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Abstract. An important subclass of the min-sum labeling problem (also known
as discrete energy minimization or valued constraint satisfaction) is the pairwise
min-sum problem with arbitrary unary costs and attractive Potts pairwise costs
(also known as the uniform metric labeling problem). In analogy with our recent
result, we show that solving the LP relaxation of the Potts min-sum problem is not
significantly easier than that of the general min-sum problem and thus, in turn, the
general linear program. This suggests that trying to find an efficient algorithm to
solve the LP relaxation of the Potts min-sum problem has a fundamental limita-
tion. Our constructions apply also to integral solutions, yielding novel reductions
of the (non-relaxed) general min-sum problem to the Potts min-sum problem.

Keywords: Markov random field, discrete energy minimization, valued constraint
satisfaction, linear programming relaxation, uniform metric labeling problem,
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1 Introduction

The min-sum (labeling) problem, also known as discrete energy minimization [15,5] or
valued constraint satisfaction [16], has numerous applications in machine learning and
computer vision and other fields, in particular as MAP inference in graphical models
[17]. The problem has a natural LP relaxation [13,18,7,3,17], which underlies many
algorithms to approximately solve the problem (see [5] and references therein). It is
therefore of great practical importance to have efficient algorithms to solve this LP. Un-
fortunately, the simplex and interior point methods solving general LP are prohibitively
inefficient for large-scale vision instances.

It is known that the LP relaxation of the pairwise min-sum problem with 2 labels
reduces in linear time to max-flow [1,11]. Therefore, this problem can be solved very
efficiently because the worst-case complexity of best known algorithms for max-flow
is much better than for the general LP (though both are in the P complexity class).
Our recent paper [10] showed that solving the LP relaxation of the pairwise min-sum
problem with 3 or more labels (with some costs possibly infinite) is as hard as solving
the general LP, precisely, the latter reduces to the former in linear time. This suggests
that trying to find a very efficient algorithm to solve the LP relaxation may be futile.

This negative result raises the question whether there are any other useful subclasses
of the min-sum problem for which the LP relaxation is significantly easier than the
general linear program and therefore there is hope for efficient algorithms. In this paper,
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we show that this is unlikely for the class of pairwise min-sum problems with attractive
Potts costs, which is also known as the uniform metric labeling problem [2,6,3,4].

We present two efficient reductions of the general pairwise min-sum problem to the
Potts min-sum problem that preserve the LP relaxation. The first one (§4, §5) reduces
the general min-sum problem with some costs possibly infinite to the Potts min-sum
problem with 3 labels (the complexity of this reduction is given by Theorems 5 and 8).
Combined with [10], this implies that solving the general system of linear inequalities
reduces in linear time to the LP relaxation of the Potts min-sum problem with 3 labels
(Corollary 6, our most surprising result) and that the general linear program reduces
in better than quadratic time to the LP relaxation of the Potts min-sum problem with
3 labels (Corollary 9). The second one (§6) reduces the general min-sum problem with
k labels and finite costs to the Potts min-sum problem with k labels (Theorem 11). The
output costs in this reduction are typically much smaller than in the first reduction.

Though these results are somewhat weaker than for the general min-sum problem
[10], they are far from obvious. They show that finding an efficient algorithm to solve
the LP relaxation of the Potts min-sum problem is unlikely because this might mean
improving the complexity of the best known algorithms for the general LP. An example
of an algorithm specialized to the LP relaxation of the Potts min-sum problem is [9].

Our reductions straightforwardly apply also to the original non-relaxed min-sum
problems, thus we obtain as side-results novel reductions from the general min-sum
problem to the Potts one (Theorems 4, 7, and 10). These results can be seen analogi-
cal to, e.g., the construction [12] which reduces the general pairwise min-sum problem
with finite costs to the pairwise min-sum problem with 2 labels.

