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Abstract

In this paper, we propose a novel method for visual object tracking called
HMMTxD. The method fuses observations from complementary out-of-the box
trackers and a detector by utilizing a hidden Markov model whose latent states
correspond to a binary vector expressing the failure of individual trackers. The
Markov model is trained in an unsupervised way, relying on an online learned
detector to provide a source of tracker-independent information for a modified
Baum- Welch algorithm that updates the model w.r.t. the partially annotated data.

We show the effectiveness of the proposed method on combination of two
and three tracking algorithms. The performance of HMMTxD is evaluated on
two standard benchmarks (CVPR2013 and VOT) and on a rich collection of 77
publicly available sequences. The HMMTxD outperforms the state-of-the-art,
often significantly, on all datasets in almost all criteria.
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1. Introduction

In the last thirty years, a large number of diverse visual tracking methods
has been proposed [1, 2]. The methods differ in the formulation of the prob-
lem, assumptions made about the observed motion, in optimization techniques,
the features used, in the processing speed, and in the application domain. Some
methods focus on specific challenges like tracking of articulated or deformable
objects [3, 4, 5], occlusion handling [6], abrupt motion [7] or long-term track-
ing [8, 9].

Three observations motivate the presented research. First, most trackers per-
form poorly if run outside the scenario they were designed for. Second, some
trackers make different and complementary assumptions and their failures are not
highly correlated (called complementary trackers in the paper). And finally, even
fairly complex well performing trackers run at frame rate or faster on standard
hardware, opening the possibility for multiple trackers to run concurrently and yet
in or near real-time.

We propose a novel methodology that exploits a hidden Markov model (HMM)
for fusion of non-uniform observables and pose prediction of multiple comple-
mentary trackers using an on-line learned high-precision detector. The non-uniform
observables, in this sense, means that each tracker can produce its own type of
”confidence estimate” which may not be directly comparable between each other.

The HMM, trained in an unsupervised manner, estimates the state of the track-
ers – failed, operates correctly – and outputs the pose of the tracked object taking
into account the past performance and observations of the trackers and the detec-
tor. The HMM treats the detector output as correct if it is not in contradiction with
its current most probable state in which the majority of trackers are correct. This
limits the cases where the HMM would be wrongly updated by a false detection.
For the potentially many frames where reliable detector output is not available, it
combines the trackers. The detector is trained on the first image and interacts with
the learning of the HMM by partially annotating the sequence of HMM states in
the time of verified detections. The recall of the detector is not critical but it af-
fects the learning rate of the HMM and the long-term properties of the HMMTxD
method, i.e. its ability to reinitialize trackers after occlusions or object disappear-
ance.

Related work. The most closely related approaches include Santner et al. [10],
where three tracking methods with different rates of appearance adaptation are
combined to prevent drift due to incorrect model updates. The approach uses
simple, hard-coded rules for tracker selection. Kalal et al. [9] combine a tracking-
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by-detection method with a short-term tracker that generates so called P-N events
to learn new object appearance. The output is defined either by the detector or
the tracker based on visual similarity to the learned object model. Both these
methods employ pre-defined rules to make decisions about object pose and use
one type of measurement, a certain form of similarity between the object and the
estimated location. In contrary, HMMTxD learns continuously and causally the
performance statistics of individual parts of the systems and fuses multiple ”con-
fidence” measurements in the form of probability densities of observables in the
HMM. Zhang et al. [11] use a pool of multiple classifiers learned from different
time spans and choose the one that maximize an entropy-based cost function. This
method addresses the problem of model drifting due to wrong model updates, but
the failure modes inherent to the classifier itself remains the same. This is unlike
the proposed method which allows to combine diverse tracking methods with dif-
ferent inherent failure modes and with different learning strategies to balance their
weaknesses.

Similarly to the proposed method, Wang et al. [12] and Bailer et at. [13] fuse
different out-of-the box tracking methods. Bailer et al. combine offline the out-
puts of multiple tracking algorithms. There is no interaction between trackers,
which for instance implies that the method avoids failure only if one method cor-
rectly tracks the whole sequence. Wang et al. use a factorial hidden Markov
model and a Bayesian approach. The state space of their factorial HMM is the
set of potential object positions, therefore it is very large. The model contains a
probability description of the object motion based on a particle filter. Trackers
interact by reinitializing those with low reliability to the pose of the most con-
fident one. The Yuan et al. [14] using HMM in the same setup, but rather than
merging multiple tracking method, they focus on modeling the temporal change
of the target appearance in the HMM framework by introducing a observational
dependencies. In contrast, the HMMTxD method is online with tracker interaction
via a high precision object detector that supervises tracker reinitializations which
happen on the fly. The appearance modeling is performed inside of each tracker
and the HMMTxD capture the relation of the confidence provided by tracker and
its performance, validated by the object detector, by the observable distributions.
Moreover, the HMMTxD confidence estimation is motion-model free and this
prevents biases towards support of trackers with a particular motion model.

Yoon et al. [15] combines multiple trackers in a particle filter framework. This
approach models observables and transition behavior of individual trackers, but
the trackers are self-adapting which makes it prone to wrong model updates. The
adaptation of HMMTxD model is supervised by a detector method set to a spe-
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cific mode of operation – near 100% precision – alleviating the incorrect update
problem.

The contributions of the paper are: a novel method for fusion of multiple
trackers based on HMMs using non-uniform observables, a simple, and so far
unused, unsupervised method for HMMs training in the context of tracking, tun-
able feature-based detector with very low false positive rate, and the creation of a
tracking system that shows state-of-the-art performance.

