ing the 2D map dataset, (ii) obtaining semantic descriptors for road locations
in the 2D map, (iii) training of an embedding network for the aforementioned
descriptors, and (iv) retrieving most similar individual locations and trajectories
in the database for a given semantic descriptor extracted from the query image.
These steps are explained in more detail below and in Figures 2 and 3.
Obtaining 2D map data. The first step of our localization framework in-
volves obtaining the 2D map data for the training of the embedding network
and for the creation of the embeddings database of the test environment. Open-
StreetMaps [14] service is used to download a 2D map, which contains a set
of 2D polygons or 2D lines representing objects such as buildings or road cen-
terlines. In this work, only building outlines are used for localization, however,
other objects such as trees, road signs or road markings could be used. A partial
illustration of a downloaded 2D map of the Cambridge (UK) city is shown at
the top of Figure 2. Note that the full map used in our experiments reported in
Section 5 cover approximately a 5 x 5km? area, which contains approximately
22000 buildings.

Obtaining semantic descriptors. The second step of our method involves ex-
tracting a semantic descriptor of an arbitrary location. This descriptor encodes
two types of information about the location: the instance boundaries between
buildings and corresponding distances between the query location and the build-
ings surrounding it. It is designed in such a way that it could be extracted both
from a 2D map and from depth and building instance label images. In more
detail, the following procedure is used to extract the semantic descriptor from
a 2D map. For a given location x; on a 2D map M, a quantised set of view-
ing directions © = {2%;Vi € N,s.t.0 < i < B — 1} are considered. For every
viewing direction § € O, a ray is cast from the location of interest. For each
ray the distance dy and corresponding building identity by of the closest in-
tersection is recorded. The vector b = [bg, by, ...bp_1] is transformed to vector

_ . . 2\ .
e = [eg, €1, ...ep_1] where e; = exp (% [mlnje{l\bl;ébprl}(@ —j mod B)} ), ie.
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Fig. 2. This figure illustrates the key steps of our approach. During training, we ran-
domly sample locations x, from the 2D map M and extract the corresponding semantic
descriptors fi from visible local map my. Note that the extracted descriptors are se-
mantically and geometrically augmented. The embedding network is then trained using
max margin triplet loss, where positive samples come from augmentations and negative
from different locations. To build a database for the test environment, semantic descrip-
tors and their embeddings are extracted for J road locations (visualized as black dots
in the map) of the 2D map My and possible drivable trajectories, L(¢),t € {1,...,T},
are generated given the map locations connectivity graph. At localization time, the pre-
dicted labels and depth for each query image are used to extract a semantic descriptor
f, which is then passed through the learned embedding network. The individual em-
beddings g, for query locations are compared with all database map embeddings g;
using Euclidean distance and the most similar trajectory, computed as the minimum
sum location-wise distance Dy j, is reported as the output.

each element encodes the distance to the closest building edge. This represen-
tation removes building identities and allows for a robust matching with noisy
building labels extracted from query images during the localization procedure.
An example of such descriptor is illustrated in Figure 3. The combined descrip-
tor is obtained by simply concatenating d = [dy, d1,...dp—1] and e resulting in
tensor f of shape B x 2. At test time, building instance label and depth images
are extracted using an off-the-shelf detection [15], semantic segmentation [16]
as well as depth estimation [17] networks. Building instances with low Mask-
RCNN [15] detection score (< 0.9) are filtered out. For each discretized angle
0, the most common building for that angle is obtained and transferred to the
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Fig. 3. The figure (a) illustrates the process of obtaining a semantic descriptor by
casting rays uniformly around a given location in the map obtained from Open-
StreetMap [14], and recording the distance of the first intersection dy and building
label by for each ray. The building labels are then converted to building edges and
transformed to e. The final descriptor is obtained by simply concatenating d and e.
The right figure (b) illustrates the process of extracting the semantic descriptor from
the query image. In the first phase, the Mask-RCNN [15] is used to detect building
instances. For each discretized column of the building instance segmentation image
the most common building label is computed and used to label the corresponding
columns of high resolution building class segmentation [16]. The second phase com-
bines estimated depth in the height range of 1m-20m with the high-resolution instance
segmentation to create a local map for which the same ray-casting procedure as for
figure (a) is used to obtain d and e components of the final descriptor f.