2 Min-sum Problem and Its LP Relaxation

We denote Q = Q ∪ {∞} and Z = Z ∪ {∞}. Let (V,E) be a connected undirected
graph, with objects V and object pairs E ⊆ (

V
2

)
. Let K be a finite set of labels. Let

gu: K → Q and guv: K × K → Q be unary and pairwise cost functions, where we
adopt that guv(k, �) = gvu(�, k). The pairwise min-sum problem is defined as

min
k∈KV

( ∑

v∈V

gu(ku) +
∑

{u,v}∈E

guv(ku, kv)
)
. (1)

All the costs gu(k) and guv(k, �) together will be understood as a vector g ∈ Q
I

with
I = (V ×K) ∪ { {(u, k), (v, �)} | {u, v} ∈ E; k, � ∈ K }.

The local marginal polytope [17] is the set Λ of vectors μ ∈ RI
+ satisfying

∑

k∈K

μu(k) = 1, u ∈ V (2a)

∑

�∈K

μuv(k, �) = μu(k), u ∈ V, v ∈ Nu, k ∈ K (2b)

where Nu = { v | {u, v} ∈ E } are the neighbors of object u and we again adopt that
μuv(k, �) = μvu(�, k). The numbers μu(k), μuv(k, �) are known as pseudomarginals
[17]. Figure 1 illustrates the meaning of constraints (2) for one object pair.
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Fig. 1. Two objects forming an object pair {u, v} ∈ E. Objects
u ∈ V are depicted as boxes, labels (u, k) as nodes, and label pairs
{(u, k), (v, �)} as edges. Note the meaning of constraints (2): for unary
pseudomarginals a, b, c and pairwise pseudomarginals p, q, r, (2b) en-
forces a = p+ q + r and (2a) enforces a+ b+ c = 1.

The LP relaxation of problem (1) reads

min{ g�μ | μ ∈ Λ } (3)

where, if some costs (components of g) are infinite, we define 0 · ∞ = 0 in the scalar
product g�μ. If μ ∈ {0, 1}I then (3) solves (1) exactly.

Reparameterizations of a vector g ∈ Q
I

is a vector g′ ∈ Q
I

given by

g′u(k) = gu(k)−
∑

v∈Nu

ϕuv(k) (4a)

g′uv(k, �) = guv(k, �) + ϕuv(k) + ϕvu(�) (4b)

where ϕ = (ϕuv(k) ∈ R : u ∈ V, v ∈ Nu, k ∈ K). We have g�μ = g′�μ
for every ϕ and every μ satisfying (2), thus reparameterizations preserve the objective
of (1) and its LP relaxation. Consider a lower bound

L(g) =
∑

u∈V

min
k∈K

gu(k) +
∑

{u,v}∈E

min
k,�∈K

guv(k, �) (5)

on the true optimal value (1). The dual to the LP (3) can be expressed [18] as maximiz-
ing the lower bound over reparameterizations, i.e., maximizing L(g′) over ϕ.

If the pairwise cost functions guv in (1) are metric while the unary cost functions gu
remains arbitrary, the problem (1) has been called the metric labeling problem [2,6,3,4].
Its special case is the uniform metric or the attractive Potts interaction

guv(k, �) = huv[[k �= �]] (6)

where huv ≥ 0 and [[k �= �]] equals 1 if k �= � and 0 otherwise. We will refer to
problem (1) with pairwise costs (6) as the Potts min-sum problem.

3 Summary of Results

This section gives the overview of our contributions in this paper, after formulating
previous closely related results that we obtained in [10].

As is usual in computational complexity, we will use the notions of problem (a set
of instances), instance, and reduction. We start this section by defining the following
problems, by specifying their instances (inputs) and solutions (outputs). Rather than
more common decision problems, which map strings over an alphabet to the answers
{yes, no}, we formulate our problems as function problems, which map strings over an
alphabet to strings over an alphabet.
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Problem: MINSUM(Y ) where Y ⊆ Q

Instance: (V,E,K,g) where g ∈ Y I . (Thus, Y specifies the set of values the costs
can take. E.g., in MINSUM(Z) the costs can take values fromZ rather than from Q.)

Solution: If the optimal value of problem (1) is finite, it returns an optimal argument
k ∈ KV . Otherwise, it answers ’infeasible’.

Problem: MINSUM(Y )-LP
Instance: (V,E,K,g) where g ∈ Y I and Y ⊆ Q.
Solution: If the LP (3) is feasible, it returns an optimal argument μ ∈ [0, 1]I . If (3) is

infeasible, it answers ’infeasible’.