2. Fusing Multiple Trackers

HMMTxD uses a hidden Markov model (HMM) to integrate pose and ob-
servational confidence of different trackers and a detector, and updates its own
confidence estimates that in turn define the pose that it outputs. In the HMM, each
tracker is modeled as working correctly (1) or incorrectly (0). The HMM poses
no constraints on the definition of tracker correctness, we adopted target overlap
above a threshold. Having at our disposal n trackers, the set of all possible states is
{s1, s2, . . . , sN} = {0, 1}n, N = 2n and the initial state s1 = (1, 1, . . . , 1). Note
that the trackers are not assumed to be independent, because an independence
of tracker correctness is not a realistic assumption. For example, if the tracking
problem is relatively easy, all trackers tend to be correct and in the case of occlu-
sion all tend to be incorrect (see the analysis in [16]). The number of states 2n

grows exponentially with the number of trackers. However, we do not consider
this a significant issue – due to ”real-time” requirements of tracking, the need to
combine more than a small number of trackers, say n = 4, is unlikely.

The HMMTxD method overview is illustrated in Fig. 1. Each tracker provides
an estimate of the object pose (Bi) and a vector of observables (xi), which may
contain a similarity measure to some model (such as normalized cross-correlation
to the initial image patch, distance of template and current histograms at given
position, etc.) or any other estimates of the tracker performance. The xi, i =
{1, 2, . . . ,n} serve as observables to relate the tracker current confidence to the
HMM. Each individual observable depends only on one particular tracker and its
correctness, hence, they are assumed to be conditionally independent conditioned
on the state of the HMM (which encodes the tracker correctness).

In general, there are no constraints on observable values, however, in the pro-
posed HMM the observable values are required to be normalized to the (0, 1) in-
terval. The observables are modeled as beta-distributed random variables (Eq. 1)
and its parameters are estimated online. The beta distribution was chosen for its
versatility, where practically any kind of unimodal random variable on (0, 1) can
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Figure 1: The structure of the HMMTxD. For each frame, the detector and trackers are run. Each
tracker outputs a new object pose and observables (Bi,xi) and the detector outputs either the
verified object pose Bd or nothing. If detector fires, HMM is updated and trackers are reinitialized
and the final output is the Bd, otherwise, HMM estimate the most probable state s∗ and outputs
an average bounding box B̄s∗ of trackers that are correct in the estimated state s∗.

be modeled by the beta distribution, i.e. for any choice of any lower and upper
quantiles, a beta distribution exists satisfying the given quantile constraint [17].

Learning the parameters of the beta distributions online is crucial for the adapt-
ability to particular tracking scenes, where the observable values from a different
trackers may be biased due to scene properties, or to adapt to a different types of
observables of trackers and their correlations to the ”real” tracker performance.
For example, taking correlation with the initial target patch as an observable for
one tracker and color histogram distance to a initial target for a second tracker,
the correlation between their values and the performance of the tracker may differ
depending on object rigidity and color distribution of object and background.

The HMM is parameterized by the pair λ = (A,F ), where A are the probabil-
ities of state transition and F are the beta distributions of observables with shape
parameters p, q > 0 and density defined for x ∈ (0, 1)

f(x|p, q) = xp−1(1− x)q−1∫ 1

0
up−1(1− u)q−1du

. (1)

Since the goal is real-time tracking without any specific pre-processing, learn-
ing of HMM parameters has to be done online. Towards this goal, the object de-
tector, which is set to operating mode with low false positive rate, is utilized to par-
tially annotate the sequence of hidden states. In contrast to classical HMM, where
only a sequence of observations X = {Xt}Tt=1, Xt = (x1,x2, . . . ,xn) is available,
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we are in a semi-supervised setting and have a time sequence 0 = t0 < t1 <
t2 . . . < tK ≤ T of observed states of a Markov chain S = {Stk = sik , {tk}Kk=1},
and Markov chain starting again in state s1, all trackers correct, at any time
{tk + 1, 0 ≤ k ≤ K}, since there are reinitialized to common object pose. This
information is provided by the detector, where {tk}Kk=1 is a sequence of detection
times. The HMM parameters are learned by a modified Baum-Welch algorithm
run on the observations X and the annotated sequence of states S. The partial
annotation and HMM parameter estimation update is done strictly online.

The output of the HMMTxD is an average bounding box of correct trackers of
the current most probable state s∗t . For t(k−1) < t < tk, 1 ≤ k ≤ K the forward-
backward procedure [18] for HMM is used to calculate probability of each state
at time t (see Eq. A.1-A.7) and the state s∗t ∈ {0, 1}n \ (0, 0, . . . , 0) is the state
for which

P (St = si|X1, . . . , Xt, St1 , . . . , St(k−1)
, λ) (2)

is maximal. This equation is computed using Eq. A.5 and maximized w.r.t
i, 1 ≤ i ≤ N . For tK < t ≤ T the Eq. 2 holds with t(k−1) = tK . This ensures
that the algorithm outputs a pose for each frame which is required by most bench-
mark protocols. Illustration of the tracking process and HMM insight is shown in
Fig. 2. Theoretically the parameters of HMM could be updated after each frame.
However, in our implementation, learning takes place only at frames where the
detector positively detects the object, i.e. the sequence of states starting and end-
ing with observed state inferred by the detector1. The detector is used only if the
detection pose is not in contradiction with the pose of the current most probable
state in which the majority of trackers are correct. This ensure that even when the
detector makes a mistake, the HMM is not wrongly updated. When we are in the
state that one or none of the trackers are correct, the detector get precedence.