high resolution building segmentation® to obtain the final building instance seg-
mentation masks. For each pixel with a valid building label its’ corresponding
3D point is computed from the depth image [17], resulting in the same type
of semantic descriptor as extracted from the 2D map. The 3D points outside
of the height range of 1m-20m (assuming ground plane corresponds to the x-y
plane of the equirectangular image) are filtered out as this helps to remove most
false detections in the sky, sidewalks and street areas. The remaining 3D points
are orthographically projected onto the ground plane by ignoring the z-axis.
The same procedure as for obtaining a semantic descriptor from the 2D map
is then used. The whole descriptor extraction process is illustrated in Figure 3.
Note that by explicitly using semantic and geometric information, we can uti-
lize heavy semantically and geometrically meaningful augmentation during the
embedding network training, hence, making the descriptor embeddings more ro-
bust to changes captured by the augmentations. More implementation details
are provided in Section 4.

Descriptor embedding. The semantic descriptors f are embedded into 32 di-
mension vectors g using a 1D convolutional neural network. The architecture
is inspired by the VGG network [41], where the context for features is progres-
sively enlarged to accommodate relations between faraway buildings. The exact
architecture is described in Section 4. The CNN is trained using max-margin

3 Note, we found that semantic segmentation networks obtain higher quality segmen-
tations of building class labels.
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Fig. 4. The left figure shows the architecture of the embedding network. The table
provides information about the datasets used in our experiments.

triplet loss [42, 43], which encourages the similarity and dissimilarity of semantic
descriptors from the same and different locations respectively. All triplets min-
ing strategy [44] is used to generate triplets for batch training. As a result of
requiring only 2D maps for training the embedding network, there is a virtually
unlimited amount of training data available. More details for network training
and data augmentations are described in Sections 4.

Location retrieval. To retrieve the set of most similar locations from the
database, the semantic descriptor f; is extracted for all query images I, where
g € {1,...,Q}, and corresponding embeddings g, are obtained using the afore-
mentioned embedding network. The Euclidean distance: Dy ; = ||gq — &;l]2 is
measured between all query embeddings g, and database embeddings g;. This
procedure is illustrated on the right side of Figure 2. In order to perform retrieval
of trajectories, the trajectory is represented as an ordered set L(t) of database
indexes for all locations in the trajectory t in the order of trajectory traver-
sal. The trajectory score TR, for a trajectory ¢ is calculated as a sum of the
location-wise scores: TR; = ZjeL(t),qe{l,...,Q} D, ;. The most similar trajectory
(i.e. the minimum score) is returned as an output. We follow the protocol of [3]
for candidate trajectory generation as explained in Section 4.

4 Experimental Setup

In this section, we describe the details of the datasets, training procedure and
evaluation protocol employed.

Datasets. Since public large scale datasets covering cities larger than 5km x 5km
with dense equirectangular images were not available at the time of publication
we have collected our own dataset consisting of four cities: Pittsburgh, Manhat-
tan, Cambridge (UK) and San Francisco. For each city, we obtained a detailed 2D
building outline map from OpenStreetMap and a sample of Google StreetView
images. For example, in case of Manhattan, a total area of 35km? was covered
containing 55k buildings and 95k Google StreetView images. The corresponding
details for other cities are provided in Figure 4(b). In our experiments, we use
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Fig. 5. This figure illustrates the qualitative performance of a single location retrieval of
our method trained with Pittsburgh and Manhattan datasets. Three different columns
on the right side correspond to different depths used at test time: (i) depth provided by
Google StreetView (column 1), (ii) monocular depth estimation networks trained on
external city images (column 2) and a similar network trained on Cambridge images
(column 3). The quality of matches is encoded using a jet color scheme where best
matches are encoded in red and worst matches in blue. Ground truth location is marked
with a black circle. In the first row, due to the wrong depth of Google StreetView, the
ground truth location produces a relatively weaker match than for depths obtained from
monocular depth estimation networks. On the other hand, the second-row showcase
where the images and map do not correspond and the depth estimated by the mono-
depth approach hinders the localization. The results demonstrate the importance of
depth quality for the localization.

OpenStreetMap data and images from Pittsburgh and Manhattan for training
purposes (for competitors) and Cambridge as well as San Francisco for testing.
When reporting accuracy results on Cambridge city we use San Francisco as val-
idation data and similarly use Cambridge city as validation data for obtaining
results on San Francisco. Note, however, since we do not require any images for
training our embedding network it is also fair to use the 2D maps of the test
environment for training.