Problem: POTTS

Instance: (V,E,K,g) where g ∈ QI and pairwise costs in g have the form (6).
Solution: An optimal argument k ∈ KV of problem (1).

Problem: POTTS-LP
Instance: (V,E,K,g) where g ∈ QI and pairwise costs in g have the form (6).
Solution: An optimal argument μ ∈ [0, 1]I of problem (3).

Problem: LININEQ

Instance: (A,b) where A ∈ Zm×n, b ∈ Zm.
Solution: If the system {Ax = b, x ≥ 0 } has a solution, it returns its arbitrary

solution. Otherwise, it answers ’infeasible’.

Problem: LINPROG

Instance: (A,b, c) where A ∈ Zm×n, b ∈ Zm, c ∈ Zn.
Solution: If the linear programmin{ c�x | Ax = b, x ≥ 0 } is feasible and bounded,

it returns a solution x ∈ Qn. If the program is infeasible, it answers ’infeasible’. If
the program is unbounded, it answers ’unbounded’.

Instance Sizes. In general, the size of a problem instance is the length of the (binary)
string needed to encode it. We will use 〈x〉 to denote the size of a number x ∈ Z.
Using one bit for the sign, storing x takes 〈x〉 = �log2(|x| + 1)�+ 1 bits. For a vector
x = (x1, . . . , xn) ∈ Zn, we define its size to be 〈x〉 =

∑n
i=1〈xi〉. We will use this

definition of size for vectors g and c.
For A and b we use a slightly different definition of size. The pair (A,b) can be

seen as the extended matrix Ā = [A |b] ∈ Zm×(n+1). Encoding Ā by storing all its
entries (including zeros) would take L =

∑m
i=1

∑n+1
j=1 〈aij〉 bits. This would describe

the dense encoding of Ā. However, we define

〈Ā〉 =
m∑

i=1

n+1∑

j=1

�log2(|āij |+ 1)�. (7)

As zero entries āij = 0 do not contribute to 〈Ā〉, this describes a sparse encoding of Ā.
Note that 〈Ā〉 ≤ L, therefore (7) covers both sparse and dense encoding because Ā
will always describe input (never output) instances of our reductions. Indeed, for every
f : N → N, if the complexity of a reduction is O(f(〈Ā〉)) then it is also O(f(L)).
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For convenience, we defined the instance of POTTS and POTTS-LP the same way as
for MINSUM(Y )-LP and MINSUM(Y ), namely by the tuple (V,E,K,g) with g ∈ QI .
However, the components of g are not independent since they satisfy (6). This must be
taken into account when computing 〈g〉 for POTTS and POTTS-LP.

Existing Results. The results obtained in [10] can be formulated as follows.

Theorem 1. LINPROG reduces in linear time to MINSUM(Z)-LP with 3 labels.

Theorem 2. LINPROG reduces in quadratic time to MINSUM(Z)-LP with 3 labels.

Theorem 3. LININEQ reduces in linear time to MINSUM({0,∞})-LP with 3 labels.

Theorem 3 is not explicitly stated in [10]. It holds because LININEQ is LINPROG

with c = 0, in which case the output min-sum problem has costs in {0,∞} [10, §5].

Contributions. Our contributions in this paper are two reductions of the general min-
sum problem to the Potts min-sum problem that preserve both the optimum of (1) and
the optimum of its LP relaxation (3). These reductions lead to the following results.

Theorem 4. MINSUM({0,∞}) reduces in linear time to POTTS with 3 labels.

Theorem 5. MINSUM({0,∞})-LP reduces in linear time to POTTS-LP with 3 labels.

Corollary 6. LININEQ reduces in linear time to POTTS-LP with 3 labels.

Proof. Combine Theorem 3 and Theorem 5. ��
Theorem 7. MINSUM(Z) with p object pairs, k labels and size L reduces in time
O(pk2L) to POTTS with 3 labels.

Theorem 8. MINSUM(Z)-LP with p object pairs, k labels and size L reduces in time
O(pk2L) to POTTS-LP with 3 labels.

Corollary 9. LINPROG reduces in quadratic time to POTTS-LP with 3 labels.

