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Abstract—We show that solving the LP relaxation of the min-sum labeling

problem (also known as MAP inference problem in graphical models, discrete

energy minimization, or valued constraint satisfaction) is not easier than solving

any linear program. Precisely, every polytope is linear-time representable by a

local marginal polytope and every LP can be reduced in linear time to a linear

optimization (allowing infinite costs) over a local marginal polytope. The reduction

can be done (though with a higher time complexity) even if the local marginal

polytope is restricted to have a planar structure.

Index Terms—Graphical model, Markov random field, discrete energy

minimization, valued constraint satisfaction, linear programming relaxation,

local marginal polytope
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1 INTRODUCTION

THE min-sum (labeling) problem is defined as follows: given a set of
discrete variables and a set of functions depending on one or two
variables, minimize the sum of the functions over all variables.
This problem arises in MAP inference in graphical models [22] and
it is also known as discrete energy minimization [9] or valued con-
straint satisfaction [21].

This NP-complete problem has a natural linear programming
(LP) relaxation, proposed by a number of authors [4], [13], [18],
[22]. This relaxation is equivalent to the dual (Lagrangian) decom-
position of the min-sum problem [8], [12], [19]. While the min-sum
problem can be formulated as a linear optimization over the mar-
ginal polytope, the LP relaxation approximates this polytope by its
outer bound, the local marginal polytope [22].

The relaxation is exact for a large class of min-sum instances
and it is a basis for constructing good approximations for many
other instances [9], [20], [23]. It is therefore of great practical inter-
est to have efficient algorithms to solve the LP relaxation.

To solve the LP relaxation, the simplex and interior point meth-
ods are prohibitively inefficient for large-scale instances (which
often occur, e.g., in computer vision). For min-sum problems with
two labels, the LP relaxation can be solved efficiently because it
reduces in linear time to max-flow [3], [17]. For more general prob-
lems, no really efficient algorithm is known to solve the LP.

In this paper we show that the quest for efficient algorithms to
solve the LP relaxation of the general min-sum problem has a fun-
damental limitation, because this task is not easier than solving
any linear program. Precisely, we prove the following theorems.

Theorem 1. Every polytope is (up to scale) a coordinate-erasing projec-
tion of a face of a local marginal polytope with three labels, whose
description can be computed from the input polytope in linear time.

The input polytope is described by a set of linear inequalities
with integer coefficients. By coordinate-erasing projection, we
mean a projection that copies a subset of coordinates and erases
the remaining ones.

Theorem 2. Every linear program can be reduced in linear time to a lin-
ear optimization (allowing infinite costs) over a local marginal poly-
tope with three labels.

While Theorem 2 immediately follows from Theorem 1, the sit-
uation is more complex when infinite costs are not allowed. In
this case, the reduction time and the output size are quadratic
(see Theorem 9).

Given these negative results, one may ask whether the LP relax-
ation can be solved efficiently for some useful subclasses of the
min-sum problem. One such subclass is the planar min-sum prob-
lem, which frequently occurs in computer vision. We show (in
Theorem 11) that even in this case, the reduction can be done (with
infinite costs allowed), in better than quadratic time.

Similar universality results are known also for other polytopes,
e.g., the three-way transportation polytope [6] and the traveling
salesman polytope [2].

2 THE LOCAL MARGINAL POLYTOPE

Let ðV;EÞ be an undirected graph, where V is a finite set of objects

and E � V
2

� �
is a set of object pairs. LetK be a finite set of labels. Let

gu: K ! R and guv: K �K ! R be unary and binary cost functions,

where R ¼ R [ f1g and we adopt that guvðk; ‘Þ ¼ gvuð‘; kÞ. The
min-sum problem is defined as

min
k2KV

X
u2V

guðkuÞ þ
X

fu;vg2E
guvðku; kvÞ

0
@

1
A: (1)

All the costs guðkÞ; guvðk; ‘Þ form a vector g 2 R
I

where I ¼
ðV �KÞ [ ffðu; kÞ; ðv; ‘Þg j fu; vg 2 E; k; ‘ 2 K g. The problem instance
is given by a tuple ðV;E;K; gÞ.