Network architecture. The CNN architecture used for semantic descriptor
embedding consists of seven sequentially stacked convolutional layers and a final
dense layer with 32 output units with Ly normalization of the 32 dimensional
vector. For the convolutional part of the architecture the number of channels is
doubled for every layer. The first convolutional block contains 16 channels and
the final one contains 1024. All convolutional layers have ReLU non-linearities,
zero padding, kernel size 3 and stride 2. The input descriptor is padded with
itself from both sides to form a 3B x 2 input in order to avoid boundary effects
in the network. Note that this padding is allowed by the circular property of
our semantic descriptors. Only the valid features of the last convolutional layer
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are passed to final fully connected layer. The illustration of the architecture is
shown in Figure 4(a).

Training Data augmentation. For each descriptor of a given OpenStreetMap
location, we perform two types of augmentation: geometric and semantic. Geo-
metric augmentations are: (i) rotation of descriptor by £5° (e.g. modeling miss-
alignment of map and image), (ii) translation of descriptor location +5m (e.g.
modeling imprecision of map location) and (iii) multiplicative depth noise per
building £10% and (iv) multiplicative depth noise per descriptor element +5%
of correct distances. The semantic augmentations are splitting buildings and
merging neighboring buildings, making building shorter or larger, and remov-
ing buildings. Using these probabilities for semantic augmentation 0.5, 0.3, 0.3,
0.4 and 0.2 respectively. Examples of descriptor augmentations are shown in
Figure 2 (left part).

Training Details. Adam optimizer with a learning rate of 0.0001 was used for
training. For the building identity removal from descriptors a Gaussian with 0
mean and variance set to 5 was used. The variance was set empirically with
slightly different values having a minimal effect. All the experiments reported
on our method were trained in less than 24 hours on a single Titan X GPU.
Evaluation Protocol. Our localization framework is evaluated with respect
to both single point and trajectory retrieval experiments. The quality of sin-
gle point retrieval is examined by calculating the percentage of the successful
retrieval of the query point for closest top 1%, 10% and 50% as shown in Fig-
ure 7(b). The accuracy of the trajectory retrieval is evaluated by the percentage
of successfully retrieved trajectories. The retrieval is considered successful if the
locations of final points of the query and retrieved trajectory are within 10m (a
relaxed version of methodology used in [3]). For Cambridge and San Francisco
cities we use 200 and 400 query trajectories correspondingly. They are matched
against 200K and 500K alternative trajectories. Testing locations are taken to
match GPS coordinates of StreetView images for compatibility with the evalu-
ation protocol of [3,18]. The alternative trajectories are generated by randomly
traversing a graph made of testing locations as nodes and location connectivity
as edges (see the illustration on the right side of Figure 2 and the supplementary
material for implementation details). The generating traversal algorithm pre-
vents trajectories from visiting the same location twice. Query trajectories are
selected at random with a constraint that a medium number of buildings within
trajectory should be larger than 3. See the visualization of query and database
trajectories in the supplementary material.

5 Experiments

We evaluate our proposed localization method on two tasks: single point retrieval
and trajectory retrieval, on different city combinations, and compare with com-
peting methods [18, 19, 3]. For the first competing method, we simulated binary
semantic descriptor BSD [18] estimation from images by replacing the learned
classifiers of junctions and building gaps with a classification accuracy of 75% as
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Fig. 6. The graph on the left shows the single point retrieval accuracy in top N% of
locations. Our localization method is trained on Manhattan and Pittsburgh cities and
tested using various depth predictions: (i) depth trained on the same city as tested on
(blue), (ii) depth trained on external cities (orange) and (iii) depth accompanying the
Google StreetView images (green). The depth trained on the same city achieves the
highest accuracy highlighting the effect of good depth estimation on the retrieval per-
formance. The middle and the right graphs show the same accuracy for various methods
tested on Cambridge and San Francisco cities respectively. Our method trained on all
four cities (P+M+C+S) achieved similar performance on both cities as best versions
of TE for top-1% accuracy. However, unlike IE, our method performs consistently on
both cities (note that the performance of IE versions differs significantly for Cambridge
and San Francisco). For the full quantitative results please see Table 7.

in [3]. For the second comparison, we directly employed our descriptors (denoted
as Hand-Crafted). Finally, we re-implemented the localization method of [3], de-
noted as Image Embedding (IE), following the guidelines provided in the pub-
lication and evaluated it in two settings - trained on Pittsburgh and jointly on
Pittsburgh and Manhattan. We evaluated our method trained on five different
sets of cities: (i) Cambridge, (ii) San Francisco, (iii) Pittsburgh, (iv) Pittsburgh
and Manhattan as well as (v) all four cities. It can be seen in the Figures 8 and 7
that our network performs best when all four cities are used. Also, respectively
a network trained on Cambridge data performs better on Cambridge query im-
ages than the one trained on the San Francisco city and the opposite. Since we
do not use any images for training the embedding network, it is easy to lever-
age training data from 2D maps for test environments to boost performance, as
demonstrated in these experiments.