Proof. By Theorem 8, MINSUM(Z)-LP reduces in quadratic time to POTTS-LP with
3 labels, because pk2 = O(L) and so O(pk2L) ⊆ O(L2). This is combined with
Theorem 1. ��
Theorem 10. MINSUM(Z) with k labels and size L reduces in time O(k2L) to POTTS

with k labels.

Theorem 11. MINSUM(Z)-LP with k labels and size L reduces in time O(k2L) to
POTTS-LP with k labels.

In §4 we will describe our first reduction for input costs in {0,∞} and thereby prove
Theorems 4 and 5. In §5 we generalize this to arbitrary costs, proving thus Theorems 7
and 8. In §6, we describe our second reduction and prove Theorems 10 and 11.
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4 Encoding a Local Marginal Polytope

Consider the polyhedron

P = {x ∈ Rn | Ax = b, x ≥ 0 } (8)

where A ∈ {−1, 0, 1}m×n and b ∈ {0, 1}m satisfy the following conditions:

(P1) P ⊆ [0, 1]n.
(P2) Each row of the matrix [−A |b ] contains exactly one positive number.
(P3) Each row of A contains at most d non-zeros.
(P4) A has in total O(n) non-zeros.

Every local marginal polytope with k labels and p object pairs has this form, where
m = O(kp), n = O(k2p), d = k + 1. Moreover, MINSUM({0,∞})-LP is equivalent
to the problem that decides whether P is non-empty and if so, it finds an x ∈ P .

In this section, we prove Theorems 4 and 5 by constructing, from the input poly-
tope (8), the output Potts min-sum problem. More precisely, we construct a reparame-
terized Potts min-sum problem (V,E,K,g), whose costs will satisfy

gu(k) = 0, ∀u ∈ V, ∀k ∈ K (9a)

guv(k, �) = 2[[k �= �]] + ϕuv(k) + ϕvu(�), ∀{u, v} ∈ E; ∀k, � ∈ K (9b)

min
k,�∈K

guv(k, �) = 0, ∀{u, v} ∈ E (9c)

Note that (9) implies L(g) = 0. By complementary slackness, any μ ∈ Λ and any g of
the form (9) are simultaneously optimal to (3) and its dual if and only if

guv(k, �)μuv(k, �) = 0, ∀{u, v} ∈ E; ∀k, � ∈ K. (10)

Moreover, the output min-sum problem will be designed such that if P �= ∅ then g is
dual-optimal, i.e., min{ g�μ | μ ∈ Λ } = L(g) = 0.

We will depict min-sum problems by diagrams, as in Figure 1. In addition, we adopt
the following conventions: non-zero values of ϕuv(k) are written next to node (u, k) on
the side of object v ∈ Nu, and an edge {(u, k), (v, �)} is visible if guv(k, �) = 0 and
invisible if guv(k, �) > 0. Assuming P �= ∅, (10) thus says that μ ∈ Λ is optimal to (3)
if and only if pairwise pseudomarginals are zero on invisible edges.

4.1 Elementary Constructions

Similarly as in [10], we will construct the output min-sum problem by gluing certain
smaller problems, each of them encoding a simple operation. We refer to these small
problems as elementary constructions. Each elementary construction is a standalone
min-sum problem whose costs g satisfy (9) and are optimal to the dual LP.

We will use the following elementary constructions (see Figure 2):

– SWAP encodes a swap of two unary pseudomarginals, one of them zero. More pre-
cisely, the LP relaxation (3) of this min-sum problem achieves its optimal value
(zero) if and only if the unary pseudomarginals linked by visible edges are equal
and the unary pseudomarginals in the crossed-out labels are zero.
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Fig. 2. Elementary constructions

– PERMUTE applies SWAP several times to arbitrarily permute all the three unary
pseudomarginals, one of them zero. The figure shows one possible permutation.

– COPY copies all the three unary pseudomarginals, one of them zero, from one ob-
ject to another object.

– UNIT enforces the value of a unary pseudomarginal to be 1. The other two unary
pseudomarginals are necessarily zero.

– ADDSINGLE adds two unary pseudomarginals in a single object and copies the re-
sult in another object. The third (possibly nonzero) unary pseudomarginal is copied.