The local marginal polytope [22] is the set L of vectors mm 2 RI
þ

satisfying X
‘2K

muvðk; ‘Þ ¼ muðkÞ; u 2 V; v 2 Nu; k 2 K; (2a)

X
k2K

muðkÞ ¼ 1; u 2 V; (2b)

where Nu ¼ f v j fu; vg 2 E g are the neighbors of u and we assume
muvðk; ‘Þ ¼ mvuð‘; kÞ. The numbers muðkÞ;muvðk; ‘Þ are known as
pseudomarginals [22]. The local marginal polytope is given by a
triplet ðV;E;KÞ.

The LP relaxation of the min-sum problem reads

L�ðgÞ ¼ argmin
mm2L

hg;mmi; (3)

where in the scalar product hg;mmi we define 0 � 1 ¼ 0. The set (3)
contains all vectors mm for which hg;mmi attains minimum over L. It
is itself a polytope, a face of L.

We will depict min-sum problems by diagrams, as in Fig. 1.
Objects u 2 V are depicted as boxes, labels ðu; kÞ 2 I as nodes, label
pairs fðu; kÞ; ðv; ‘Þg 2 I as edges. Each node is assigned a unary
pseudomarginal muðkÞ and cost guðkÞ. Each edge is assigned a
binary pseudomarginal muvðk; ‘Þ and cost guvðk; ‘Þ.

Note the meaning of constraints (2) in Fig. 1. Constraint (2b)
imposes for unary pseudomarginals a; b; c that aþ bþ c ¼ 1. Con-
straint (2a) imposes for binary pseudomarginals p; q; r that
a ¼ pþ q þ r.

3 INPUT POLYHEDRON

We consider the input polyhedron in the form

P ¼ fx ¼ ðx1; . . . ; xnÞ 2 Rn jAx ¼ b; x � 0 g; (4)

where1 A ¼ ½aij� 2 Zm�n, b ¼ ðb1; . . . ; bmÞ 2 Zm, m 	 n. We assume
there is at least one non-zero entry in each row and column of A.
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1. The assumption that ðA;bÞ are integer-valued is common, see e.g., [10]. In
the more general case of rational-valued ðA;bÞ, Lemma 4 would not hold. Linear
complexity of the reduction could probably be maintained under some additional
assumptions, such as prior bounds on the sizes of coordinates of the vertices of P .
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The instance of polyhedron (4) is given by ðA;bÞ or, in short, by the
extended matrix

�A ¼ ½aij� ¼ ½A jb� 2 Zm�ðnþ1Þ: (5)

It will be convenient to rewrite the systemAx ¼ b as follows. In
the ith equation

ai1x1 þ � � � þ ainxn ¼ bi; (6)

it is assumed that bi � 0 (if not, multiply the equation by �1). Fur-
ther, the terms with negative coefficients are moved to the right-
hand side, such that both sides have only non-negative terms.
Thus, (6) is rewritten as

aþi1x1 þ � � � þ aþinxn ¼ a�i1x1 þ � � � þ a�inxn þ bi; (7)

where aþij � 0, a�ij � 0, aij ¼ aþij � a�ij. We assume w.l.o.g. that

aþi1 þ � � � þ aþin 6¼ 0 and a�i1 þ � � � þ a�in þ bi 6¼ 0.

The following lemmas give some bounds that will be needed in
the encoding algorithm.

Lemma 3. For every matrixA 2 Rn�n with columnsAj,

detAj j 	
Yn
j¼1

kajk2 	
Yn
j¼1

kajk1:

Proof. The first inequality is well-known as Hadamard’s inequal-
ity. The second inequality holds because kak2 	 kak1 for every
a 2 Rn. tu

Lemma 4. Let b 6¼ 0. Let ðx1; . . . ; xnÞ be a vertex of P . Then for each j

we have xj ¼ 0 orM�1 	 xj 	 M where

M ¼
Ynþ1

j¼1

Xm
i¼1

jaijj: (8)

Proof. It is well-known from the theory of linear programming
that every vertex x of P is a solution of a system A0x0 ¼ b0,
where x0 ¼ ðx01; x02; . . .Þ are the non-zero components of x, A0

is a non-singular submatrix of A, and b0 is a subvector of b.
By Cramer’s rule,

x0j ¼
detA0

j

detA0 ; (9)

where A0
j denotes A0 with the jth column replaced by b0.

