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Abstract. We propose a fast edge-based approach for detection and
approximate pose estimation of multiple textureless objects in a single
image. The objects are trained from a set of edge maps, each showing
one object in one pose. To each scanning window in the input image,
the nearest neighbor is found among these training templates by a two-
level cascade. The first cascade level, based on a novel edge-based sparse
image descriptor and fast search by index table, prunes the majority
of background windows. The second level verifies the surviving detec-
tion hypotheses by oriented chamfer matching, improved by selecting
discriminative edges and by compensating a bias towards simple ob-
jects. The method outperforms the state-of-the-art approach by Damen
et al. (2012). The processing is near real-time, ranging from 2 to 4 frames
per second for the training set size ∼104.

1 Introduction

We address scalable near real-time localization and detection of multiple rigid
textureless 3-D objects with complex shapes. The objects may be presented in
an arbitrary pose and the algorithm should provide an approximate estimate of
the pose. Problems of this type arise, for instance, in robotics, where one needs
to recognize and localize objects to facilitate manipulation.

The problem is challenging. Impressive results have been achieved in recog-
nition of textured objects using affine-covariant detectors [15] and descriptors
attached to them [13,3], but these methods do not apply to textureless objects.

Scanning window methods have shown significant progress in two-class object
detection [19,3,12,5]. These methods are robust but not easily extendable to a
large number of objects and poses. Moreover, the two-class detectors often need
many training samples per object-pose which is unrealistic to assume.

The most informative local features on textureless objects are edges, caused
mainly by discontinuities in depth or curvature and thus carrying information
about shape. Our representation is thus edge-based, requiring a single training
image per object-pose, acquired by an uncalibrated camera. No other information
than edges (such as color or intensity) is used.

We propose a new two-stage cascaded detection method, combining a scan-
ning window approach with an efficient voting procedure and a verification stage.
At each position of the scanning window, novel edge-based features, computed in
constant time, vote for each object-pose. This first stage prunes a vast majority
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Fig. 1. A part of the training set and a detection result. Of the training images, only
edges are used for detection. Color is shown only for illustration.

of windows as plausible hypotheses for location of any object. The second stage
of the cascade, verification, is more time-consuming but limited only to a small
fraction of windows. It is implemented by oriented chamfer score [18], improved
by selection of discriminative edges based on their stability and orientation fre-
quency, and by a compensation of the bias of the chamfer matching towards
simpler objects. Fig. 1 shows an example training set and detection result.

Related Work. The approaches to textureless object detection and/or pose es-
timation divide into two broad categories, model-based and image-based. Model-
based approaches have used CAD 3-D models [9,10] which is common in
industrial applications, or depth information [8,11].

Image-based viewpoint classification has been addressed in [17,7]. In these
works, the number of viewpoints is limited and the task is solved by viewpoint
classifier. Unfortunately, this approach does not scale to a larger number of
viewpoints or objects.

There are not many works on image-based textureless 3-D detection that
would be scalable to many objects and poses. Due to only one training image
for one specific viewpoint, this problem is usually tackled by nearest neighbor
search on a large training set [2,4,8]. In [2], an early research on 3-D object tex-
tureless object detection was done, both model-based and image-based. A shape
is represented here by a set of grouped straight lines and efficiently searched
for the nearest neighbor using the k-D tree. The recent work [4] uses a sim-
ilar idea, achieving real-time detection. A shape is represented by a rotation-
and scale-invariant descriptor, which records the relations among each edgelet
constellations. Unlike [2], which considers only a limited set of relations among
lines such as parallelism and co-termination, the relations in [4] are much richer.
The work [8] focused on achieving real-time performance in detection of multiple
objects and thousands of templates from gradient orientations and 3-D surface
normal orientations, using highly optimized implementation.

Speed is a key challenge in such works due to a large set of templates. They
utilize fast techniques such as k-D tree [2], hash table [4], hierarchical search [20],
look-up table and parallel techniques [8]. In contrast, we achieve high speed using
a cascaded approach with fast index table search.
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2 Fast Pruning of Object-Pose Hypotheses

The first stage of the cascade efficiently prunes object-pose hypotheses with low
similarity to the scanning window. This is done by attaching to each window a
sparse descriptor and then finding nearest neighbors in the feature space.

Sparse Edge-Based Image Descriptor. In the scanning window and each
training template, we define m reference points p1, . . . , pm placed on a regular
grid, excluding the margin near the image border (Fig. 2). A window I is assigned
the feature vector (dI(p1), . . . , dI(pm), φI(p1), . . . , φI(pm)), where dI(p) denotes
the distance of point p to the nearest edge in I and φI(p) is the orientation of
this edge. This is computed efficiently using the distance transform.