5.1 Single Location Retrieval

In this experiment, we inspect the sensitivity of our method to errors in depth
estimation and we compare our work to several state-of-the-art methods [19, 3,
18] in single query localization task.

Sensitivity to incorrect depth. We trained a semantic descriptor embedding
network on a dataset consisting of the building outlines of Manhattan and Pitts-
burgh cities. At test time, depth images were obtained: (i) directly provided by



12 Vojir. T, Budvytis, 1., Cipolla, R.

Single Query Localization [Top x%)] Trajectory Localization [Top 1]
Method Cambridge  San Francisco Average Cambridge San Francisco Average

1% 10% 1% 10% 1% 10% 80m 160m 320m 80m 160m 320m 80m 160m 320m

BSD (75%) 96 451 @ 131 529 0 114 490 | 69 272 700 13 62 213 11 167 457
Ours: Hand-Crafted 374 863 386 781 0 380 822 | 152 318 622 . 138 243 553 @ 145 281 588
Ours: Pittsburgh 1.2 862 342 713 377 788 | 304 535 88.0 187 353 703 246 444 792
Ours: Pittsburgh + Manhattan | 44.2  87.8 = 47.7 836 = 460 857 | 200 585 866 353 589 862 322 587 864
Ours: Cambridge 135 851 393 799  4l4 825 | 286 590 8.7 215 439 778 251 515 818
Ours: San Francisco 114 859 494 866 454 863 | 267 530 848 370 613 908 319 572 878
Ours: All (P+M+C+SF) | 45.1 864 514 87.6 483 87.0 [ 30.9 62.7 90.8 42.8 727 93.8 36.9 67.7 92.3
IE: Pittsburgh 19.3 934 465 856  47.9 89.5 | 40.1 65.9 857 344 658 903  37.3 659 88.0
IE: Pittsburgh + Manhattan 359 87.8 53.9 91.1 0 449 895 | 161 359 636 426 71.4 92.0 294 537 778

Fig. 7. This table shows the retrieval accuracy for top 1% and 10% best ranked single
locations and the accuracy of the correct trajectory retrieval at different lengths of
80m, 160m and 320m for various methods. The ”average” column shows a combined
score over Cambridge and San Francisco cities. The IE stands for the Image Embedding
method [3]. The best and second best results are in bold green and blue respectively.
Our method performs favorably against IE variations and, in total, outperforms IE
in average performance for trajectory retrieval. Note that our single method trained
on all cities (highlighted in bold) achieves consistently high performance. In contrast,
the performance of variations of IE method fluctuates significantly depending on the
combination of train and test data.

the Google StreetView (Cam-StreetView and San-StreetView), (ii) from monoc-
ular depth estimation network trained on external cities (Cam-External and
San-External) and (ii) from monocular depth estimation network trained di-
rectly on the images of Cambridge and San Francisco (Cam-Cam and San-San).
The depth provided with the Google StreetView images was filtered and used
to train the monocular depth networks as described above. Quantitative results
are shown in Figure 6 and Figure 7. The best performance is obtained using
a monocular depth network trained on the respective cities achieving 44.2% re-
trieval accuracy for top 1% predictions. Note that when testing using depth from
a network trained on external cities the results have equally high accuracy on
San Francisco city (48.1% at top-1%). As Google StreetView depth is provided
using a planar approximation, some of the depth planes are missing or incorrectly
placed, which significantly reduces the performance. Similarly, monocular depth
estimation networks struggle to generalize in some cases and provide incorrect
depth predictions. Figure 5 illustrates the qualitative results. For the rest of the
experiments, we use the depth predictions obtained using the third method*.