Lemma 3 implies jdetA0
jj; jdetA0j 	 M . tu

Lemma 5. Let P be bounded. Then for every x 2 P , each side of equa-
tion (7) is not greater than

N ¼ Mmax
m

i¼1

Xn
j¼1

jaijj: (10)

Proof. Since every point ðx1; . . . ; xnÞ of P is a convex combination

of vertices of P , we have xj 	 M for each j. Hence, aþi1x1 þ � � �þ
aþinxn 	 Mðjai1j þ � � � þ jainjÞ 	 N for each i. tu

4 ENCODING A POLYTOPE

In this section, we prove Theorem 1 by constructing, in linear time,
a min-sum problem ðV;E;K;gÞ with costs g 2 f0; 1gI such that the
input polyhedron P is a scaled coordinate-erasing projection of
L�ðgÞ. We assume that P is bounded, i.e., a polytope.2

4.1 Elementary Constructions

The output min-sum problem will be constructed from small build-
ing blocks, which implement certain simple operations on unary
pseudomarginals. We call these blocks elementary constructions. An
elementary construction is a min-sum problem with jKj ¼ 3 labels,
zero unary costs guðkÞ ¼ 0, binary costs guvðk; ‘Þ 2 f0; 1g, and opti-
mal value minm2Lhg;mi ¼ 0. It follows that m 2 L is optimal to the

LP relaxation if and only if

guvðk; ‘Þmuvðk; ‘Þ ¼ 0; fu; vg 2 E; k; ‘ 2 K: (11)

We will define elementary constructions by diagrams such as in
Fig. 1, in which we draw only edges with costs guvðk; ‘Þ ¼ 1. Edges
with costs guvðk; ‘Þ ¼ 0 are not drawn. We will use the following
elementary constructions (see Fig. 2):

COPY enforces equality of two unary pseudomarginals a; d in
two objects while imposing no other constraints on b; c; e; f . Pre-
cisely, given any feasible unary pseudomarginals a; b; c; d; e; f ,
there exist feasible binary pseudomarginals satisfying (11) if and
only if a ¼ d.

ADDITION adds two unary pseudomarginals a; b in one object and
represents the result as a unary pseudomarginal c ¼ aþ b in
another object. No other constraints are imposed on the remaining
unary pseudomarginals.

EQUALITY enforces equality of two unary pseudomarginals a; b in
a single object, introducing two auxiliary objects. No other con-
straints are imposed on the remaining unary pseudomarginals.
In the sequel, this construction will be abbreviated by omitting the
two auxiliary objects and writing the equality sign between the
two nodes, as shown in Fig. 2d.

POWERS creates the sequence of unary pseudomarginals with
values 2ia for i ¼ 0; . . . ; d, each in a separate object. We call d the
depth of the pyramid.

NEGPOWERS is similar to POWERS but constructs values 2�i for
i ¼ 0; . . . ; d.

Fig. 3 shows an example of how the elementary constructions
can be combined. The edge colors distinguish different elementary
constructions. By summing selected bits from NEGPOWERS, the num-
ber 5

8 is constructed. The example can be easily generalized to con-

struct the value 2�dk for any d; k 2 N such that 2�dk 	 1.

4.2 The Algorithm

Nowwe are ready to describe the encoding algorithm. The input of
the algorithm is a set of equalities (7). Its output will be a min-sum
problem ðV;E;K;gÞ with jKj ¼ 3 labels and costs guðkÞ ¼ 0,
guvðk; ‘Þ 2 f0; 1g. We will number labels and objects by integers,
K ¼ f1; 2; 3g and V ¼ f1; . . . ; jV jg.

The algorithm is initialized as follows:

1.1. For each variable xj in (4), introduce a new object j into V .
The variable xj will be represented (up to scale) by pseudo-

marginal mjð1Þ.
1.2. For each such object j, build POWERS to the depth dj ¼

blog2 maxmi¼1jaijjc based on label 1. This yields the sequence

of numbers 2imjð1Þ for i ¼ 0; . . . ; dj.

1.3. Build NEGPOWERS to the depth d ¼ dlog2 Ne.

Fig. 1. A pair of objects fu; vg 2 E with jKj ¼ 3 labels.