– ADD adds two unary pseudomarginals in two different objects. This is done by
gluing three ADDSINGLE constructions.

For each elementary constructions (considered as a standalone min-sum problem),
the LP relaxation is tight, i.e., the optimal values of (3) and (1) coincide.

4.2 The Encoding Algorithm

Using the elementary constructions, we now describe the algorithm to construct the
output min-sum problem (V,E,K,g) from the polytopeP . First, we rewrite the system
Ax = b by moving negative terms to the right-hand side as

a+i1x1 + · · ·+ a+inxn = a−i1x1 + · · ·+ a−inxn + bi, i = 1, . . . ,m (11)

where a+ij , a
−
ij ∈ {0, 1} and aij = a+ij − a−ij . Note that condition (P2) says that the RHS

of (11) has exactly one non-zero term. This in turn ensures that both sides of (11) are
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not greater than 1 for every x ∈ P , thus all intermediate results are representable by
pseudomarginals. We denote the labels as K = {1, 2, 3}.

The algorithm is initialized by setting V = {1, . . . , n} and E = ∅. Each variable xj

in (8) will be represented by unary pseudomarginal μj(1). Then each equation (11) is
encoded one after another. The i-th equation is encoded as follows:

1. Construct a unary pseudomarginal with the value equal to the LHS of (11). This is
done by repeatedly applying ADD, possibly permuting labels by PERMUTE.

2. Construct a unary pseudomarginal with value equal to the RHS of (11). Recall that
the RHS of (11) has exactly one non-zero term. If a−ij = 1 for some j and bi = 0,
we already have the desired pseudomarginal, namely μj(1). If aij = 0 for all j and
bi = 1, we prepare a pseudomarginal with value bi = 1 using UNIT.

3. Enforce equality of both sides of (11) using COPY, permuting labels when neces-
sary by PERMUTE.

Figure 3 shows the constructed min-sum problem for an example polytope P . By
construction, the output min-sum problem has the following properties:

– If P �= ∅ then min{ g�μ | μ ∈ Λ } = 0. For every μ optimal to this problem, we
have x = (μ1(1), . . . , μn(1)) ∈ P .

– If P ∩ {0, 1}n �= ∅ then min{ g�μ | μ ∈ Λ ∩ {0, 1}I } = 0. For every μ optimal
to this problem, we have x = (μ1(1), . . . , μn(1)) ∈ P ∩ {0, 1}n.

– If P = ∅ then min{ g�μ | μ ∈ Λ } > 0.

This proves Theorems 4 and 5, up to complexity.

4.3 Complexity of Encoding

Let us count the number of objects and object pairs in the output min-sum problem.
Since for each elementary construction we have |E| = O(|V |) and the output prob-
lem is constructed by gluing elementary constructions, we have |E| = O(|V |). The
variables x1, . . . , xn are represented by n objects. Each equation (11) is represented by
O(d) objects. It follows from conditions (P3) and (P4) that n = O(dm). Thus, the total
number of objects is O(n + dm) = O(n). The time complexity of the algorithm is
proportional to |V |, thus it is also O(n).

5 Encoding a Min-sum Problem

In this section, we show that any (integer) linear optimization over polyhedron (8),

min{ c�x | x ∈ P ∩ {0, 1}n }, (12a)

min{ c�x | x ∈ P }, (12b)

can be efficiently reduced to the Potts min-sum problem with 3 labels. Since every local
marginal polytope has the form (8), this will prove Theorems 7 and 8.
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Fig. 3. The constructed reparameterized Potts min-sum problem that encodes the polytope P =
{ (x, y, z) ∈ [0, 1]3 | x+ y = 1, y + z = x }. The labels representing variables x, y, z have the
variables written in them in white. The messages ϕuv(k) are not shown, they are like in Figure 2.

The input of the reduction is a triplet (A,b, c), where (A,b) = Ā describes P . The
output is a min-sum problem (V,E,K,g), constructed as follows. First we construct
min-sum problem (V,E,K,g′) according to §4.2. Then we set g ∈ ZI as

gj(k) =

{
cj if k = 1 and j ≤ n

0 otherwise
(13a)

gij(k, �) = Mg′ij(k, �) (13b)

where M ∈ N is a big enough number (derived below) to ensure that every optimal
μ ∈ [0, 1]I and every integer optimal μ ∈ {0, 1}I to the output problem satisfies (10).