Comparison with alternative methods. Our network trained on all four
cities achieved only a 4.2% and 2.5% lower top 1% accuracy on Cambridge and
San Francisco respectively than IE [3]. On average, our method outperforms IE in
the top 1% criterion, which shows that our model is more robust to the different
test environments and less prone to overfitting. It is interesting to point out that
single query localization performance correlates with the trajectory localization,

4 Note that if LIDAR, stereo or other depth sensor data were available, they could be
used instead.
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Fig. 8. The left graph shows the combined trajectory retrieval accuracy for Cambridge
and San Francisco cities for varying trajectory length. Our method outperforms IE [3]
in combined scores for almost all trajectory lengths. The middle and right graphs show
the trajectory retrieval accuracy for 320m length trajectories on Cambridge and San
Francisco, respectively, when considering top-N trajectories. Our method trained on all
cities (P+M+C+S) is the top-performing with consistently high performance on both
cities and converges to 100% retrieval accuracy when considering the top 100 most
similar trajectories. Other methods need to consider ten times more trajectories.

but it is not the only factor. Our method performs better on average by 4.3%
when longer driving scenario (> 200m) is considered as shown in Figure 7.

5.2 Trajectory prediction

For the final set of experiments, we evaluated the same networks as in Section 5.1
for the trajectory retrieval task. Figures 7 and 8 illustrate quantitative results.
In particular, the left-most graph in Figure 8 shows that our network trained
on all four cities achieves the highest combined (Cambridge + San Francisco)
accuracy at all trajectory lengths larger than eight samples (= 80m). The right
side of the Figure 8 show the trajectory retrieval accuracy for the trajectories
of length 32 for Cambridge and San Francisco cities. It is important to note
that the performance of the variants of Image Embedding [3] networks differ
significantly when applied on Cambridge and San Francisco. The accuracy of the
image embedding network trained on Pittsburgh and Manhattan cities decreases
from 92.0% on San Francisco to 63.6% on Cambridge. This may be explained by
the networks over-fitting to a particular dataset or type of city. All our networks,
except for the one trained on Pittsburgh, show the biggest difference of 7.9%
when evaluated on different cities. Two qualitative results demonstrating the
strength and weaknesses of our and [3] methods are shown in Figure 9. In the
left example (Cambridge), our method fails mainly because of severe occlusion
by trees in most query images. Note that at the beginning of the trajectory,
our method was more confident because of the cross-road and later it become
less clear because of the occlusions. In contrast, the IE does not suffer from
occlusions by trees and is able to localize correctly. However, note that the second
best trajectory for IE is in the same location but the wrong direction and it
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GORRECT TRAJECTORY
o

Fig. 9. This figure shows two examples of trajectory retrieval for Cambridge (left) and
San Francisco (right). We show successful localization of our method (right) and a
typical failure (left) and also compare it to IE [3]. The first two rows show input query
images of the trajectory of length 32 with overlayed estimated building instances and
depths. The plots in the middle show mean confidence of trajectories w.r.t. the number
of query images. Each plot visualises scores for two most similar trajectories, the correct
trajectory (red) and few random trajectories in order to illustrate confidence margins.

does not fully exploit cross-road structures (visible on the trajectory confidence
graph). The second example on San Francisco (right part of the Figure) supports
the previously mentioned IE issue that it does not learn the proper geometric
structure and cannot take into account the width of the road.

6 Conclusions

We proposed a novel framework for semantic visual localization in 2D maps.
Our work was motivated by the need for easy-to-use, scalable localization meth-
ods. Unlike most state-of-the-art large scale localization methods [6,7,3], our
approach does not require any images at train time (either for training em-
bedding or building database of the test environment). Hence, it enables us to
train networks for localization on large cities in less than 24 hours effortlessly.
We achieved this by making use of the following procedure. We first obtain a
freely available 2D building outline maps from OpenStreetMap [14] and use them
for training a semantic embedding network for a descriptor containing depth
and building instances visible from particular locations on such a map. At test
time, we extract a similar descriptor from the building instance segmentation
and depth predictions of the actual query images and use it to find the closest
match to various locations of the map in the embedding space. We evaluated our
method on two cities of Cambridge and San Francisco. Our method significantly
outperformed binary semantic descriptor (BSD [18,19]) on both single location
retrieval and trajectory retrieval. It also obtained higher combined retrieval ac-
curacy than image-based localization method [3]. To the best of our knowledge,
this is the first large scale semantic visualization method which works on par
with localization techniques [3], which require images at train time.
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