3. Learning the Hidden Markov Model

For learning of the parameters λ of the HMM a MLE inference is employed,
however maximizing the likelihood function P (X,S|λ) is a complicated task that
cannot be solved analytically. In the proposed method, the Baum-Welch algo-
rithm [19] is adapted. The Baum-Welch algorithm is a widespread iterative pro-

1If pure online fusion is not required, future observations can also be used to determine the
probability of each state.
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Figure 2: Illustration of HMM state and trackers probability estimation during tracking. The
bottom graph shows the marginal probabilities for each tracker being correct and the detection
times (green spikes). Above the graph the inferred states s∗t with color encoded correct trackers
(1) are displayed. The final output is defined by the state s∗t and the bounding box is highlighted
by white color. Best viewed zoomed in color.

cedure for estimating parameters of HMM where each iteration increases the
likelihood function but, in general, the convergence to the global maximum is
not guaranteed. The Baum-Welch algorithm is in fact an application of the EM
(Expectation-Maximization) algorithm [20].

3.1. Classical Baum-Welch Algorithm
Let us assume the HMM withN possible states {s1, s2, . . . , sN}, the matrix of

state transition probabilities A = {aij}Ni,j=1, the vector of initial state probabilities
π = (1, 0, 0, . . . , 0), the initial state s1 = (1, 1, . . . , 1), a sequence of observations
X = {Xt}Tt=1, Xt ∈ Rm and F = {fi(x)}Ni=1 the system of conditional probability
densities of observations conditioned on St = si

fi(x) = f(x|St = si) for 1 ≤ i ≤ N, 1 ≤ t ≤ T, x ∈ Rm (3)

where St are random variables representing the state at time t, and λ = (A,F )
is denoting the parameter set of the model.

Let us denote

Q(λ, λ′) =
∑
s∈S

P (s|X, λ) log[P (s,X|λ′)], (4)

where S = {s1, s2, . . . , sN}T is a set of all possible T-tuples of states and
s ∈ S, s = (s1, . . . , st, . . . , sT ) is one sequence of states. According to Theorem
2.1. in [19]

Q(λ, λ′) ≥ Q(λ, λ)⇒ P (X|λ′) ≥ P (X|λ) (5)

7



and the equality holds if and only if P (s|X, λ) = P (s|X, λ′) for ∀s ∈ S. The
classical Baum-Welch algorithm repeats the following steps until convergence:

1. Compute λ∗ = argmaxλQ(λn, λ)

2. Set λn+1 = λ∗.

3.2. Modified Baum-Welch Algorithm
We propose the modified Baum-Welch algorithm that exploits the partially an-

notated sequence of states, where the known states are inferred from the detector
output. Let 0 = t0 < t1 < t2 . . . < tK ≤ T be a sequence of detection times,
S = {Stk = sik , {tk}Kk=1} be observed states of Markov chain, marked by the
detector, and Stk+1 = s1 for 0 ≤ k ≤ K. So the sequence of observations of
the HMM is divided into K + 1 independent subsequences, each with a fixed ini-
tial state s1, the first K subsequences with a known terminal state defined by the
detector and the last subsequence with an unknown terminal state.

The following equations are obtained by employing the modification to the
Baum-Welch algorithm,

log[P (s,X, S|λ)] =
T−1∑
t=1

log astst+1 +
T∑
t=1

log fst(Xt), (6)

Q(λn, λ) =
∑
s∈S

P (s|X,S, λn)
T−1∑
t=1

log astst+1+

∑
s∈S

P (s|X,S, λn)
T∑
t=1

log fst(Xt).

(7)

The maximization of the Q(λn, λ) can be separated to maximization w.r.t.
transition probability matrix A = {aij}Ni,j=1 by maximizing the first term and
w.r.t. observable densities F = {fi(x)}Ni=1 by maximizing the second term.

The maximization of Eq. 7 w.r.t. A constrained by
∑N

j=1 aij = 1 for 1 ≤ i ≤
N is obtained by re-estimating the parameters Â = {âij}Ni,j=1 as follows:

âij =
expected number of transitions from state si to state sj

expected number of transitions from state si

=

∑T−1
(t=1 and t6=tk,1≤k≤K) P (St = si, St+1 = sj|X,S, λ)∑T−1

(t=1 and t6=tk,1≤k≤K) P (St = si|X,S, λ)
. (8)
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This equation is computed using modified forward and backward variables of
the Baum-Welch algorithm to reflect the partially annotated states. For the exact
derivation of formulas for computation of âij see the Appendix A.

3.2.1. Learning Observable Distributions
The maximization of Eq. 7 w.r.t. F = {fi(x)}Ni=1 depends on assumptions on

the system of probability densities F . It is usually assumed (e.g. in [18, 19]) that
F is a system of probability distributions of the same type and differ only in their
parameters.

In the HMMTxD the m-dimensional observed random variables
Xt = (X1

t , X
2
t , . . . , X

m
t ) ∈ Rm are assumed conditionally independent and to

have the beta-distribution, so fi(x), 1 ≤ i ≤ N are products ofm one-dimensional
beta distributions with parameters of shape {(pij, qij)}mj=1, 1 ≤ i ≤ N . In this
case maximization of the second term of the Eq. 7 is an iterative procedure using
inverse digamma function which is very computationally expensive [17].

We propose to estimate the shape parameters of the beta distributions with a
generalized method of moments. The classical method of moments is based on
the fact that sample moments of independent observations converge to its theoret-
ical ones due to the law of large numbers for independent random variables. In
the HMMTxD observations X = {Xt}Tt=1 are not independent. The generalized
method of moments is based on the fact that {Xt − E(Xt|X1, X2, . . . , Xt−1)}Tt=1

is a sequence of martingale differences for which the law of large numbers also
holds. Using the generalized method of moments gives estimates of the parame-
ters of shape

p̂ji = µ̂ji

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
(9)

and

q̂ji = (1− µ̂ji )

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
(10)

where

µ̂ji =

∑T
t=1X

j
t P (St = si|X,S, λ)∑T

t=1 P (St = si|X,S, λ)
(11)

and

(σ̂ji )
2 =

∑T
t=1(X

j
t − µ̂

j
i )

2P (St = si|X,S, λ)∑T
t=1 P (St = si|X,S, λ)

. (12)
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Let us denote the system of probability densities with re-estimated parameters
as F̂ = {f̂i(x)}Ni=1. The generalized method of moments is described in detail in
the Appendix B.

