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Abstract The paper presents contributions to the design of the Flock of Trackers
(FoT). The FoT estimates the pose of the tracked object by robustly combining
displacement estimates from a subset of local trackers that cover the object and has
been. The enhancements of the Flock of Trackers are: (i) new reliability predictors
for the local trackers - the Neighbourhood consistency predictor and the Markov
predictor, (ii) new rules for combining the predictions and (iii) introduction of a
RANSAC-based estimator of object motion. The enhanced FoT was extensively
tested on 62 sequences. Most of the sequences are standard and used in the literature.
The improved FoT showed performance superior to the reference method. For all
62 sequences, the ground truth is made publicly available.

1 Introduction

The term ”visual tracking” covers a broad range of methods for estimation of the
pose and state of some entity in a sequence of images assuming temporal depen-
dence of the estimated quantities. The complexity of the tracked entity may range
from a rectangular region to a deformable or articulated object like human or animal
body. The pose refers to geometric parameters of the entity, in 2D tracking typically
a position, often with scale and rotation. The state represents all other information
about the object, e.g. its past appearance, dynamics or even a discriminative classi-
fier for redection [8, 6] or pointers to objects in the image with correlated motion [5].

Tomáš Vojı́ř
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Short-term frame-to-frame tracking is the most widely used form of visual track-
ing. It formulates the problem as a sequential casual estimation of the pose of an
object in the next frame given the pose in the current frame. Short term trackers do
not consider the problems of object re-detection after occlusion or disappearance -
some pose parameters are always output, regardless of the fact the tracked entity is
no more (visible) in the field of view. Prominent examples of short term trackers
are the Lucas-Kanade [11] and mean-shift [3] trackers. The popularity of short-term
trackers stems from their simplicity and, consequently, high speed and applicability
in a wide range of conditions.

The Flock of Trackers (FoT). Recently, Kolsch and Turk [10] and Kalal et al.
[8, 6] have shown that a very robust short-term tracker is obtained if a collection
(a ”flock”) of local short-term trackers covering the object is run in parallel and the
object motion is estimated from the displacements or, more generally, from trans-
formation estimates of the local trackers. Each local tracker is attached to a certain
area specified in the object coordinate frame. Following [8, 6, 14], we adopted the
Lucas-Kanade [11] algorithm for local tracking.

The block structure of the Flock of Trackers is illustrated in Fig. 1. In its simplest
form, the FoT requires only two components: a local short-term tracker, multiple
instance of which are run on different areas of the object and provide image-to-
image correspondence, and a (global) object motion estimation module robustly
combining the local estimates.

The FoT is a very attractive short-term tracker. In comparison to many recently
published methods, it is relatively simple and transparent and yet its performance
is close to the state of the art [14]. Its internal structure allows handling heavy par-
tial occlusion and local non-rigid changes and it makes the pose estimation robust,
since it does not depend on a single global property of the object but rather on a
composition of many local (weak) features. The FoT is slower then a monolithic
short-term tracker, but not by orders of magnitude since the local trackers operate
on small patches are thus fast.

In this chapter we show that the performance of the FoT is significantly improved
if the object motion module is provided with a confidence measure in the reliability
of the local tracker motion estimates. We propose (i) new reliability predictors for
the local trackers, (ii) new rules for combining the predictions and (iii) introduce a
new, RANSAC-based estimator of the object motion.

The local tracker reliability predictors presented in the chapter fall into two
groups. The first group contains methods that are applicable to any short-term
tracker and includes estimators based on the apparent magnitude of the intra-frame
appearance change like the sum of squared intensity differences (SSD), the nor-
malized cross-correlation (NCC) and the forward-backward procedure (FB). The
forward-backward procedure runs the Lucas-Kanade tracker [11] twice, once in the
forward direction time, as in a standard implementation, and then a second (extra)
run is made in the reverse direction. The probability of being an oulier, i.e. of tracker
failure, is a function of the distance of the initial position and the position reached
by the FB procedure.
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The second group of local tracker reliability predictors includes two estimators
applicable only to trackers running multiple local trackers, such as the FoT. One, a
new predictor based on the consistency of motion estimates in a local neighbour-
hood (PN ), exploits the fact that it is unlikely for a local motion estimate to be
correct if it differs significantly from other motion estimates in its neighbourhood.
The second new predictor reflects past performance of the local tracker. If a local
tracker motion estimate has (often) been an outlier in the (recent) past, i.e. it was
inconsistent with the global motion estimate, it is not likely to be correct in the cur-
rent frame. This occurs for instance when the area covered by the local tracker is
occluded or because the area is not suitable for tracking (e.g. it has near constant
intensity). This local predictor of tracker reliability is called the Markov predictor
(PM ), since it models the sequence of predicted states (either inlier or outlier) as a
Markov chain.

The Markov predictor uses the global object motion estimates as ground truth in
judging the correctness of local tracker motion. Naturally, the global motion esti-
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Fig. 1: Block structure of the Flock of Trackers (FoT). Correspondences (motion
estimates) between two images, given the previous object pose and two consecutive
images, are produced by local trackers. Simultaneously, reliability is estimated for
each motion estimate. The object pose in the next frame is robustly estimated from
a subset of most reliable motion estimates called tentative inliers.
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mate may be correct or incorrect, but the latter case need not be considered since
the FoT has failed anyway.

Combination of predictors. With the exception of the forward-backward proce-
dure, the evaluation of the reliability prediction is fast in comparison with the time
it takes to calculate the local motion estimate. It is therefore reasonable to combine
all fast predictors to achieve high accuracy and avoid, if possible, the FB procedure.

We show that the Markov and Neighbourhood predictors, both on their own and
when combined with the normalized cross-correlation predictor Pρ, are more re-
liable than the normalized cross-correlation predictor combined with the FB pro-
cedure used in the reference method [7]. The new predictors are computed effi-
ciently at a cost of about 10% of the complete FoT procedure whereas the forward-
backward procedure slows down tracking approximately by a factor of two, since
the most time consuming part of the process, the Lucas-Kanade local optimization,
is run twice. With the proposed combination of reliability predictors, a FoT with
much higher robustness to local tracker problems is obtained with negligible extra
computational cost.

We introduce and compare two predictor combination schemes: a predictor com-
bination method approximating a likelihood-based decision (denoted as PΘ) and
a simple ad-hoc predictor combination (denoted as P∧ combination). The ad-hoc
combination sets a reliability threshold for each predictor (i.e. Pρ, PM , PN ) and the
local tracker has to satisfy all of the condition to be used for pose estimation. The
likelihood-based method orders the local trackers based on their likelihood of being
correct. It allows choosing either the n best local trackers or a variable size subset
that on average maintains a certain level of the inlier ratio for robust object pose es-
timation. In experiments, we set the operating point of the PΘ combination so that
the number of the local trackers in the predicted inlier set (i.e. points, from which
the object pose is estimated) is the same in each frame for the P∧ and the PΘ meth-
ods. The methods are evaluated by inlier prediction precision and by how many true
inliers were in a predicted set.

Finally, we turn our attention to robust object motion estimation that takes as
input the local motion estimates equipped with their reliability predictions.

The reference method is the Median-Flow (MF) [7] tracker which was shown to
be comparable to the state-of-the-art where object motion, which is assumed to be
well modelled by translation and scaling, is estimated by the median of a subset of
local tracker responses.