We first derive M for the simpler case, the ILP (12a). It suffices to set

M = Cu − C� + 1 (14)

where

C� =
n∑

j=1

min{0, cj}, Cu =
n∑

j=1

max{0, cj} (15)

is a lower and upper bound, respectively, on the optimal value of (12a).
Let us prove that every optimal solution μ of (12a) satisfies (10). The smallest non-

zero pairwise cost g′uv(k, �) is 1, thus the smallest non-zero guv(k, �) is M . Assume
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that for some {u, v} ∈ E and k, � ∈ K we have guv(k, �) > 0 and μuv(k, �) = 1. Then
g�μ ≥ M + C� > Cu, which is a contradiction.

Let us derive the complexity of the reduction. We have 〈M〉 = O(〈c〉), because we
must consider the worst case when the sizes of c1, . . . , cn are very unequally distributed,
e.g., 〈c1〉 = O(〈c〉). Each unary cost gu(k) is a sum of at most |V | values not greater
than 2M , hence 〈gu(k)〉 = O(〈c〉+ log |V |) = O(〈c〉). Thus the description length of
the output problem is1 O(n〈c〉). This concludes the proof of Theorem 7.

We now derive M for the more difficult case, the LP (12b). We first need a lemma.

Lemma 12. Let (x1, . . . , xn) be a vertex of the polytope P defined by (8). For every
j = 1, . . . , n we have xj = 0 or xj ≥ (d+ 1)−m/2.

Proof. The proof is analogical to that of [10, Lemma 7].

At least one optimal solution to (12b) is attained at a vertex of P . The coordinates
of a vertex are fractions, however, by Lemma 12, each non-zero coordinate is not less
than (d+ 1)−m/2. This means it suffices to choose

M = (Cu − C�)(d+ 1)m/2 + 1. (16)

In the worst case, 〈M〉 = O(〈c〉 + m log d) = O(〈c〉). This proves the claimed
complexity O(n〈c〉) and thus concludes the proof of Theorem 8. Note that while the
number (16) is much larger then (14), asymptotically they have the same bit size.

6 Direct Encoding of a Min-sum Problem

The reduction described in §5 involves large output costs (14) and (16), which makes it
impractical and affects its theoretical complexity. Here we present a more direct reduc-
tion, which does not produce large output costs but applies only to finite input costs. By
that, we prove Theorems 10 and 11.

We construct a reparameterized Potts min-sum problem (V ′, E′,K,g′) that encodes
an input min-sum problem (V,E,K,g). Note that both problems have the same label
set. Each object u ∈ V of the input problem is represented by one object of the output
problem, so that V ⊆ V ′. Precisely, the unary pseudomarginals of the input problem
are represented by unary pseudomarginals in objects V in the output problem, which
automatically enforces normalization constraints (2a). Similarly, the unary costs of the
input problem are copied to unary costs in objects V of the output problem.

Each object pair {u, v}∈E of the input problem is replaced by the following con-
struction (see Figure 4). For each input label pair {(u, k), (v, �)} we introduce a new
object {(u, k), (v, �)} into V ′. One selected label in object {(u, k), (v, �)} ∈ V ′ of the
output problem represents the label pair {(u, k), (v, �)} of the input problem, such that

1 The derived complexity can be improved if some additional knowledge is available. First, we
may obtain better bounds on the optimal value of (12a) than (15). E.g., if a feasible solution x
to (12a) can be obtained cheaply, it yields an upper bound c�x ≤ Cu. Second, 〈M〉 = O(〈c〉)
holds in the unfavorable case when the distribution of the sizes 〈ci〉 is very non-uniform. Under
some additional assumptions on c, this worst-case bound can be made much smaller. Assume,
e.g., that 〈ci〉 ≤ 2〈c〉/n for every i. Then M ≤ n22〈c〉/n and 〈M〉 = O(〈c〉/n + log n).
Thus the description length of the output problem would be only O(〈c〉+ n log n).
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{(u, 2), (v, 2)} {(u, 2), (v, 3)}