The similarity of a scanning window I and a training template T is defined
as the number of matched reference points, where a reference point is matched
if both its features are similar up to some tolerances:

c(T, I) =
∣

∣

{

i ∈ {1, . . . ,m}
∣

∣ |dT (pi)− dI(pi)| ≤ θd, |φT (pi)− φI(pi)|π ≤ θφ
}∣

∣.
(1)

The distance of two angles is measured modulo π, which is denoted | · |π.

Fast Voting with Quantized Features. To obtain detection hypotheses,
we need to find training templates that are similar, in the sense of (1), to the
scanning window. Doing this exhaustively is infeasible. As the function −c(T, I)
is not a metric, algorithms like k-D tree cannot be used. Instead, we solve this
task approximately using an index table with quantized features. The distance
features dT (pi) and the orientation features φT (pi) are quantized into nd and
nφ bins, respectively. For the scanning window I and a template T , a reference
point pi is matched if the distances dT (pi), dI(pi) and the orientations φT (pi),
φI(pi) have the same quantized values.

In the training phase, an index table of size nd × nφ × m is built. A cell
(qd, qφ, i) of this table contains the list of indices j of all training templates Tj

in which the quantized value dTj
(pi) is qd and the quantized value of φTj

(pi)
is qφ. Thus, the index of each training template occurs in the table m times. To
find nearest training templates to a scanning window, each template collects the
votes from the cells corresponding to the quantized features of I. The templates
with at least θv votes are accepted as hypotheses. In order to decrease the risk
of discarding true positives, we find the nearest neighbor for each object instead
of the single nearest neighbor for the whole training set.

Fig. 2. The novel sparse image descriptor designed for
textureless objects, used at the first cascade level. The
m reference points are shown in red. Each reference
point p in image I is assigned two features, the distance
dI(p) to the nearest edge and the orientation φI(p) of this
edge.

φI(p)
p

I

dI(p)
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The average number of index visits per query is mn/(ndnφ). This number
can be large. It can be decreased by grouping several reference points, at the
expense of a larger table. In particular, we group triplets of points. A triplet is
matched if all its three points match. The feature vector is obtained by randomly
picking a triplet of reference points L times, yielding the table size (ndnφ)

3L and
the average number of index visits Ln/(ndnφ)

3. In experiments, we refer to this
modification as Table-3pt , while the single-point search is Table-1pt .

3 Verification by Improved Oriented Chamfer Matching

Detection hypotheses generated at the first stage of the cascade are verified at
the second stage by a more precise but more expensive method, based on oriented
chamfer matching (OCM) [18].

3.1 Compensating the Bias Towards Simples Shapes

In [18], the oriented chamfer distance between images I and T is defined as the
weighted average

∑

e∈T [αdI(e)+(1−α)|φI (e)−φT (e)|π]/|T | of the distance and
orientation components. Here, φT (e) is the orientation of edge e in T and |T | is
the number of edges in T . We observed that when |T | has large variance over
the training set, this distance is biased towards simpler objects. To compensate
this bias, we use the oriented chamfer score in a different form as

sλ(T, I) =

∣

∣

{

e ∈ T
∣

∣ dI(e) ≤ θd, |φT (e)− φI(e)|π ≤ θφ
}∣

∣

λ|T |+ (1− λ)|T |
, (2)

where |T | = 1
n

∑n

i=1 |Ti| is the average number of edges over all training tem-
plates and λ ∈ [0, 1] is a parameter. The numerator of (2) is the number of edges
from T that have a match in I (this yielded slightly better results than the
weighted average of distances). For λ = 1, the score corresponds to the distance
used in [18]. Setting 0 < λ < 1 decreases the score for templates with fewer edges
than average (Fig. 3 shows an example). As shown in the experiments, this has
a significant positive impact on detection performance.

#matched:176/260 #matched:315/475

Fig. 3. Compensation of the bias towards simpler shapes. The matched template points
are shown in red, the unmatched points in blue. (a) the score sλ for the driver template:
s1 = 0.68, s 1

2

= 0.47. (b) the score for the scissors template: s1 = 0.64, s 1

2

= 0.64.

Before resp. after the compensation, the test image is classified as driver resp. scissors.
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Fig. 4. Selection by edge orientation: α = 40% of edges corresponding to the two
highest bins are randomly removed. (a) original edges, (b) their orientation histogram,
(c) selected edges, (d) their orientation histogram.

3.2 Selecting Discriminative Edges

For efficiency, [18] computed OCM on only a subset of randomly selected edge
points in the template without drop of performance. In contrast, we want to use
only edges that are discriminative for object detection. It has been an important
topic in shape matching and detection to learn discriminative edges and discard
unstable ones [14,16]. We use two criteria to select edges: stability to viewpoint
and frequency of edge orientations.