Theoretically, the median with the breakdown point 0.5 is robust up to 50% of
corrupted data. Since a single displacement vector give an estimate of the trans-
lation, the median as a translation estimator is robust up to 50% of incorrect
local trackers. For scale estimation a ratio of pairwise distances of local track-
ers is used as an estimate of scale change, therefore a median is robust up to
100× (1−

√
0.5)%

.
= 29% of incorrect local trackers for scale estimation step.

In practice, the outlier tolerance is often lower since the outliers ”conspire”. The
outlier motion estimates originate from occluded or background areas. All local mo-
tion estimates in such areas are typically consistent with a motion of the occluding
object or the background, i.e. they are higher or lower than the tracked object mo-
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tion and bias the median based estimate. In challenging tracking scenarios presented
in Section 6, the inlier percentage was often not sufficient for the median-based es-
timation of global motion and it failed when used without local tracker reliability
prediction.

We show that RANSAC [2, 4] followed by least square fitting of inliers (LS)
as model estimator is a preferable alternative to the median estimator. There are
three main advantages of using the RANSAC+LS estimator: the model is estimated
consistently (i.e. translation estimation is not separated from scale estimation), the
motion model is not constrained to translation, scale and rotation; affine transforma-
tion or a homography requires only to change the sample size and it handles higher
outlier percentages.

The rest of the paper is structured as follows. Section 3 proposes two new pre-
dictors of local tracker failure and discusses the predictor parameters selection. Sec-
tion 4 discusses predictor combinations. Section 5 introduce RANSAC as a model
estimator. Finally, Section 6 evaluates the proposed improvements. Conclusions are
given in Section 7. This paper is an extension of a workshop paper [14].

2 Related Work

The work presented in the chapter builds on Kalal et al. [7] who mainly used the
FoT as a tracking component of the powerful Tracking-Learning-Detection system,
or TLD in short, long-term tracker [8]. Interestingly, with the improvements in pre-
sented in the chapter, the FoT with the combined new reliability prediction of local
trackers approaches performance of the TLD framework on sequences where rede-
tection is not needed, and yet is significantly faster.

The baseline FoT [7] places local trackers on a regular grid, i.e. the local trackers
cover the object uniformly. Object motion, which is assumed to be well modelled by
translation and scaling, is estimated by the median of a subset of local tracker dis-
placement estimates (translation) and the median of the relative change of distance
between positions of local tracker pairs (scale).

For reliability prediction of local trackers, Kalal et al. [7] use several standard
local tracker filtering methods, namely the normalised cross-correlation (or sum
of squared differences) of the corresponding patches, and the consistency of the
forward-backward procedure.

The original idea of exploiting a collection of trackers goes back at least to
Kölsch et al. [10] who proposed the Flock of Features for fast hand tracking us-
ing local trackers (Lucas-Kanade [11]) with color histograms for replenishing of
failed local trackers. They also enforce ”flock behaviour” [12] to detect failing lo-
cal trackers. The output of their tracker is the median position of the local trackers,
which manifests the flock behaviour.

Adam et al. [1] introduced FragTrack, which represents object by multiple
patches (histograms of local areas). During tracking, each patch votes for an ob-
ject pose by comparing its histogram to neighbourhood patch histograms. Robust
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statistics is then used to combine votes from multiple patches. Nejhum et al. [13]
combine global description (histogram over the whole object) and a small number of
rectangular blocks (weighted histograms) to determinate the most probable object
location. An approximate boundary contour is then extracted using graph-cut seg-
mentation. Block positions and weights are then updated. Kwon et al. [9] use local
patch-based appearance model and an efficient scheme for online evolution of the
local patch topology. For each frame, the Maximum a Posteriori (MAP) estimate is
computed from the observation and transition models of local patches in a Bayesian
manner.

3 Tracker reliability prediction methods

In this section, two novel methods for the local tracker reliability prediction are
presented: section 3.3 describes the Neighbourhood consistency reliability predic-
tor and section 3.4 presents the Markov predictor based on the long-term behaviour
of the local tracker. Before that, two predictors used in the literature are described:
the reliability predictor Pρ based on normalised cross-correlation of the correspond-
ing patches in consecutive frames (section 3.1) and the forward-backward predictor
(section 3.2

3.1 The NCC reliability predictor Pρ

The first step of the predictor is to calculate for each local tracker the normalized
cross-correlation NCC, eq. 1 between the patches T1 and T2 at corresponding posi-
tions and size (w, h) given by the motion estimate:

T ′1(x, y) = T1(x, y)− 1/(w · h) ·
∑
x′,y′ T1(x

′, y′)

T ′2(x, y) = T2(x, y)− 1/(w · h) ·
∑
x′,y′ T2(x

′, y′)

NCC =

∑
x,y(T

′
1(x, y) · T ′2(x, y))√∑

x,y T
′
1(x, y)

2 ·
∑
x,y T

′
2(x, y)

2

(1)

The Pρ predictor, introduced in [7] works as a ranking filter. It is difficult to find
a general function linking the NCC to tracker reliability, since NCC values for all
local trackers may change dramatically from frame to frame due to an illumination
change, shadows, small drifts, etc. The local trackers are thus only sorted by NCC
and their rank is used as a predictor.

The top 50% of the local trackers are predicted to be inlier (correct motion es-
timate), the rest as outliers (incorrect motion estimate). The threshold was selected
empirically. Figure 2a shows the histogram of ranks for both inliers and outliers and
supports the choice to filter 40%-50% of the worst local trackers, as the probability
of being an inlier in the bottom half of the ranks is smaller than the probability of
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Fig. 2: Properties of the Pρ predictor averaged over a subset of the test sequences
and all frames. (a) The histogram of NCC ranks ρ for local trackers with correct mo-
tion estimates (green) and incorrect motion estimates (red). (b) The correct/incorrect
motion estimate ratio as a function of NCC rank ρ (green), the reciprocal value in
red.

being an outlier. This is illustrated in figure 2b in terms of the likelihood ratio of
being an inlier/outlier. Another interesting fact is that probability of being an outlier
slightly rises around the 1-5 rank. This is caused by local trackers that are placed on
the background (due to the bounding box representation of object or tracker drift)
where a zero motion is estimated. The NCC values are very high on the static back-
ground.

Experimentally we observed that the Pρ predictor is sensitivity to local tracking
precision of the model and candidate patch - small misalignment may induce ar-
bitrary large similarity difference. This often happens for articulated or non-rigid
objects.

3.2 The forward-Backward reliability predictor PFB

This underlying idea behind the forward-backward predictor is that the process of
motion estimation between two images is independent of the order of the images.
In an error-free situation, tracking an image region using Lucas and Kanade [11]
gradient optimization from frame 1 → 2 and then the resulting image region from
2→ 1 will end up in the original position in the frame 1.

When the deviation from the original position in frame 1 is large, then at least
one of the two motion estimates is inaccurate. It is not unreasonable to assume
that reliability of the motion estimate is a monotonic function of the distance of
the original position and the position reached by the forward-backward procedure.
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Forward step

Backward step

frame t
t+1

t+2

Fig. 3: A reference point of a regions of interest is tracked forward in time (from
frame t → t + 1 → t + 2) and then backward. The positional forward-backward
error ε =‖ c− cfb ‖2 is then used as a measure of tracker reliability.