2. If the input polytope is in the general form fx 2 Rn jAx 	 b g, it can be
transformed to the form (4) by adding slack variables and translating.
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Then the algorithm proceeds by encoding each equation (7). The ith

equation is encoded as follows:

2.1. Construct pseudomarginals with non-zero values jaijjxj,
j ¼ 1; . . . ; n, by summing selected values from POWERS built
in Step 1.2, similarly as in Fig. 3. Note that the depths dj are

large enough to make this possible.
2.2. Construct a pseudomarginal with value 2�dbi by summing

selected bits from NEGPOWERS built in Step 1.3, similarly as

in Fig. 3. The value 2�dbi represents bi, which sets the scale
(mentioned in Theorem 1) between the input and output

polytope to 2�d. Note, the depth d is large enough to ensure
that all pseudomarginals are bounded by 1.

2.3. Sum all the terms on each side of the equation by repeti-
tively applying ADDITION and COPY.

2.4. Apply COPY to enforce equality of the two sides of the
equation.

Fig. 4 shows the output min-sum problem for an example poly-
tope P . By construction, the resulting min-sum problem encodes
the input polytope as follows:


 If P ¼ ; thenminmm2Lhg;mmi > 0.

 If P 6¼ ; thenminmm2Lhg;mmi ¼ 0 and

P ¼ pðL�ðgÞÞ; (12)

where p: RI ! Rn is the scaled coordinate-erasing projec-
tion given by

ðx1; . . . ; xnÞ ¼ pðmmÞ ¼ 2dðm1ð1Þ; . . . ;mnð1ÞÞ: (13)

Let us make some remarks on this construction. The output
min-sum problem has costs g 2 f0; 1gI but we could also use

g 2 f0;1gI without affecting the result. The min-sum problem

with costs in f0;1g is well-known as the constraint satisfaction prob-
lem (CSP). An instance of CSP is arc consistent [1] if

min
‘2K

guvðk; ‘Þ ¼ guðkÞ; u 2 V; v 2 Nu; k 2 K: (14)

Our constructed min-sum problem is arc consistent.
Solving the LP relaxation of the problem ðV;E;K; gÞ decides

whether P 6¼ ; and if so, it finds x 2 P . But this in fact means it sol-
ves the system fAx ¼ b; x � 0 g. Thus, we have the following
side-result.

Theorem 6. Solving any system of linear inequalities reduces in linear
time to the LP relaxation of an arc consistent min-sum problem with
three labels and costs in f0;1g.

4.3 The Complexity of Encoding

Let us show that the running time of the algorithm in Section 4.2 is
linear in the size of P , i.e., in the size of the matrix (5). It is usual
(see e.g. [10]) to define the description size of a matrix as the num-
ber of bits needed to encode all its entries in binary. Since an inte-
ger a 2 Z needs at least log2ðjaj þ 1Þ bits to encode, the number

L1 ¼
Xnþ1

j¼1

Xm
i¼1

log2ðjaijj þ 1Þ (15)

is a lower bound on the size of A. Now it suffices to show that the
running time is OðL1Þ because then it will clearly be linear also in
the true size of P .

Note that zero entries aij ¼ 0 do not contribute to L1. Thus L1 is

a lower bound on a sparse representation of A, in which only non-
zero entries are stored.

The running time of the algorithm is obviously3 linear in jEj.
Object pairs are created only when an object is created and the
number of object pairs added with one object is bounded by a con-
stant, hence jEj ¼ OðjV jÞ. So it suffices to show that jV j ¼ OðL1Þ.

On initialization, the algorithm creates
Pn

j¼1ðdj þ 1Þ objects in
Step 1.2 and dþ 1 objects in Step 1.3. It is easy to verify that both
these numbers are OðL1Þ. To show that dþ 1 ¼ OðL1Þ, one needs to
show (referring to (10)) that log2 M ¼ OðL1Þ and log2 maxi

P
j jaijj ¼

OðL1Þ.
For illustration, we only prove log2 M ¼ OðL1Þ and leave the

rest up to the reader. For every j, we haveXm
i¼1

jaijj 	
Ym
i¼1

ðjaijj þ 1Þ

because multiplying out the left-hand side yields the right-hand
side plus additional non-negative terms. Taking logarithm and

Fig. 2. Elementary constructions.