3.2.2. Algorithm Overview
The complete modified Baum-Welch algorithm is summarized in Alg. 1, where

after each iteration P (X,S|λn+1) ≥ P (X,S|λn) and we repeat these steps until
convergence. Note that Ân is a maximum likelihood estimate of A therefore al-
ways increases P (X,S|λn) (shown in [18]) but F̂n is estimated by the method
of moments so the test on likelihood increase is required (”if statement” in the
Alg. 1). In fact, this algorithm structure match to the generalized EM algorithm
(GEM) introduced in [20].

Algorithm 1: Algorithm for HMM parameters learning
Input: X, S, λn = (An, Fn)
Output: λn+1 = (An+1, Fn+1)
repeat

Compute likelihood P (X,S|λn)
Estimate Ân by Eq. 8 and F̂n by Eq. 9, 10
if P (X,S|Ân, F̂n) < P (X,S|An, Fn) then

λn+1 = (Ân, Fn)
else

λn+1 = (Ân, F̂n)

λn = λn+1 = (An+1, Fn+1)

until convergence ∨ max number of iteration

4. Feature-Based Detector

The requirements for the detector are: adjustable operation mode (e.g. set
for high precision but possibly low recall), (near) real-time performance and the
ability to model pose transformations up to at least similarity (translation, rotation,
isotropic scaling). Basically, any detector-like approach can be used and it may
vary based on application. We choose to adapt a feature-based detector which
has been shown to perform well in image retrieval, object detection and object
tracking [8] tasks.
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There are many possible combinations of features and their descriptors with
different advantages and drawbacks. We exploit multiple feature types: specif-
ically, Hessian keypoints with the SIFT [21] descriptor, ORB [22] with BRISK
and ORB with FREAK [23]. Each feature type is handled separately, up to the
point where point correspondences are established. A weight is assigned to each
feature type wg and is set to be inversely proportional to the number of features
on the reference template, to balance the disparity in individual feature numbers.

The detector works as follows. In the initialization step, features are extracted
from the inside and the outside of the region specifying the tracked object. De-
scriptors of the features outside of the region are stored as the background model.

Usually, the input region is not 100% occupied by the target; therefore, fast
color segmentation [24] attempts to delineate the object more precisely than the
axis-aligned bounding box to remove the features that are most likely not on the
target. The step is not critical for the function of the detector, since the bounding
box is a fall-back option. We assume that at least 50% of the bounding box is
filled with pixels that belong to the target, if the segmentation fails (returns a
region containing less than 50% of area of the bounding box), all features in the
initial bounding box are used.

Additionally, for each target feature, we use a normal distribution N (µf , σf )
to model the similarity of the feature to other features. The parameters µf and
σf are estimated in the first frame by randomly sampling 100 features, other than
f , and computing distances to the feature f , from which the mean and variation
are computed. This allows defining the quality of correspondence matches in a
probabilistic manner for each feature, thus getting rid of global static threshold
for the acceptable correspondence distance.

In the detection phase, features are detected and described in the whole image.
For each feature gi from the image the nearest neighbour (in Euclidean space or
in Hamming distance metric space, depending on the feature type) feature b∗ from
the background model and the nearest neighbour feature f ∗ from the foreground
model are computed. A tentative correspondence is formed if the feature match
passes the second nearest neighbour test and a probability that the correspondence
distance belongs to the outlier distribution is lower than a predefined significance
set to 0.1%. So

d(gi, f
∗)

d(gi, b∗)
< 0.8 ∧ F(d(gi, f ∗)|µf

∗
, σf

∗
) < 0.1% (13)

where F(d|µf∗ , σf∗) is a c.d.f. of the normal distribution with parameters µf∗
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and σf∗ of a distance distribution of features not corresponding to f ∗. The 0.1%
significance corresponds to the µ− 3σ threshold. Finally, RANSAC estimates the
target current pose using a sum of weighted inliers as a cost function for model
support

cost =
∑
i

wgi ∗ [gi == inlier], (14)

which takes into account the different numbers of features per feature type on the
target.

The decision whether the detected pose is considered correct depends on the
number of weighted inliers that supports the RANSAC-selected transformation
and it controls the trade-of between precision and recall of the method. This
threshold is automatically computed in the first frame of the sequence as max(5,min(0.03∗
max number of features in target bbox, 10)). The threshold interval (5,10) and
the feature multiplier (0.03) were set experimentally to have the false positive rate
close to zero for the most of the testing sequences. Furthermore, majority voting
is used to verify that the detection is not in contradiction to the estimated HMM
state, i.e. if we are in the state where two or more (majority) trackers are cor-
rect and the detector is not consistent with them, the detection is not used. This
mitigates the false positive detections, therefore HMM updates, when the trackers
works correctly.

The true and false positives for 77 sequences are shown in Fig. 3, where the
detector works on almost all sequences with zero false positive rate (0.46% aver-
age false positive rate on the dataset) and 30% recall rate. The failure cases of this
feature-based detector are mostly caused by the imprecise initial bounding box,
which contains large portion of structured background (i.e. background where the
detector finds features) and due to the presence of similar object in the scene, e.g.
sequences hand2, basketball, singer2.

5. HMMTxD Implementation

To demonstrate the performance of the proposed framework, a pair and a
triplet of published short-term trackers were plugged into the framework to show
the performance gain by combination of a different number of trackers. As Bailer
et al. [13] pointed out, not all trackers when combined can improve the overall
performance (i.e. adding tracking method with similar failure mode will not ben-
efit).