The process may be generalised and the forward and backward direction tracking
computed over larger number of frames. This is illustrated in Fig. 3.

Figure 4a shows the histogram of FB distance ranks for correct and incorrect mo-
tion estimates and supports the choice to filter 30%−50% of the worst local trackers,
as the probability of being an inlier in the bottom half of the ranks is smaller than
the probability of being an outlier. Figure 4b depicts the ratio of being an inlier or
outlier respectively as function of the rank. Similarly to Pρ predictor, the probability
of being an outlier rises around the 1-5 rank. This is also caused by local trackers
that are on the background and thus are consistent with FB procedure.

3.3 The neighbourhood consistency predictor PN

The assumption behind the neighbourhood consistency predictor is that the motion
of neighbouring local trackers is often very similar, whereas a failing local tracker
returns a random displacement.

The PN predictor is implemented as follows. For each local tracker i, a set of
neighbouring local trackers Ni is defined. In all experiments, Ni included the four
nearest neighbours of i. The neighbourhood consistency score SNi , the number of
the neighbourhood local trackers that have a similar displacement. The process is
visualised in Fig. 5.

We tested two definitions of the scoring functions given in eq. 2 and eq. 3. The
latter has superior performance and was adopted.
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Fig. 4: Properties of the PFB predictor averaged over a subset of the test sequences
and all frames. (a) The histogram of FB ranks for local trackers with correct motion
estimates (green) and incorrect motion estimates (red). (b) The correct/incorrect mo-
tion estimate ratio as a function of the FB rank (green), the reciprocal value in red.

frame t frame t+1

Neighbourhood
         of x

Projection of tested 
correspondence x Reprojection 

     error

Consistent area 

Similarity transformation between 
correspondences            ,

Fig. 5: Neighbourhood score computation for two pairs of correspondences. Each
unique pair of correspondences (green) i, j ∈ 1, 2, 3, 4 generate a similarity trans-
formation Tij . The tested (blue) correspondence x is transform by the estimated
similarities and the reprojection error εij =‖ x̂ij − x′ ‖2 is computed. The final
score is the number of εij < varepsilonN (number of x̂ij points inside green cir-
cle around x′).

S’Ni =
1

Z

∑
j∈Ni

[
|∠ij | < ε∠ &

‖∆j‖
‖∆i‖

∈ (εl, εh)

]
where [expression] =

{
1 if expression is true
0 otherwise

(2)
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and where ε∠ is the maximum angle threshold, (εl, εh) bounding range for the ratio
of displacement magnitudes, ∆i is the displacement of local tracker i and Z = 4

Ni
is normalization to 4-neighbourhood (to account for corners and sides of bounding
box). A local tracker is defined to be consistent if SNi ≥ θ, where θ is a threshold
for this predictor.

SNi =
1

Z

∑
j,k∈Ni
j 6=k

[
‖ Tjkxi − x′i ‖2< εN

]
where [expression] =

{
1 if expression is true
0 otherwise

(3)

Scoring function SNi counts the number of triplets of consistent local tracker. The
transformation Tjk calculated from motion estimates of trackers j and k is applied
on the reference point x of tracker i. If the transformed position Tjkxi is within εN
of its corresponding point x′i, one is added to the score. In experiments, εN was set
to 2.
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Fig. 6: Properties of the PN predictor averaged over a subset of test sequences and
all frames, (a) The normalized cumulative histogram of the local tracker state for
SN , (b) The Precision-Recall curve for PN predictor

When used as a decision function which is required in one of the predictor com-
bination methods described in the next section, there are finite number of possible
thresholds depending on the number of neighbourhood local trackers.

Figure 6a shows a normalized cumulative histogram of the local tracker state for
values of SN normalized to range < 0, 1 >. Threshold θN = 1/6 is chosen (i.e.
SN greater or equal to 1/3 to predict an inlier state) as a good trade off between the
ratio of filtered outliers and the false negative rate. Figure 6b shows the operating
point of this threshold on the Precision-Recall curve.
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3.4 The Markov reliability predictor PM

The Markov reliability predictor (PM ) is based on the model of the past performance
of a local tracker bound to a region specified by object coordinate frame. The model
is in the form of a Markov chain with two states, st ∈ {0, 1}, depicted in Fig. 7.

The predicted state (i.e. being correct - inlier or incorrect - outlier) of the local
tracker depends on its state in the previous time instance and on the transition prob-
abilities. The behaviour of each local tracker i at time t is modeled by transition
matrix Ti

t described in Eq. 4, where st is the current state of the local tracker and
whose columns sum to 1.

Ti
t =

[
pi(st+1 = 1 | st = 1) pi(st+1 = 1 | st = 0)
pi(st+1 = 0 | st = 1) pi(st+1 = 0 | st = 0)

]
(4)

Inlier = 1

Outlier = 0

Fig. 7: The state diagram of the Markov chain for the local tracker in the form of a
two-state probabilistic automaton with transition probabilities pi, where i identifies
the local tracker and initial state st=0 = 1.

The prediction that certain local tracker would be an tentative inlier (or an outlier)
is done according to equation 5.[

pi(st+1 = 1)
pi(st+1 = 0)

]
= Ti

t ·
[
pi(st = 1)
pi(st = 0)

]
(5)

where pi(st = 1) ∈ {0, 1} is binary and depends on the previous state (in-
lier/outlier) of the ith local tracker. The left side of equation 5 are then probabilities
that next state would be inlier (outlier).

In the update stage, transition probabilities are re-estimated as follows :

pi(st+1 = 1 | st = 1) =
ni11
ni1

pi(st+1 = 1 | st = 0) =
ni01
ni0

(6)

where n1 and n0 are numbers for the local tracker i being inlier (outlier respec-
tively), and n11 and n01 are relative frequency for event that the local tracker i was
inlier (outlier respectively) in the time t and inlier in the time t + 1, for t ∈ (0, t〉.
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The current state of the local tracker being inlier (outlier) is obtained by identifying
local trackers that support the estimated global motion model.

When used as a decision function which is required in one of the predictor com-
bination methods described in the next section, the observed characteristics support
the natural choice of tresholding the inlier probability at 0.5. Figure 8a depicts the
normalized cumulative histograms of a local tracker state for the Markov predictor
values quantized to 100 bins. It shows how many inliers/outliers would be filtered
out for different values of the θM threshold. The selected threshold 0.5 filtered out
4% of inliers and more than 35% of outliers. Figure 8b shows the operating point
for threshold 0.5 on the Precision-Recall curve.
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Fig. 8: Properties of the PM predictor averaged over a subset of test sequences and
all frames, (a) The normalized cumulative histograms of a the local tracker state for
p(st+1 = 1) values quantized to 100 bins, (b) The Precision-Recall curve for the
PM predictor

4 Methods for combining tracker reliability predictions.

This section describes two predictor combination methods – PΘ and P∧ and dis-
cusses their advantages and disadvantages. The explanation of the combination
methods is elaborate for the combination of three predictors Pρ, PN , PM .
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4.1 The PΘ combination method

The PΘ combination estimates the likelihood of a local tracker being an inlier.
The local tracker inlier likelihood is a function of three variables (i) Pρ rank
∈ {1, 2, . . . , 100} quantized equally to 25 bins, ρ = d rank

25 e (ii) The PN score
∈ {0, 1, 2, 3, 4} in case of four-neighbourhood (iii) PM probability ∈ (0, 1) quan-
tized equally to 25 bins. In the training phase a inlier/outlier likelihood ratio is esti-
mated for all the combinations of variables using a Bayesian approach. resulting in
a table with dimensions 25 × 5 × 25. The combination can work in two modes (1)
choose the fix threshold for local trackers inlier/outlier likelihood (2) take the n best
local trackers, to form a local trackers subset for object pose estimation.