{(u, 3), (v, 2)} {(u, 3), (v, 3)}

Fig. 4. Objects added to V ′ for one input object pair {u, v} ∈ E and |K| = 3. For brevity,
μuv(k, �) is denoted by zk�.

a

a

b

x1 x2 x3u

z11 z12

z13

z12z11 z13{(u, 1), (v, 3)}{(u, 1), (v, 2)}{(u, 1), (v, 1)}

Fig. 5. The ADDK elementary construction, enforcing z11 + z12 + z13 = x1. Note that a =
z11 + z12 and b = a+ z13. For brevity, μu(k) is denoted by xk.

the unary pseudomarginal of this label represents the pseudomarginal μuv(k, �) of the
input problem and the unary cost of this label equals the input cost guv(k, �).

Each marginalization constraint (2b) is encoded by the ADDK construction, shown
in Figure 5 for |K| = 3 labels. It is built from several constructions ADDSINGLE and
ADD. For brevity, we denote μu(k) and μuv(k, �) by xk and zk�, respectively. The LP
relaxation of ADDK attains zero optimal value if and only if zk1+ zk2+ zk3 = xk , i.e.,
if and only if the marginalization constraint is satisfied.

Let f(zk1, zk2, zk3, xk) denote the optimal value of the LP relaxation of ADDK sub-
ject to the constraint that the unary pseudomarginals zk1, zk2, zk3, xk are fixed. As we
said, if zk1 + zk2 + zk3 = xk then f(zk1, zk2, zk3, xk) = 0. Otherwise, one can show2

that there is a small constant C ∈ N such that

Cf(zk1, zk2, zk3, xk) ≥ |zk1 + zk2 + zk3 − xk|. (17)

2 We omit the proof, which is long. For illustration, we state the similar claim for the ADDSIN-
GLE construction (see Figure 2). Denoting by f(a, b, c) the optimal value of the LP relaxation
of ADDSINGLE subject to fixed a, b, c, it is easy to show that f(a, b, c) ≥ |a+ b− c|.



68 D. Průša and T. Werner

It is straightforward to generalize the ADDK construction to |K| ≥ 3, e.g., by using
more objects and adding |K| − 3 dummy labels to each object. Then we can write (17)
as Ruv(k) ≥ |ruv(k)| where

ruv(k) =
∑

�∈K

μuv(k, �)− μu(k). (18)

Let us multiply all pairwise costs in each ADDK construction by CMuv , where
Muv ∈ N. Then the LP relaxation of the output min-sum problem can be written as

min
{
g�μ+

∑

u∈V

∑

v∈Nu

∑

k∈K

MuvRuv(k)
∣
∣∣ μ ∈ RI

+, μ satisfies (2a)
}
. (19)

The numbers Muv (u ∈ V , v ∈ Nu) must be big enough to ensure that for every μ
optimal to (19) all the residuals ruv(k) vanish. It suffices to set

Muv = Mvu =
⌈
1
2 max
k,�∈K

guv(k, �)
⌉
+ 1. (20)

To prove this, observe that if unary pseudomarginals μu are fixed, one can optimize
over pairwise pseudomarginals μuv separately for each {u, v} ∈ E. The rest follows
from Proposition 13.

Proposition 13. Consider a single pair {u, v} ∈ E. Let functions μu, μv: K → R+

satisfy (2a). Let guv: K ×K → R+. Every optimal μuv in the problem

min
μuv : K×K→[0,1]

( ∑

k,�∈K

guv(k, �)μuv(k, �) +
∑

k∈K

Muv(|ruv(k)|+ |rvu(k)|)
)

(21)

satisfies ruv(k) = rvu(k) = 0 for all k ∈ K .

Proof. Suppose that some of the numbers ruv(·), rvu(·) are non-zero. We will show that
then μ cannot be optimal to (21). Since

∑
k ruv(k) =

∑
� rvu(�), at least one of the

following cases must occur. For each case, we show that by changing μuv (but keeping
them feasible) the objective of (21) can be decreased:

1. ruv(k) > 0 for some k, ruv(k′) < 0 for some k′, ruv(�) = 0 for all �:
Pick any � such that μuv(k, �) > 0. Because ruv(k) > 0 and ruv(�) = 0, we have
μuv(k

′, �) < 1. Decrease μuv(k, �) by a small δ > 0 and increase μuv(k
′, �) by the

same δ. This changes the objective by guv(k
′, �)δ − guv(k, �)δ − 2Muvδ < 0.