We therefore choose methods that have a different designs and work with
different assumptions (e.g. rigid global motion vs. color mean-shift estimation
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Figure 3: Frames with the detections for 77 sequences dataset. The green marks show the true
positive detection and red marks are false positive. The blue line shows the recall of the detector
and blue dashed line shows the average recall over all sequences. The length of each sequence is
normalized to range (0, 100).

vs. maximum correlation response). These trackers are the Flock of Trackers
(FoT) [25], scale adaptive mean-shift tracker (ASMS) [26] and kernelized cor-
relation filters (KCF) [27]. This choice shows that superior performance can be
achieved by using simple, fast trackers (above 100fps) that may not represent the
state-of-the-art. The trackers can be arbitrarily replaced depending on the user
application or requirements.

Trackers
The Flock of Trackers (FoT) [25] evenly covers the object with patches and es-

tablishes frame-to-frame correspondence by the Lucas-Kanade method [28]. The
global motion of the target is estimated by RANSAC.

The second tracker is a scale adaptive mean-shift tracker (ASMS) [26] where
the object pose is estimated by minimizing the distance between RGB histograms
of the reference and the candidate bounding box. The KCF [27] tracker learns a
correlation filter by ridge regression to have high response to target object and low
response on background. The correlation is done in the Fourier domain which is
very efficient.

These three trackers have been selected since they are complementary by de-
sign. FoT enforces a global motion constrain and works best for rigid object with
texture. On the other hand, ASMS does not enforce object rigidity and is well
suited for articulated or deformable objects assuming their color distribution is
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discriminative w.r.t. the background. KCF can be viewed as a tracking-by detec-
tion approach using sliding window like scanning.

For each tracker position, two global observable measurements are computed,
namely the Hellinger distance between the target template histogram and the his-
togram of the current position and normalized cross-correlation score of the cur-
rent patch and the target model patch. These target models are initialized in the
first frame and then updated exponentially with factor of 0.5 during each posi-
tive detection of the detector part. Additionally, each tracker produces its own
estimate of performance. For FoT it is the number of predicted correspondences
(for details please see [25]) that support the global model. For ASMS it is the
Hellinger distance between its histogram model and current neighbourhood back-
ground (i.e. color similarity of the object and background) and for KCF it is a
correlation response of the tracking procedure.
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Figure 4: CVPR2013 OPE benchmark comparison of individual trackers and their combination in
the proposed HMMTxD. The 2-HMMTxD denotes the combination of FoT and ASMS trackers
and 3-HMMTxD is a combination of FoT, ASMS and KCF trackers. Det stands for the proposed
detector. The right plot show simple combination of individual trackers with the proposed detector.
Suffix ”-D” refers to the combination with detector.

6. Experiments

The HMMTxD was compared with state-of-the-art methods on two standard
benchmarks and on a dataset TV772 containing 77 public video sequences col-

2http://cmp.felk.cvut.cz/˜vojirtom/dataset/index.html
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lected from tracking-related publications. The dataset exhibits wider diversity of
content and variability of conditions than the benchmarks.

Parameters of the method were fixed for all the experiments. In the HMM,
the initial beta distribution shape parameters (p, q) were set to (2, 1) for correct
state (1) and (1, 2) for fail state (0) for all observations and the transition matrix
was set to prefer staying in the current state. The transition matrix has 0.98 on
diagonal, 0 in fist column, 0.001 in last column, 1e − 10 in last row and 0.05
otherwise. The matrix is normalized so that rows sum to one. States in the matrix
are binary encoded starting from the left column which corresponds to the state
s1 = (1, ..., 1). The number of iteration for Baum-Welch alg. was set to 3.

The processing speed on the VOT2015 dataset is (in frames per second) mini-
mum 1.03, maximum 33.72 and average 10.83 measured on a standard notebook
with Intel Core-i7 processor. This speed is mostly affected by the number of fea-
tures detected in the images which correlates to the resolution of the image (in the
dataset the range is from 320x180 to 1280x720).

First, we compare the performance of individual parts of the HMMTxD frame-
work (i.e. KCF, ASMS, FoT trackers) and their combination via HMM as pro-
posed in this paper. Two variants of HMMTxD are evaluated – 2-HMMTxD refers
to combination of FoT and ASMS trackers and the 3-HMMTxD to combination
of all mentioned trackers. We also show the benefit of the proposed detector
when simply combined with the individual trackers in such way that if detector
fires the tracker is reinitialized. The Figure 4 shows the benefit gained from the
detector and further consistent improvement achieved by the combination of the
trackers. More detailed per sequence analysis on the TV77 dataset (Fig. 5 and
Fig. 6) shows more clearly the efficiency of learning tracker performance online.
In almost all sequences the HMMTxD is able to identify and learn which trackers
works correctly and achieve the performance of at least the best tracker or higher
(e.g. motocross1, skating1(low), Volkswagen, singer1, pedestrian3, surfer). Most
notable failure cases are caused by the detector failure, e.g. in sequences singer2,
woman, skating1, basketball, girl mov.

In all other experiments, the abbreviation HMMTxD refers to the combination
of all 3 trackers.