The advantage of this combination is a possibility to take an quasi-optimal de-
cision (assuming independence of the individual predictors). The problem is for-
mulated as a hypothesis test whether a local tracker is an inlier (outlier) given the
likelihood ratio using a standard criterion such as Neyman–Pearson or min-max.
The disadvantage is the need of the learning phase to the estimate local tracker in-
lier likelihood, which may overfit to the training data. In practice, the likelihood
estimate generalized well enough to work in various scenarios.

4.2 The P∧ combination method

The P∧ predictor combination method computes responses of its constituent pre-
dictors and makes a binary decision for each of them (reliability below a threshold
is interpreted as an outlier and visa versa). The final decision about the local tracker
failure is a logical ”and” function:

f(Pρ,PN ,PM ) = ρ > median(ρ)
∧ SN > θN

∧ p(st+1 = 1) > θM

(7)

The P∧ combination method assumes that since local tracker predictors exploit
complementary information (i.e. Pρ predictor – local appearance, PM – temporal
behaviour, PN predictor – spatial consistency), parameters and threshold values of
the inlier/outlier decision may be set independently.

5 RANSAC

The median estimator is robust and has a breakdown point 0.5. However, as shown in
the experimental section, the percentage of correct local motion estimates is lower in
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many situations. Moreover, the median is biased if the noise is biased, which causes
drifting of the tracker. This drifting happens in cases, where the background is static
or locally static around the object of interest, e.g. when the bounding box is not a
precise representation of the object shape and some local trackers are placed on the
background.

We propose to use RANSAC for transformation estimation and show experimen-
tally its superiority. This method has two main advantages over the median: (1) Is
more robust to outliers (2) using unbiased least-square fitting to estimate transfor-
mation (up to homography).

6 Performance evaluation

6.1 The test data

The performance of the FoT with combined reliability prediction of local track-
ers and RANSAC-based object motion estimation was tested on challenging video
sequences collected from a number of recently published papers. The sequences
include object occlusion (or disappearance), illumination changes, fast motion, dif-
ferent object sizes and object appearance variance. The videos vary in length, con-
tain highly articulated object and background clutter; some have poor visual qual-
ity. Targets in the sequences exhibit out-of-plane and in-plane rotation and some
have homogeneous surfaces almost without texture. The sequences are described
in Tab. 1. For details about the sequences visit http://cmp.felk.cvut.cz/
˜vojirtom/dataset. The lists of authors who kindly provided the sequences
is available on the web site.

6.2 The experimental set-up

In all experiments, a frame was considered correctly tracked if the overlap with
the ground truth is greater than 0.5, with the exception of experiment 6.6 where
the influence of the initialization of the tracker was assessed. Since in this case
the bounding boxes are randomly generated and may not fully overlap the object,
the threshold was lower to 0.3, see Fig. 12. The overlap was measured as o =
area(T∩G)
area(T∪G) , where T is object bounding box reported by the tracker and G is ground
truth bounding box.

In the experiments, the predictor of neighbourhood consistency (PN ) and the
Markov predictor (PM ) were run as explained in Section 3. The normalized cross-
correlation (Pρ) and the forward-backward procedure rank local trackers and treat
the top 50% as inliers. Combinations of two or more predictors use the P∧ ap-

http://cmp.felk.cvut.cz/~vojirtom/dataset
http://cmp.felk.cvut.cz/~vojirtom/dataset
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proach. Predictors are denoted by the names of their error measure, except for the
combination PM + Pρ + PN which is abbreviated to Σ.

6.3 Comparison of P∧ combination vs. PΘ combination

The P∧ predictor combination is compared with the PΘ combination in terms of
inlier prediction precision. To make results comparable the measurement was done
at the operating point of P∧ combination, since this method does not guarantee a
number of predicted inliers and does not have any means for choosing n-best in
contrast to PΘ combination.

The PΘ combination needs to learn likelihoods for the combined likelihood ta-
ble of three criterion variables. A leave one out cross-validation was used to split
the dataset to the training and validation sets. That means that for evaluation on se-
quence i the table is learned on all sequences except the sequence i. True inliers were
extracted by comparing frame-to-frame tracking results with corresponding ground
truth positions and criteria variables were recorded. The recorded values (PN Score,
PM probability, Pρ rank) were quantized (to 5, 25, 25 bins) and used to compute the
inlier - outlier likelihood. Entries of the combined likelihood table are addressed by
the quantized criteria values.

Results in table 2 show that the two combination methods perform similarly.
The P∧ predictor combination has an advantage that it does not require learning
in advance. We choose to use the P∧ predictor combination to keep the tracker as
independent as possible of the training data and other external variables (e.g. the
precision of the ground truth used for extracting true inliers, the size of the dataset,
diversity of dataset, etc.).

6.4 Comparison of the reliability prediction methods

We compared performance of individual predictors and combinations PFB◦ρ (refer-
ence [7]), PN◦M and PΣ . All parameters for predictors were fixed for all sequences,
as described in Section 4.2.

The performance was measured by the recall and the number of reinitialization
needed to track the whole sequences (reinitialization after object disappearance are
not counted). The recall is defined as the ratio of the number of frame where the
estimated object rectangle had an overlap with the ground truth rectangle higher then
0.5 and the number of frames where the object is visible. Approximately speaking,
recall is the percentage of the frames with the tracked object visible where the object
was correctly tracked.

The results are summarized in tables 3 and 4. Both tables have the same structure.
Each line starting with a number presents results on one of the 62 sequence. The last
two lines summarize performance. The #best line compares the median flow object
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motion estimator (m, left) and the RANSAC-based estimator (r, right) by counting
the number of sequences when median flow outperformed RANSAC (the number
before the ”:”), where RANSAC dominated (the number after the ”:”), the number
of ”draws” is given in parentheses.

According to both the recall (table 3) and reinitialization (table 4) criteria,
RANSAC performs better for all reliability predictors and their combinations. Re-
sults for different predictors and combinations are presented in different columns.
The final line of the table compares the mean recall and reinitialization. RANSAC
performs better in terms of the mean too.

The ”mean” row allows comparison of the the reliability predictors, both individ-
ually and in combination. The combinations PN◦M and PΣ perform the best, clearly
better than any individual tracker and slightly better than the forward-backward pro-
cedure combined with the NCC. Note that the PΣ and even more PN◦M are signifi-
cantly faster than the FB procedure.

Fig. 9 visualizes the performance for selected combinations of predictors in a
manner facilitating comparison. Two combinations of predictors PΣ and PN◦M are
clear the most reliable methods.