Selection by Stability to Viewpoint. We define an edge in a training tem-
plate to be stable if it matches, via oriented chamfer matching, the correspond-
ing edge in any image obtained by a slight change of viewpoint (possibly, also
of illumination, edge detector parameters, etc.). Stable edges are approximately
selected as follows. As our training set does not contain explicit information
which training templates are ‘similar’, we substitute this information. For each
template T , we define N (T ) to be the set of k templates that are most similar
to T in the sense of the oriented chamfer score (2). We assume that N (T ) will
mostly contain templates differing by a small change of viewpoint. For every
edge point e ∈ T we define the score

nT (e) =
∣

∣

{

T ′ ∈ N (T )
∣

∣ |dT (e)− dT ′(e)| ≤ θd, |φT (e)− φT ′(e)|π ≤ θφ
}
∣

∣. (3)

We keep only the edges from T that have the score greater than a threshold,
nT (e) ≥ τk where 0 < τ < 1.

Selection by Edge Orientations. The similarity score (2) tacitly assumes
that the positions and orientations of all edges in the template are independent.
Sometimes this is far from true. In particular, if the template contains long
straight lines, the edges forming these lines are highly dependent and therefore
carry less information than edges originating from small and irregular parts of
the object. Take a hammer as an example, as shown in Fig. 4. The handle
makes up for about 70% of all the edge points. However, these long lines do not
discriminate a hammer from a screw driver or from just a few parallel lines.
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We propose the following simple heuristic to account for this effect. First, the
histogram of edge orientations in the template is computed. Then, a part, α, of
edges in the two highest bins is removed. This is justified by the fact that the
edge orientation histogram with long straight lines is likely to have a dominant
peak. This method can be understood as a partial equalization of the orientation
histogram. Note in Fig. 4 that 70% edges of the hammer fall into the highest
two bins. After the selection, most edges of the hammer head are kept, while the
handle edges have become notably sparser.

Non-maxima Suppression. After the verification, we obtain a set of detection
candidates for scanning windows at various locations and scales. This set of
hypotheses is finally filtered by a version of non-maxima suppression, which
repeats the following step till no hypotheses are left: find the hypothesis with
the highest score (2) and remove all windows that have a large overlap with it.

4 Experiments

4.1 The CMP-8objs Dataset

Due to the lack of suitable public datasets, we created a new CMP-8objs dataset
of 8 objects with no or little texture. Each object was placed on a turntable with
a black background and 180 views were captured by an uncalibrated hand-held
video camera, covering approximately a hemisphere of views. The training tem-
plates were obtained from these images by cropping and scaling to the common
size 48 × 48 pixels. To achieve partial invariance to image-plane rotation, the
templates were synthetically rotated in range [−40, 40] degrees in 9 steps. This
resulted in 12,960 training templates. Some of them are shown in Fig. 5(a).

For testing, we captured 60 images of the size 640× 480. Some examples are
shown in Fig. 8 (top). Each image contains multiple objects in arbitrary poses
with partial occlusion. Some of the objects are not in the training set and serve as
distractors. The first 30 images have black background while the last 30 images
were captured on a desktop with a light wood texture. We manually labeled the
ground truth (354 objects in total) with bounding boxes.

We used the following parameters: θφ = π/9, θd = 3.1, Nd = 4, Nφ = 6,
m = 36, θv = 12 in Table-1pt and θv = 3, L = 50 in Table-3pt. We ran the

block eye screw driver bridge whiteblock cup lid

Fig. 5. Examples of training templates for the CMP-8objs dataset
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Fig. 6. (a) DR/FPPI curves of Table-3pt on the CMP-8objs dataset. (b)(c) Preci-
sion/recall curves on the Obj30 dataset with Table-1pt and Table-3pt. In both meth-
ods, applying edge selection (§3.2) and OCM compensation (§3.1) lead to significant
increase of performance. The results of Damen et al. were copied from [4, Figure 7].

detector at every position of the scanning window with 3 pixel steps, and at 10
scales with scale factor 1.2. On average, the first cascade stage decreased ∼109

training-test pairs per image to ∼104.
The performance is quantified by DR/FPPI (detection rate vs. the number

of false-positives per image) curves, obtained by varying the similarity thresh-
old. This score has been commonly used in shape-based detection [6,12]. The
detection is considered correct if the detected object label is the same as the
ground-truth label and the detected rectangle and the ground-truth rectangle
overlap by more than 50% of the area.