2. ruv(k) < 0 for some k, rvu(�) < 0 for some �:
Because ruv(k) < 0, we have μuv(k, �) < 1. Increase μuv(k, �) by a small δ > 0.
This changes the objective by guv(k, �)δ − 2Muvδ < 0.

3. ruv(k) > 0 for some k, rvu(�) > 0 for some �, μuv(k, �) > 0:
Decrease μuv(k, �) by a small δ > 0. This decreases the objective by 2Muvδ +
guv(k, �)δ.

4. ruv(k) > 0 for some k, rvu(�) > 0 for some �, μuv(k, �) = 0:
Pick any k′ and �′ such that μuv(k, �

′) > 0 and μuv(k
′, �) > 0. Such k′ and �′ exist

because ruv(k) > 0 and rvu(�) > 0. Then proceed as follows:



How Hard Is the LP Relaxation of the Potts Min-Sum Labeling Problem? 69

– If μuv(k
′, �′) = 1 then ruv(k

′) > 0 and rvu(l
′) > 0. Proceed as in case 3.

– If μuv(k
′, �′) < 1, decrease μuv(k, �

′) by a small δ > 0, decrease μuv(k
′, �)

by δ, and increase μuv(k
′, �′) by δ. This changes the objective by−guv(k, �

′)δ−
guv(k

′, �)δ + guv(k
′, �′)δ − 2Muvδ < 0. ��

6.1 Complexity of the Reduction

Let us derive the complexity of the reduction. Clearly, |V ′| = O(|V | + |K|2|E|) and
|E′| = O(|K|2|E|). The cumulative size of all numbers Muv ({u, v} ∈ E) is O(〈g〉).
Each value Muv appears as the Potts pairwise cost in O(|K|2) object pairs, thus all the
Potts pairwise costs are described by a vector of size O(|K|2〈g〉). The cumulative size
of the unary costs in g′ is bounded by the sum of sizes of all messages. Every Muv

induces O(|K|2) messages, each of them having the absolute value at most 2Muv. It
means all the messages are described by a vector of size O(|K|2〈g〉), which proves the
output has the size O(|K|2〈g〉). Note that the numbers (20) are (possibly much) smaller
than (14) and (16). If |K| is fixed, the complexity of the reduction is linear.

7 Conclusion

Our results (Corollaries 6 and 9, Theorem 11) suggest that solving the LP relaxation
of the pairwise min-sum problem with attractive Potts costs cannot be expected much
easier than solving the LP relaxation of the general min-sum problem.

This statement may sound misleading in case of reduction with higher than linear
complexity, because in that case efficiency of solving the LP relaxation of the Potts min-
sum problem does not fully translate to efficiency of solving the general LP. However,
our argument is more subtle: if a new principle were invented to solve the LP relaxation
of Potts min-sum problems (e.g., similar to network flow algorithms), it would mean
this principle is applicable to an arbitrary LP. Since there are only few principles to
solve general LPs in polynomial time, this is unlikely.

In particular, message passing algorithms do not solve the LP relaxation of a gen-
eral min-sum problem exactly, but find only a local (with respect to block-coordinate
updates) dual optimum. It would be desirable to modify these algorithms to alleviate
this drawback. One might hope this might be easier for Potts min-sum than for general
min-sum. However, inventing a message passing algorithm that avoids local optima for
Potts min-sum problems would mean it can solve general LPs.

Besides the results for the LP relaxation, we obtained similar reductions for the non-
relaxed problems (Theorems 4, 7, 10). These may have practical impact in the case of
exact (e.g., branch-and-bound) solvers, which can be tuned only for Potts problems.
Unfortunately, they may not be useful for approximate solvers (such as primal move-
making algorithms [2]) or solvers obtaining persistency [8,14], because the reductions
may not preserve approximation ratio or persistency.
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