Visualization of predictor performance on selected frames from two challanging
sequences are shown in Figs. 10 (motor-bike) and 11 woman. Predictor score is
encoded in a ”heat map” (red - high score, blue - low score). Green/Red boxes below
predictor score encodes false positive (red dot with red background), false negative
(green dot with red background), true positive (green dot with green background)
and true negative (red dot with green background). On the right side of the image,
a cut out shows the outlier (red) and inlier (green) motion estimates. The green-on-
black images shows the area covered by inlier local trackers.

For the motor-bike sequence, it is somewhat surprising that the motion estimates
on the biker are small. The biker is tracked by the cameraman and the position of
the bike in the image stays roughly the same, the background exhibits fast apparent
motion in the oposite direction. The FoT handle are rather large change of apperance
of the biker between frames #31 and #77.

The woman sequence is more challenging, due to occlusion and changes of ap-
pearance due to walking, the number of local trackers providing correct motion
estimates is small, as low as 19 out of 90 in frame # 18.

6.5 Comparison the speed of the reliability prediction methods

The FoT tracker is intended for real-time performance and thus the speed of lo-
cal tracker predictor is important. The experiment was performed on all sequences
listed in Tab. 1 and then the results were averaged. Speed was measured as the av-
erage time needed for frame-to-frame tracking. For results see Tab. 5. Processing
time for I/O operations, including image loading, and other tasks not relevant to
tracking were excluded. The PΣ predictor performs 41% faster than PFB◦ρ. Most
of the additional computation of PΣ over the P∅ lies in computation of normalized
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Fig. 9: Comparison of the best performing predictor combinations and estimators in
terms (a) Recall and (b) the number of reinitialization. Sequences (x-axis) are sorted
by the recall measure of the PΣ with RANSAC estimator.

cross-correlation. Therefore, the PN◦M overhead is negligible compared to refer-
ence predictor P∅ (i.e. tracker without any predictor) and is more than two times
faster then PFB◦ρ.

6.6 Robustness to bounding box initialization

For a tracking algorithm, it is highly desirable not to be sensitive to the initial pose
specified by the object bounding box as it is often selected manually, with unknown
precision.

If a part of the bounding box does not cover the object, the PM predictor soon
discover that the local trackers are consistently in the outlier set. This property can
be used to define the object more precisely, e.g. as the set of object parts that are
likely to be inliers according to PM (see Figs. 10 and 11 ). Thus, with PM , the
global tracker may be insensitive to initialization.
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This experiment tested the assumption on the challenging sequence Pedestrian 1,
where an articulated object is tracked in a sequence containing background clutter
and fast motions, which emphasize the need for correct initialization. We randomly
generated 100 initial bounding boxes overlapping the object of interest (Fig. 12) and
counted the correctly tracked frames (Tab. 6).

In the experiment, a frame was declared as correctly tracked if the overlap with
the ground truth was greater than 0.3. The tracker with the PΣ predictor performed
about 90% better than the tracker with the PFB◦ρ predictor and it was able to track
the object correctly up to frame 84 on average.

Figs. 13a and 13b show the histograms of the number of correctly tracked frames
for 100 runs with different initialization and Fig. 13c shows the 2D histogram of the
number of correctly tracked frames by PFB◦ρ and PΣ initialized with the same ran-
dom bounding box (to compare performance for individual random initialization).

7 Conclusions

We have presented a set of enhancements of the Flock of Trackers. First, new relia-
bility prediction methods were introduced - the Neighbourhood consistency predic-
tor and the Markov predictor.

Next, two methods for combining predictors, the ad-hoc P∧ and the likeli-
hood thresholding PΘ, were proposed and compared and similar performance was
achieved. We decided to use P∧, because it is a straightforward approach without
the need of learning the relevant statistics in advance.

Combined with the normalized cross-correlation predictor, the new Markov and
Neighbourhood consistency predictors form a reliable compound predictor PΣ . The
PΣ predictor was compared with the published PFB◦ρ predictor and outperformed it
in all criteria, i.e. in speed, recall, the number of reinitialization and the robustness
to bounding box initialization. The simpler PN◦M combination performed almost
identically and is faster. Finally, we have shown that the RANSAC-based global
object motion estimator outperforms the published median flow algorithm.

The enhanced FoT was extensively tested on 62 sequences. Most of the se-
quences are standard and used in the literature. The improved FoT showed per-
formance superior to the reference method, which competes well with the state-of-
the-art [14].

For all 62 sequences, the ground truth is available at http://cmp.felk.
cvut.cz/˜vojirtom/dataset. For some of the sequences the ground truth
has not been in the public domain till now.

http://cmp.felk.cvut.cz/~vojirtom/dataset
http://cmp.felk.cvut.cz/~vojirtom/dataset
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Seq. ID name #frames #target visible preview
1 girl 501 475
2 OccludedFace2 815 815
3 surfer 842 762
4 Vid A 602 602
5 Vid B 629 629
6 Vid C 404 404
7 Vid D 947 947
8 Vid E 305 305
9 Vid F 453 416
10 Vid G 716 716
11 Vid H 412 412
12 Vid I 1017 994
13 Vid J 388 383
14 Vid K 1020 1020
15 Vid L 1308 1308
16 dinosaur 326 326
17 gymnastics 567 567
18 hand 244 244
19 hand2 267 267
20 torus 264 264
21 head motion 2351 2351
22 shaking camera 990 990
23 track running 503 397
24 cliff-dive1 76 76
25 cliff-dive2 69 61
26 motocross1 164 164
27 motocross2 23 23
28 mountain-bike 228 228
29 skiing 81 81
30 volleyball 500 500
31 car 945 860
32 CarChase 9928 8660
33 david 761 761
34 jumping 313 313
35 Motocross 2665 1412
36 Panda 3000 2730
37 pedestrian3 140 140
38 pedestrian4 338 266
39 pedestrian5 184 156
40 Volkswagen 8576 5141
41 diving 231 218
42 gym 767 767
43 jump 122 111
44 trans 124 124
45 Asada 661 661
46 drunk2 1821 911
47 dudek-face 1145 1145
48 faceocc1 899 899
49 figure skating 624 624
50 woman 597 597
51 board 698 698
52 box 1161 1129
53 lemming 1336 1305
54 liquor 1741 1704
55 car11 393 393
56 dog1 1353 1350
57 Sylvestr 1344 1344
58 trellis 569 569
59 coke 292 270
60 person 331 326
61 tiger1 354 354
62 tiger2 365 365

Table 1: Overview of the test sequences. Basic information (left) and sample im-
ages with the selected object of interest (right) are shown. Full information about
the sequences (authors, papers reporting results on the data, etc. ) and the data are
available at http://cmp.felk.cvut.cz/˜vojirtom/dataset.

http://cmp.felk.cvut.cz/~vojirtom/dataset
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Seq. Θ ∧
17 0.713±0.132 0.738±0.134
20 0.875±0.022 0.919±0.021
31 0.894±0.040 0.922±0.043
32 0.857±0.060 0.895±0.058
33 0.952±0.029 0.773±0.166
34 0.943±0.007 0.965±0.005
35 0.958±0.008 0.977±0.008
36 0.945±0.006 0.966±0.004
37 0.680±0.073 0.730±0.068
38 0.623±0.053 0.684±0.060
39 0.925±0.013 0.945±0.026
40 0.967±0.002 0.986±0.001
55 0.980±0.006 0.986±0.006
59 0.924±0.008 0.967±0.006