Evaluation on the CVPR2013 Benchmark [29] that contains 50 video se-
quences. Results on the benchmark have been published for about 30 trackers.
The benchmark defines three types of experiments: (i) one-pass evaluation (OPE)
– a tracker initialized in the first frame is run to the end of the sequence, (ii) tem-
poral robustness evaluation (TRE) – the tracker is initialized and starts at a random
frame, and (iii) spatial robustness evaluation (SRE) – the initialization is perturbed

15



 

 

si
ng
er
2

si
ng
er
1(
lo
w
fp
s)

so
cc
er

w
om

an

gy
m
na
st
ic
s

cl
iff
-d
iv
e2

di
vi
ng

p
er
so
n

sk
at
in
g1

P
an
da

ba
sk
et
ba
ll

gi
rl
m
ov

ha
nd
2

di
no
sa
ur

A
sa
da

bi
rd

1

tr
an
s

ca
r1
1

ju
m
p

V
ol
ks
w
ag
en

M
ot
oc
ro
ss

p
ed
es
tr
ia
n4

C
ar
C
ha
se

ti
ge
r2

sk
at
in
g2

sk
at
in
g1
(l
ow

fp
s)

bi
rd

2

an
im
al

p
ed
es
tr
ia
n3

ti
ge
r1

su
rf
er

fig
ur
e
sk
at
in
g

fo
ot
ba
ll

V
id

L

gy
m

vo
lle
yb
al
l

sk
iin
g

dr
un
k2

m
ot
oc
ro
ss
1

b
oa
rd

cl
iff
-d
iv
e1

V
id

J

gi
rl

ha
nd

co
ke

do
g1

V
id

K

sh
ak
in
g
ca
m
er
a

b
ol
t

V
id

E

ju
m
pi
ng

tr
el
lis

V
id

F

sh
ak
in
g

b
ox

to
ru
s

V
id

I

da
vi
d

V
id

D

V
id

A

Sy
lv
es
tr

si
ng
er
1

le
m
m
in
g

V
id

G

m
ou
nt
ai
n-
bi
ke

du
de
k-
fa
ce

liq
uo
r

he
ad

m
ot
io
n

V
id

B

O
cc
lu
de
dF
ac
e2ca
r

fa
ce
oc
c1

p
ed
es
tr
ia
n5

m
ot
oc
ro
ss
2

tr
ac
k
ru
nn
in
g

V
id

H

V
id

C

Det

HMMTxD

KCF

FoT
ASMS

Det(0.30)HMMTxD(0.71)KCF(0.53)FoT(0.38)ASMS(0.42)

re
ca
ll

0

20

40

60

80

100

Figure 5: Per sequence analysis of the single trackers (i.e. KCF, ASMS, FoT) and the proposed
HMMTxD. The average recall is shown by the dashed lines (precise number is in the legend).
Black circles mark grayscale sequences. The sequences are ordered by HMMTxD performance.
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Figure 6: Per sequence analysis of the single trackers combined with the detector (i.e. KCF-D,
ASMS-D, FoT-D) and the proposed HMMTxD. The average recall is shown by the dashed lines
(precise number is in the legend). Black circles mark grayscale sequences. The sequences are
ordered by HMMTxD performance.

spatially. Performance is measured by precision (spatial accuracy, i.e. center dis-
tance of ground truth and reported bounding box) and success rate (the number
of frames where overlap with the ground truth was higher than a threshold). The
results are visualized in Fig. 7 where only results of the 10 top performing track-
ers are plotted. Together with the tracker from this benchmark, we also added
the MEEM [11] tracker, which is a recent state-of-the-art tracker. The proposed
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Figure 7: Evaluation of HMMTxD on the CVPR2013 Benchmark [29]. The top row shows the
success rate as a function of the overlap threshold. The bottom row shows the precision as a
function of the localization error threshold. The number in the legend is AUC, the area under
ROC-curve, which summarizes the overall performance of the tracker for each experiment.

HMMTxD outperforms all trackers in the success rate in all three experiments.
Its precision is comparable to MEEM [11] the top performing tracker in terms of
precision. HMMTxD outperforms significantly the OPE results reported in Wang
et al. [12], where 5 top performing trackers from this particular benchmark were
used for combination (other experiments were not reported in the paper).

VOT2013 benchmark [30] evaluates trackers on a collection containing 16
sequences carefully selected from a large pool by a semi- automatic clustering
method. For comparison, results of 27 tracking methods are available and the
added MEEM tracker was evaluated by us using default setting from the publicly
available source code. The performance is measured by accuracy, average overlap
with the ground truth, and robustness, the number of re-initialization of the tracker
so that it is able to track the whole sequence. Average rank of trackers is used as
an overall performance indicator.

In this benchmark, the proposed HMMTxD achieves clearly the best accuracy
(Fig. 8). With less than one re-initialization per sequence it performs slightly
worse in terms of robustness due to two reasons.

Firstly, the HMM recognizes a tracker problem with a delay and switching
to other tracker (here even one frame where the overlap with ground truth is
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Figure 8: Evaluation of HMMTxD on the VOT 2013 Benchmark [30]. HMMTxD result is shown
as the red circle. The left plot shows the ranking in accuracy (vertical axis) and robustness (hori-
zontal axis) and the right plot shows the raw average values of accuracy and robustness (normalized
to the (0, 1) interval). For both plots the top right corner is the best performance.

zero leads to penalization) and secondly the VOT evaluation protocol, which re-
quire re-initialization after failure and to forget all previously learned models (the
VOT2013 refer to this as causal tracking), therefore the learned performance of
the trackers is forgotten and has to be learned from scratch.

The results for the baseline and region-noise experiments are shown in Fig. 8.
Note that the ranking of the methods differs from the original publication since
two new methods (HMMTxD and MEEM) were added and the relative ranking of
the methods changed. The top three performing trackers and their average ranks
are HMMTxD (8.77), PLT (9.24), LGTpp [31] (10.11). MEEM tracker ends up at
the fifth place with average rank 10.87. The rankings were obtained by the toolkit
provided by the VOT in default settings for baseline and region noise experiments.