We ran the detectors with four settings obtained by applying or not applying
OCM compensation (§3.1) and edge selection (§3.2). We only show the per-
formance for Table-3pt, as Table-1pt yields very similar results. As shown in
Fig. 6(a), both techniques improve the performance significantly. With both
techniques applied, the detection rate is 74% at FPPI=1, which outperforms the
standard OCM without edge selection by 24%.

On average, Table-3pt needed 0.63 s per image, compared to 1.77 s for Table-
1pt (on Intel Core i7-3770 at 3.40GHz). Fig. 8 (top) shows example detections.

4.2 The Obj30 Dataset

We further evaluated our method on the Obj30 dataset from [4], which contains
1433 training images of 30 textureless 3-D objects. As our detector is not na-
tively invariant to rotation, we expanded the training set to 7056 templates by
synthesizing rotated images. The test set has 1300 frames. Unlike CMP-8objs,
each test image contains at most two objects on a clear background, as shown in
Fig. 8 (bottom). The main challenge of this dataset is in more complex objects
and in larger variance of shape complexity.

Because objects on average occupy relatively larger image area in Obj30 than
in CMP-8objs, we used larger training templates (120×120) and fewer scales (8).
Since the first cascade stage is independent on the template size, this had little
effect on the detection time. All the other parameters were the same.
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Fig. 7. The average precision (AP) for each object in the Obj30 dataset with the Table-
3pt indexing method. Note that 17 objects (*) achieve AP above 85%, and 4 objects
(#) are difficult to detect with AP below 20%.
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Fig. 8. Example detections for the CMP-8objs (top) and Obj30 (bottom) dataset.
True positives, false positives and false negatives are shown in green, red and yellow,
respectively. The edges of the found training templates are superimposed.

For evaluation, we used precision/recall curves obtained by varying the match-
ing score threshold. The results are in Fig. 6(b)(c). The figures also show the
performance of the algorithm [4].

We again evaluated the effect of OCM compensation (§3.1) and edge selec-
tion (§3.2). The edge selection was done only by edge orientation, since this
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dataset does not contain enough training images for each objects to select by
stability. The OCM compensation improves the performance significantly; not
using it results in many false positives with small number of edges. Edge selec-
tion without OCM compensation has only a small positive effect. However, the
effect of simultaneous OCM compensation and edge selection is very significant.

For the recall fixed to 50%, the precision is 86%/85% with Table-1pt/Table-
3pt. This is significantly more than 74% achieved in [4]. This improvement is
mainly due to OCM compensation and edge selection. The average running time
per frame is 0.37 s for Table-1pt and 0.26 s for Table-3pt, which is less than for
CMP-8obj due to fewer training-test pairs, clearer scenes, and fewer scales. This
is to be compared to 0.14 s reported in [4].

In Fig. 7, we further report the average precision (APs) for each object, which
is commonly used to evaluate visual detection and retrieval. For 17 objects, AP
is greater than 85%. Similarly as in [4], objects with more distinctive shapes
are more easily detected and less confused, such as E-driver, box, headphone,
scissors, and claw. In contrast, false positives tend to be caused by elongated
objects, such as knife, wood, hammer and tape (on the side view), though this
effect is largely reduced by OCM compensation and edge selection. Example
detections are shown in Fig. 8 (bottom).

5 Conclusion

We have proposed a new method for near real-time detection of textureless ob-
jects. Each object is represented by a set of training templates with different
object poses. Of the training images, only edge information is used. Since the
method finds the object-pose template nearest to the scanning window, it pro-
vides for free also a rough estimation of object pose.

The detector, applied to all scanning windows at various locations and scales,
is a two-level cascade. The first level efficiently prunes the vast majority of back-
groundwindows. It is based on a novel sparse image descriptor inspired by oriented
chamfer matching. The second level verifies the surviving scanning windows by
improved oriented chamfer matching. The improvements consist in compensating
a bias towards simpler objects and in selecting discriminative edges.

The method outperforms the state-of-the-art approach [4] by 11% on the
Obj30 dataset, publicly available with [4]. Good results have been achieved also
on the CMP-8obj dataset, which we created newly for this paper. The CMP-8obj
dataset with the ground truth is publicly available [1]. The processing is near
real-time, on average 4 fps on the Obj30 dataset (with 7,000 training templates)
and 1.5 fps on the CMP-8objs dataset (with 13,000 training templates).

We have deliberately used no other information than edges. However, the
found detections could be easily filtered based on other cues, such as color,
to further improve the performance. This verification could afford to be time-
consuming thanks to only a small number of hypotheses.

Acknowledgement. The authors have been supported by EC project FP7-
ICT-270138, the Technology Agency of the Czech Republic project TE01020415,
and EPSRC project EP/K015966/1.
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