Mean 0.874±0.033 0.890±0.043

Table 2: The comparison of the P∧ predictor combination and the PΘ combination
in terms of inlier prediction precision ± variation. Averaged performance over a
subset of sequences is reported in the last row. The subset of sequences was selected
such that it includes mainly rigid objects; in some sequences also articulated objects
(pedestrians) are tracked.
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HH
HHSeq.
P ∅ ρ N FB M FB ◦ ρ N ◦M Σ

m � r m � r m � r m � r m � r m � r m � r m � r

1 0.13 J 0.18 0.12 J 0.18 0.12 J 0.18 0.11 J 0.19 0.12 J 0.18 0.11 J 0.19 0.13 J 0.18 0.13 J 0.18
2 1.00 I 0.40 1.00 I 0.47 0.47 = 0.47 1.00 I 0.70 0.47 I 0.23 1.00 I 0.70 0.22 J 0.23 0.22 J 0.23
3 0.02 J 0.06 0.02 J 0.06 0.07 = 0.07 0.06 = 0.06 0.07 I 0.06 0.06 = 0.06 0.07 I 0.06 0.07 I 0.06
4 0.11 = 0.11 0.11 = 0.11 0.11 = 0.11 0.12 = 0.12 0.11 = 0.11 0.12 = 0.12 0.13 I 0.11 0.12 I 0.11
5 0.22 J 0.38 0.24 J 0.35 0.35 J 0.38 0.23 J 0.44 0.47 J 1.00 0.23 J 0.44 0.38 J 0.80 0.38 = 0.38
6 0.50 J 1.00 0.51 J 1.00 0.47 J 1.00 0.44 J 1.00 0.48 J 1.00 0.44 J 1.00 0.47 J 1.00 0.46 J 0.90
7 0.57 I 0.39 0.57 I 0.39 0.57 I 0.35 0.39 I 0.38 0.58 I 0.39 0.39 I 0.38 0.58 I 0.39 0.54 I 0.35
8 0.57 J 0.58 0.57 J 0.58 0.57 J 0.58 0.57 J 0.58 0.57 = 0.57 0.57 J 0.58 0.57 J 0.58 0.57 J 0.58
9 0.23 J 0.32 0.23 J 0.29 0.28 J 0.29 0.24 J 0.25 0.36 I 0.28 0.24 J 0.25 0.28 J 0.29 0.36 I 0.29
10 0.83 J 1.00 0.83 J 1.00 0.84 J 1.00 0.81 J 1.00 0.84 J 1.00 0.81 J 1.00 0.82 J 1.00 0.83 J 1.00
11 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00
12 0.09 J 0.12 0.10 J 0.11 0.09 J 0.11 0.07 J 0.11 0.08 J 0.11 0.07 J 0.11 0.08 J 0.11 0.08 J 0.11
13 0.20 I 0.17 0.20 I 0.17 0.20 I 0.17 0.21 I 0.16 0.27 I 0.16 0.21 I 0.16 0.31 I 0.16 0.31 I 0.16
14 0.64 I 0.42 0.64 I 0.54 0.52 J 0.97 0.52 J 1.00 0.64 I 0.43 0.52 J 1.00 0.52 I 0.47 0.52 J 0.79
15 0.16 J 0.78 0.16 J 0.74 0.16 J 0.74 0.16 J 0.59 0.16 J 0.56 0.16 J 0.59 0.16 J 0.50 0.16 J 0.50
16 0.25 J 0.39 0.25 J 0.39 0.25 J 0.38 0.19 I 0.14 0.27 J 0.39 0.19 I 0.14 0.39 = 0.39 0.39 = 0.39
17 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.14 J 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15
18 0.09 J 0.16 0.09 J 0.15 0.11 I 0.09 0.09 = 0.09 0.13 I 0.09 0.09 = 0.09 0.16 J 0.17 0.16 J 0.17
19 0.09 J 0.22 0.09 J 0.14 0.07 J 0.26 0.04 J 0.14 0.05 J 0.14 0.04 J 0.14 0.05 J 0.25 0.05 J 0.25
20 0.20 J 0.52 0.20 J 0.56 0.21 J 0.60 0.16 J 0.22 0.46 J 0.58 0.16 J 0.22 0.54 J 1.00 0.54 J 1.00
21 0.77 J 0.80 0.76 I 0.52 0.77 J 0.80 0.58 J 0.79 0.77 J 0.81 0.58 J 0.79 0.77 J 0.81 0.77 J 0.81
22 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15 0.15 = 0.15
23 0.09 J 0.21 0.10 J 0.21 0.09 J 0.21 0.20 J 0.22 0.13 J 0.82 0.20 J 0.22 0.13 J 0.14 0.13 J 0.14
24 0.34 J 0.42 0.34 J 0.41 0.34 J 0.41 0.53 I 0.42 0.42 I 0.41 0.53 I 0.42 0.43 I 0.42 0.43 I 0.42
25 0.15 I 0.13 0.16 I 0.11 0.15 I 0.11 0.13 J 0.18 0.11 J 0.13 0.13 J 0.18 0.15 I 0.10 0.15 I 0.10
26 0.18 I 0.04 0.18 I 0.03 0.45 I 0.04 0.23 I 0.03 0.16 I 0.03 0.23 I 0.03 0.05 I 0.03 0.05 I 0.03
27 0.83 I 0.70 0.83 I 0.70 0.83 I 0.70 0.83 = 0.83 0.57 J 0.91 0.83 = 0.83 0.57 J 0.74 0.57 J 0.74
28 0.40 J 0.99 0.40 J 0.99 0.43 J 0.99 0.38 J 0.99 0.82 J 0.99 0.38 J 0.99 0.82 J 0.99 0.82 J 0.99