The second best performing method on the VOT2013 is the unpublished PLT
for which just a short description is available in [30]. PLT is a variation of
structural SVM that uses multiple features (color, gradients). STRUCK [32] and
MEEM [11] are similar method to the PLT based on SVM classification. We
compared these method with HMMTxD on the diverse 77 videos along with the
TLD [9] which has a similar design as HMMTxD. HMMTxD outperforms all
these methods by a large margin on average recall – measured as number of frames
where the tracker overlap with ground truth is higher than 0.5 averaged over all
sequences. Results are shown in Fig. 9. Qualitative comparison of these state-of-
the-art methods is shown in Fig. 10. Even for sequences with lower recall (e.g.
bird 1, skating2), the HMMTxD is able to follow the object of interest.

18



 

 

si
ng
er
2

si
ng
er
1(
lo
w
fp
s)

so
cc
er

w
om

an

gy
m
na
st
ic
s

cl
iff
-d
iv
e2

di
vi
ng

p
er
so
n

sk
at
in
g1

P
an
da

ba
sk
et
ba
ll

gi
rl
m
ov

ha
nd
2

di
no
sa
ur

A
sa
da

bi
rd

1

tr
an
s

ca
r1
1

ju
m
p

V
ol
ks
w
ag
en

M
ot
oc
ro
ss

p
ed
es
tr
ia
n4

C
ar
C
ha
se

ti
ge
r2

sk
at
in
g2

sk
at
in
g1
(l
ow

fp
s)

bi
rd

2

an
im
al

p
ed
es
tr
ia
n3

ti
ge
r1

su
rf
er

fig
ur
e
sk
at
in
g

fo
ot
ba
ll

V
id

L

gy
m

vo
lle
yb
al
l

sk
iin
g

dr
un
k2

m
ot
oc
ro
ss
1

b
oa
rd

cl
iff
-d
iv
e1

V
id

J

gi
rl

ha
nd

co
ke

do
g1

V
id

K

sh
ak
in
g
ca
m
er
a

b
ol
t

V
id

E

ju
m
pi
ng

tr
el
lis

V
id

F

sh
ak
in
g

b
ox

to
ru
s

V
id

I

da
vi
d

V
id

D

V
id

A

Sy
lv
es
tr

si
ng
er
1

le
m
m
in
g

V
id

G

m
ou
nt
ai
n-
bi
ke

du
de
k-
fa
ce

liq
uo
r

he
ad

m
ot
io
n

V
id

B

O
cc
lu
de
dF
ac
e2ca
r

fa
ce
oc
c1

p
ed
es
tr
ia
n5

m
ot
oc
ro
ss
2

tr
ac
k
ru
nn
in
g

V
id

H

V
id

C

HMMTxD

TLD

STRUCK

MEEM

HMMTxD(0.71)TLD(0.45)STRUCK(0.50)MEEM(0.58)

re
ca
ll

0

20

40

60

80

100

Figure 9: Evaluation of state-of-the-art trackers on the TV77 dataset in terms of recall, i.e. number
of correctly tracked frames. The average recall is shown by the dashed lines (precise number is
in the legend). Black circles mark grayscale sequences. The sequences are ordered by HMMTxD
performance.

Figure 10: Qualitative comparison of the state-of-the-art trackers on challenging sequences from
the TV77 dataset (from top bird 1, drunk2, singer1, skating2, surfer, Vid J).
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7. Conclusions

A novel method called HMMTxD for fusion of multiple trackers has been
proposed. The method utilizes an on-line trained HMM to estimate the states of
the individual trackers and to fuse a different types of observables provided by
the trackers. The HMMTxD outperforms its constituent parts (FoT, ASMS, KCF,
Detector and its combinations) by a large margin and shows the efficiency of the
HMM with combination of three trackers.

HMMTxD outperforms all methods included in the CVPR2013 benchmark
and perform favorably against most recent state-of-the-art tracker. The HMMTxD
also outperforms all method of the VOT2013 benchmark in accuracy, while main-
taining very good robustness, and ranking in the first place in overall ranking.
Experiments conducted on a diverse dataset TV77 show that the HMMTxD out-
performs state-of-the-art MEEM, STRUCK and TLD methods, which are similar
in design, by a large margin. The processing speed of the HMMTxD is 5 − 10
frames per second on average, which is comparable with other complex tracking
methods.
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Appendix A. Forward-Backward Procedure for Modified Baum-Welch Al-
gorithm

Let us assume the HMM withN possible states {s1, s2, . . . , sN}, the matrix of
state transition probabilities A = {aij}Ni,j=1, the vector of initial state probabilities
π = (1, 0, 0, . . . , 0), the initial state s1 = (1, 1, . . . , 1), a sequence of observations
X = {Xt}Tt=1, Xt ∈ Rm and F = {fi(x)}Ni=1 the system of conditional probability
densities of observations conditioned on St = si.

Let 0 = t0 < t1 < t2 . . . < tK ≤ T be a sequence of detection times,
S = {Stk = sik , {tk}Kk=1} be observed states of Markov chain, marked by the
detector, and Stk+1 = s1 for 0 ≤ k ≤ K.

The forward variable for the Baum-Welch algorithm is defined as follows. Let
1 ≤ i ≤ N, 1 ≤ k ≤ K, t(k−1) < t ≤ tk and

αt(i) = P (Xt(k−1)+1, . . . , Xt, St = si|λ) then (A.1)
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αt(k−1)+1(1) = f1(Xt(k−1)+1), (A.2)

αt(k−1)+1(i) = 0 for i 6= 1 (A.3)

and for t(k−1) < t < tk

α(t+1)(i) =
N∑
j=1

αt(j)ajifi(Xt+1), (A.4)

P (St = si|X1, . . . Xt, St1 , St2 , . . . , St(k−1)
, λ) =

αt(i)∑N
j=1 αt(j)

. (A.5)

For tK < t < T the forward variable is in principle the same as above with
t(k−1) = tK . So

P (XtK+1, . . . , XT |λ) =
N∑
i=1

αT (i) (A.6)

P (X,S|λ) =
K∏
k=1

αtk(ik) ∗
N∑
i=1

αT (i) where Stk = sik . (A.7)

The backward variable for t(k−1) < t < tk is

βt(i) = P (Xt+1, . . . , Xtk , Stk |St = si, λ), (A.8)

where βtk(ik) = 1 and βtk(i) = 0 for i 6= ik and

βt(i) =
N∑
j=1

aijfj(Xt+1)βt+1(j). (A.9)

For tK < t < T the backward variable is in principle the same as above where
βT (i) = 1 for 1 ≤ i ≤ N .