29 0.07 J 0.10 0.07 J 0.10 0.07 J 0.10 0.09 = 0.09 0.06 J 0.07 0.09 = 0.09 0.06 J 0.09 0.06 J 0.09
30 0.23 I 0.22 0.23 I 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22 0.22 = 0.22
31 0.50 J 1.00 0.48 J 0.58 1.00 I 0.57 1.00 I 0.58 0.75 I 0.50 1.00 I 0.58 0.61 J 1.00 0.61 J 1.00
32 0.01 J 0.02 0.01 J 0.02 0.02 = 0.02 0.03 J 0.04 0.01 J 0.02 0.03 J 0.04 0.02 = 0.02 0.02 = 0.02
33 0.45 J 0.60 0.59 I 0.32 0.59 I 0.50 0.01 = 0.01 0.39 J 1.00 0.01 = 0.01 0.59 J 1.00 0.59 J 0.81
34 0.13 J 0.24 0.14 I 0.11 0.11 J 0.24 0.05 = 0.05 0.14 I 0.12 0.05 = 0.05 0.18 I 0.12 0.18 I 0.12
35 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00 0.00 = 0.00
36 0.02 = 0.02 0.02 = 0.02 0.02 = 0.02 0.03 I 0.02 0.02 J 0.03 0.03 I 0.02 0.02 J 0.03 0.02 = 0.02
37 0.06 J 0.19 0.06 J 0.09 0.07 J 0.09 0.14 I 0.09 0.11 J 0.32 0.14 I 0.09 0.04 J 0.19 0.04 J 0.19
38 0.58 I 0.54 0.58 I 0.53 0.50 J 0.70 0.66 J 0.71 1.00 I 0.56 0.66 J 0.71 1.00 I 0.60 1.00 I 0.60
39 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 1.00 = 1.00 0.92 J 1.00 1.00 = 1.00 0.89 J 1.00 0.89 J 1.00
40 0.05 I 0.04 0.05 = 0.05 0.18 J 0.24 0.19 J 0.23 0.05 = 0.05 0.19 J 0.23 0.18 I 0.04 0.19 I 0.04
41 0.13 I 0.12 0.13 I 0.12 0.13 I 0.12 0.12 = 0.12 0.17 I 0.12 0.12 = 0.12 0.16 I 0.12 0.16 I 0.12
42 0.04 I 0.03 0.07 I 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03 0.03 = 0.03
43 0.06 J 0.09 0.06 J 0.10 0.10 = 0.10 0.11 I 0.10 0.15 I 0.14 0.11 I 0.10 0.14 I 0.12 0.14 I 0.12
44 0.51 I 0.38 0.44 I 0.39 0.41 J 0.50 0.56 I 0.38 0.35 J 0.40 0.56 I 0.38 0.35 = 0.35 0.35 = 0.35
45 0.08 = 0.08 0.08 J 0.15 0.15 I 0.09 0.08 = 0.08 0.07 J 0.09 0.08 = 0.08 0.09 I 0.08 0.09 I 0.08
46 0.04 J 0.20 0.04 J 0.17 0.03 J 0.19 0.02 = 0.02 0.01 J 0.61 0.02 = 0.02 0.01 J 0.17 0.01 J 0.17
47 0.18 = 0.18 0.18 = 0.18 0.18 J 0.29 0.49 I 0.29 0.18 = 0.18 0.49 I 0.29 0.18 = 0.18 0.18 = 0.18
48 0.10 J 0.58 0.10 J 0.69 0.10 J 0.58 0.09 J 0.25 0.07 J 0.36 0.09 J 0.25 0.07 J 0.75 0.07 J 0.75
49 0.05 = 0.05 0.05 I 0.04 0.05 I 0.03 0.04 J 0.05 0.04 J 0.05 0.04 J 0.05 0.08 I 0.04 0.08 I 0.04
50 0.06 J 0.12 0.07 J 0.11 0.06 J 0.12 0.14 I 0.12 0.42 I 0.12 0.14 I 0.12 0.05 J 0.12 0.05 J 0.12
51 0.06 J 0.21 0.06 J 0.63 0.08 J 0.56 0.05 J 0.23 0.22 = 0.22 0.05 J 0.23 0.48 I 0.22 0.48 I 0.22
52 0.05 J 0.26 0.08 J 0.24 0.09 J 0.27 0.13 J 0.26 0.05 J 0.26 0.13 J 0.26 0.10 J 0.29 0.10 J 0.27
53 0.02 J 0.25 0.02 J 0.25 0.03 J 0.25 0.03 J 0.25 0.09 J 0.25 0.03 J 0.25 0.09 J 0.25 0.09 J 0.25
54 0.21 J 0.23 0.21 J 0.23 0.21 J 0.23 0.21 J 0.23 0.23 = 0.23 0.21 J 0.23 0.23 = 0.23 0.23 = 0.23
55 0.26 J 0.43 0.26 J 0.43 0.26 J 0.40 0.26 J 0.49 0.26 J 0.40 0.26 J 0.49 0.26 J 0.45 0.26 J 0.45
56 0.58 I 0.52 0.58 I 0.53 0.65 I 0.54 0.50 J 0.54 0.48 J 0.73 0.50 J 0.54 0.53 J 0.69 0.53 I 0.52
57 0.31 J 0.33 0.32 J 0.34 0.33 I 0.32 0.35 I 0.32 0.34 I 0.32 0.35 I 0.32 0.35 I 0.33 0.35 I 0.33
58 0.04 J 0.67 0.04 J 0.45 0.04 J 0.45 0.04 J 0.41 0.04 J 0.44 0.04 J 0.41 0.04 J 0.45 0.04 J 0.45
59 0.14 = 0.14 0.14 = 0.14 0.14 = 0.14 0.14 = 0.14 1.00 I 0.14 0.14 = 0.14 1.00 I 0.70 1.00 = 1.00
60 0.05 J 0.06 0.05 J 0.06 0.05 J 0.06 0.06 = 0.06 0.11 I 0.08 0.06 = 0.06 0.10 I 0.07 0.10 I 0.07
61 0.07 J 0.08 0.07 J 0.08 0.08 = 0.08 0.07 J 0.08 0.11 I 0.08 0.07 J 0.08 0.11 I 0.10 0.11 I 0.10
62 0.11 I 0.09 0.11 I 0.09 0.16 I 0.11 0.22 I 0.17 0.11 = 0.11 0.22 I 0.17 0.23 I 0.11 0.23 I 0.11

#best 15:36 (11) 18:34 (10) 14:33 (15) 15:28 (19) 19:31 (12) 15:28 (19) 21:30 (11) 21:27 (14)
mean 0.26:0.34 0.26:0.32 0.27:0.35 0.27:0.32 0.30:0.35 0.27:0.32 0.30:0.36 0.30:0.36

Table 3: The recall of the FoT on 62 sequences. For details, see text.
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HHH
HSeq.
P ∅ ρ N FB M FB ◦ ρ N ◦M Σ

m � r m � r m � r m � r m � r m � r m � r m � r

1 26 J 21 24 J 22 23 = 23 20 = 20 25 J 18 20 = 20 24 J 21 24 J 21
2 0 I 4 0 I 3 2 I 3 0 I 3 3 I 4 0 I 3 2 I 3 4 = 4
3 21 J 16 20 J 12 15 J 11 13 J 9 14 = 14 13 J 9 17 J 11 17 J 9
4 45 I 50 48 J 44 46 J 44 40 I 48 28 I 39 40 I 48 28 I 42 25 I 37
5 9 J 2 7 J 1 3 J 2 4 J 3 2 J 0 4 J 3 2 J 1 2 = 2
6 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0 1 = 1
7 10 I 14 10 I 15 10 I 14 9 I 14 9 I 14 9 I 14 9 I 14 9 I 14
8 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2 2 = 2
9 13 I 15 14 I 15 18 J 16 17 J 16 7 I 13 17 J 16 9 I 12 7 I 12
10 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0 1 J 0
11 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0
12 23 J 13 22 J 15 18 J 11 13 = 13 19 J 10 13 = 13 13 J 9 13 J 12
13 5 = 5 5 = 5 6 J 5 4 I 6 4 I 5 4 I 6 4 I 5 4 I 6
14 2 = 2 2 J 1 2 J 1 3 J 0 2 = 2 3 J 0 2 = 2 2 J 1
15 5 J 1 5 J 2 5 J 2 6 J 3 6 J 3 6 J 3 7 J 3 7 J 3
16 10 J 8 9 = 9 9 I 10 15 J 9 5 I 7 15 J 9 5 I 7 5 I 7
17 52 I 53 52 I 57 51 I 54 57 J 56 49 I 55 57 J 56 49 I 51 49 I 51
18 21 J 14 20 J 12 16 J 13 25 J 18 17 J 11 25 J 18 14 = 14 14 J 13
19 35 J 26 33 J 26 29 J 26 46 J 35 44 J 21 46 J 35 29 J 26 29 J 24
20 8 J 2 8 J 2 6 J 2 9 J 3 3 J 2 9 J 3 2 J 0 2 J 0
21 2 J 1 2 = 2 2 J 1 1 = 1 2 J 1 1 = 1 2 J 1 2 J 1
22 95 J 91 95 J 91 90 J 89 91 I 95 93 = 93 91 I 95 90 I 91 90 J 89
23 11 J 4 9 J 4 5 J 2 10 J 7 10 J 1 10 J 7 12 J 11 12 J 11
24 4 = 4 5 J 4 5 J 4 3 = 3 4 = 4 3 = 3 3 I 4 3 I 4
25 36 J 26 35 J 22 17 I 19 7 I 8 19 J 17 7 I 8 6 I 13 6 I 9
26 14 I 17 11 I 16 6 I 19 15 I 18 13 = 13 15 I 18 15 I 18 15 I 19
27 2 = 2 2 = 2 1 I 2 1 I 2 3 J 1 1 I 2 1 I 2 1 I 2
28 6 J 2 6 J 2 5 J 2 8 J 2 3 J 2 8 J 2 4 J 2 3 J 2
29 22 J 18 23 J 16 19 = 19 28 J 24 24 J 18 28 J 24 21 J 18 21 J 19
30 14 I 15 10 I 16 13 I 14 21 J 16 11 = 11 21 J 16 6 I 14 5 I 13
31 1 J 0 1 = 1 0 I 1 0 I 1 2 J 1 0 I 1 2 J 0 2 J 0
32 220 J 83 210 J 79 110 J 76 77 J 70 193 J 80 77 J 71 107 J 65 103 J 69
33 5 J 1 3 J 1 2 J 1 4 J 2 6 J 0 4 J 2 2 J 0 2 J 1
34 12 J 9 12 I 13 9 I 10 68 J 63 9 I 10 68 J 63 10 I 13 11 = 11
35 59 J 27 56 J 29 45 J 33 56 J 50 66 J 32 56 J 50 55 J 36 55 J 34
36 67 I 76 68 I 77 69 I 79 66 I 78 68 I 76 66 I 78 63 I 73 63 I 76
37 13 J 2 13 J 3 8 J 2 5 = 5 10 J 1 5 = 5 10 J 1 8 J 1
38 3 I 4 3 I 4 4 J 3 2 = 2 0 I 4 2 = 2 0 I 3 0 I 3
39 0 = 0 0 = 0 0 = 0 0 = 0 1 J 0 0 = 0 1 J 0 1 J 0
40 26 J 10 23 J 11 18 J 9 16 J 8 20 J 10 16 J 8 20 J 7 15 J 10
41 21 I 22 21 = 21 22 = 22 24 = 24 18 I 22 24 = 24 21 I 22 21 I 23
42 13 I 17 14 = 14 13 I 16 15 I 18 9 I 14 15 I 18 12 I 14 10 I 14
43 10 J 9 10 I 11 9 I 11 10 I 12 8 J 7 10 I 12 7 = 7 7 I 10
44 2 = 2 2 = 2 2 = 2 2 I 3 3 J 2 2 I 3 3 = 3 3 = 3
45 53 J 46 53 J 48 42 I 44 52 J 50 33 I 35 52 J 50 32 J 29 32 J 29
46 7 J 3 7 J 3 5 J 3 7 = 7 8 J 3 7 = 7 6 J 3 8 J 4
47 7 J 4 7 J 3 6 J 4 8 J 4 8 J 4 8 J 4 7 J 4 7 J 4
48 3 I 6 3 = 3 8 J 7 10 J 7 7 I 8 10 J 7 8 J 2 8 J 2
49 34 I 37 35 J 34 32 I 37 37 I 38 26 J 22 37 I 38 17 I 24 17 I 23
50 26 = 26 28 = 28 27 = 27 34 J 28 5 I 13 34 J 28 8 I 11 17 J 13
51 8 J 5 6 J 5 6 J 5 13 J 3 10 J 5 13 J 3 12 J 4 12 J 4
52 15 J 9 14 J 11 10 = 10 15 J 9 18 J 9 15 J 9 17 J 10 18 J 11
53 32 J 9 34 J 8 23 J 9 37 J 16 41 J 11 37 J 16 33 J 13 33 J 14
54 11 J 5 11 J 5 11 J 5 18 J 11 12 J 5 18 J 11 10 J 9 10 J 8
55 5 J 4 5 J 4 5 J 4 5 J 4 5 J 4 5 J 4 5 J 4 5 J 4
56 10 J 4 10 J 3 7 J 3 8 J 3 8 J 4 8 J 3 9 J 4 9 J 5
57 8 J 6 7 J 5 4 J 3 6 J 4 6 J 3 6 J 4 12 J 5 10 J 3
58 14 J 1 13 J 2 6 J 3 4 J 3 13 J 2 4 J 3 5 J 2 7 J 4
59 5 J 4 4 = 4 3 I 4 4 = 4 0 I 4 4 = 4 0 I 1 0 = 0
60 8 J 7 8 = 8 8 I 9 9 = 9 7 I 8 9 = 9 6 I 9 6 I 9
61 34 J 30 31 I 32 20 I 29 43 = 43 40 J 21 43 = 43 31 J 23 36 J 25
62 37 J 25 33 J 24 19 I 25 48 J 46 32 J 31 48 J 46 28 = 28 28 I 30

#best 13:40 (9) 11:36 (15) 19:34 (9) 14:34 (14) 17:37 (8) 14:34 (14) 22:33 (7) 19:35 (8)
mean 20.4:14.9 19.8:14.7 15.8:14.6 18.9:17.1 18.0:13.4 18.9:17.1 15.1:13.3 15.1:13.5

Table 4: The number of reinitialisations of the FoT on 62 sequences. For details, see
text.
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Fig. 10: Visualization of predictors performance on sequence mountain-bike. For
details, see text.
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Fig. 11: Visualization of predictors performance on sequence woman. For details,
see text.

HHH
HSeq.
P ∅ ρ FB FB ◦ ρ N ◦M Σ

m � r m � r m � r m � r m � r m � r

Time [ms] 1.53 I 1.55 2.44 I 2.87 2.52 I 2.89 3.43 I 3.58 1.58 I 1.72 2.43 I 2.52

Table 5: A comparison of the speed of tracking reliability prediction methods. All
times are in milliseconds. The values are averaged over all sequences.
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Fig. 12: Examples of randomly generated initial bounding boxes (yellow) randomly
generated within the red rectangle.

Method Score mean (median)

PFB◦ρ [ref] 4493 45 (21)
PΣ 8438 84.4 (99.5)

Table 6: Evaluation of filtering methods in terms of the number of correctly tracked
frames with randomly initialized bounding box (see. Fig. 12). The “score” is the
total number of correctly tracked frames, the mean and the median of the same
quantity are presented in the right column.
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Fig. 13: Histograms of the number of correctly tracked frames for tracker with (a)
PFB◦ρ and (b) PΣ . (c) The 2D histogram of the number of correctly tracked frames
by PFB◦ρ and PΣ initialized with the same random bounding box.
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