Given the forward and backward variables, we get the following probabilities,
that are used to update parameters of HMM. For 0 < t < T and t 6= tk, 1 ≤ k ≤
K

P (St = si, St+1 = sj|X,S, λ) = (A.10)

αt(i)aijfj(Xt+1)β(t+1)(j)∑N
k=1

∑N
l=1 αt(k)aklfl(Xt+1)βt+1(l)

(A.11)
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and for 0 < t ≤ T

P (St = si|X,S, λ) =
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

. (A.12)

The final equation for the update of transition probabilities A of HMM is as
follows.

âij =
expected number of transitions from state si to state sj

expected number of transitions from state si
(A.13)

=

∑T−1
(t=1 and t6=tk,1≤k≤K) P (St = si, St+1 = sj|X,S, λ)∑T−1

(t=1 and t6=tk,1≤k≤K) P (St = si|X,S, λ)
. (A.14)

Appendix B. Generalized Method of Moments

For a simplification let us assume HMM with one-dimensional observed ran-
dom variables {Xt}+∞t=1 , Xt ∈ R. The sequence {Xt−E(Xt|X1, X2, . . . , Xt−1)}+∞t=1

is a martingale difference series where

E(Xt|X1, X2, . . . , Xt−1) =
N∑
i=1

E(Xt|X1, X2, . . . , Xt−1, St = i)P (St = i)

(B.1)

=
N∑
i=1

E(Xt|St = i)P (St = i). (B.2)

Under the assumption that {Xt}+∞t=1 are uniformly bounded random variables
i.e. |Xt| < c, c ∈ (0,+∞) for all t ≥ 1, the strong law of large numbers for a sum
of martingale differences can be used(see Theorem 2.19 in [33]). So

lim
T→+∞

1

T

T∑
t=1

[Xt −
N∑
i=1

E(Xt|St = i)P (St = i)] = 0 almost surely. (B.3)

Let us denote µi = E(Xt|St = i) for 1 ≤ t ≤ T and µ̂i the estimate of µi based
on the modified method of moments. The estimate µ̂i is a solution of a following
equation w.r.t. µi
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1

T

T∑
t=1

Xt =
1

T

T∑
t=1

N∑
i=1

µiP (St = i). (B.4)

Having one equation for N unknown variables µi, 1 ≤ i ≤ N it is necessary
to add some constrains to get a unique solution. We propose to minimize

T∑
t=1

N∑
i=1

(Xt − µi)2P (St = i), (B.5)

w.r.t. µi, 1 ≤ i ≤ N giving

µ̂i =

∑T
t=1XtP (St = si)∑T
t=1 P (St = si)

(B.6)

which satisfy the moment equation (B.4). The same way of reasoning can be used
for higher moments of {Xt}Tt=1. For example using {(Xt)

2}Tt=1 we get estimates
σ̂2
i for σ2

i = var(Xt|St = i) for 1 ≤ t ≤ T ,

σ̂2
i =

∑T
t=1(Xt − µ̂i)2P (St = si)∑T

t=1 P (St = si)
. (B.7)

In the HMMTxDm-dimensional observed random variablesXt = (X1
t , X

2
t , . . . , X

m
t )

are assumed, each of them having beta- distribution and being conditionally in-
dependent. There are well-known relations for a mean value EX and a variance
varX of a random variable X having beta distribution and its shape parameters
(p, q)

p = EX

(
EX(1− EX)

varX
− 1

)
(B.8)

and

q = (1− EX)

(
EX(1− EX)

varX
− 1

)
. (B.9)

Using the modified method of moments gives

µ̂ji =

∑T
t=1X

j
t P (St = si|X,S, λ)∑T

t=1 P (St = si|X,S, λ)
(B.10)

and

(σ̂ji )
2 =

∑T
t=1(X

j
t − µ̂

j
i )

2P (St = si|X,S, λ)∑T
t=1 P (St = si|X,S, λ)

. (B.11)
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Then

p̂ji = µ̂ji

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
(B.12)

and

q̂ji = (1− µ̂ji )

(
µ̂ji (1− µ̂

j
i )

(σ̂ji )
2
− 1

)
. (B.13)

If we assume in our model λ = (A,F ) that for some {(ir, jr) ∈ {1, 2, . . . , N}×
{1, 2, . . . ,m} : pjrir = p, qjrir = q}Rr=1 then

p̂ = µ̂

(
µ̂(1− µ̂)

σ̂2
− 1

)
(B.14)

and

q̂ = (1− µ̂)
(
µ̂(1− µ̂)

σ̂2
− 1

)
(B.15)

where

µ̂ =

∑R
r=1

∑T
t=1X

jr
t P (St = sir |X,S, λ)∑R

r=1

∑T
t=1 P (St = sir |X,S, λ)

(B.16)

and

σ̂2 =

∑R
r=1

∑T
t=1(X

jr
t − µ̂)2P (St = sir |X, S, λ)∑R

r=1

∑T
t=1 P (St = sir |X,S, λ)

. (B.17)
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