Fig. 3. Construction of the number 5
8.

3. The only thing that may not be obvious is how to multiply large integers
a; b in linear time. But this issue can be avoided by instead computing

pða; bÞ ¼ 2dlog2 aeþdlog2 be, which can be done in linear time using bitwise operations.
Since ab 	 pða; bÞ 	 ð2aÞð2bÞ, the bounds like M become larger but this does not
affect the overall complexity.
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summing over j yields

log2 M ¼
Xnþ1

j¼1

log2
Xm
i¼1

jaijj 	
Xnþ1

j¼1

Xm
i¼1

log2ðjaijj þ 1Þ ¼ L1:

Finally, encoding one equality (7) adds at most as many objects
as there are bits in the binary representation of all its coefficients.
Thus, the number of objects added to encode all equalities (7) is
OðL1Þ.

5 ENCODING A LINEAR PROGRAM

Here we show how to reduce any linear program to linear opti-
mization over a local marginal polytope. By saying that problem
A reduces to problem B we mean there is an algorithm to solve
problem A that can repeatedly4 call an oracle for problem B

(this is known as Turing reduction [15]). The complexity of the
reduction is the complexity of this algorithm, assuming that the
oracle for B takes constant time and space. If B is a linear pro-
gram, we assume the oracle returns not only the optimal value
but also an optimal argument.

We assume the input linear program in the form

P �ðcÞ ¼ argmin
x2P

hc;xi; (16)

where c ¼ ðc1; . . . ; cnÞ 2 Zn. Since the encoding in Section 4 can be
applied only to a bounded polyhedron but the LP (16) can be
unbounded, we first need a lemma.

Lemma 7. Every linear program can be reduced in linear time to a linear
program over a bounded polyhedron.

Proof. Denote HðaÞ ¼ fx 2 Rn j h1;xi 	 a g. By Lemma 4, all verti-
ces of P are contained in the halfspaceHðnMÞ. Clearly,

min
x2P\HðnMÞ

hc;xi � min
x2P\Hð2nMÞ

hc;xi: (17)

Each side of (17) is a linear program over a bounded polyhe-
dron. Inequality (17) is tight if and only if (16) is bounded, in
which case (17) has the same optimum as (16). The linear pro-
grams (17) are infeasible if and only if (16) is infeasible.

The description size of numbers nM and 2nM is OðL1Þ, thus
the reduction is done in linear time. tu
By Lemma 7, we further assume that P is bounded. We also

assume that P 6¼ ; because P ¼ ; is indicated byminmm2Lhg0;mmi > 0.

By Theorem 1, optimizing a linear function over P can be
reduced in linear time to optimizing a linear function over a face of
L. Given an oracle to optimize a linear function over L, it may
seem unclear how to optimize a linear function over a face of L.
This can be done by setting non-zero binary costs to a large
constant.

Precisely, let ðV;E;K; g0Þ be the min-sum problem that encodes

P , constructed in Section 4. Define g 2 R
I
by

giðkÞ ¼ ci; if k ¼ 1 and i 	 n;
0; if k > 1 or i > n;

�
(18a)

gijðk; ‘Þ ¼ 0; if g0ijðk; ‘Þ ¼ 0;
g1; if g0ijðk; ‘Þ ¼ 1;

�
(18b)

where the constant g1 � 0 is large enough to ensure that every
mm 2 L�ðgÞ satisfies (11). It follows that

P �ðcÞ ¼ pðL�ðgÞÞ: (19)

It remains to choose g1. The situation is different depending on
whether or not we are allowed to use infinite costs. If infinite costs
are allowed, we simply set g1 ¼ 1. This proves Theorem 2.

Fig. 4. The output min-sum problem for the polytope P ¼ f ðx; y; zÞ jxþ 2yþ 2z ¼ 3; �xþ 3y ¼ �1; x; y; z � 0 g.

4. In our case, the oracle is called only twice, as given by Lemma 7.
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If infinite costs are not allowed, g1 must be large enough but
finite. Unfortunately, manipulation with these large numbers
increases the complexity of the reduction. This is given by Theorem
9. To prove it, we first need a lemma, which refines Lemma 4 for
the special case of the local marginal polytope.

Lemma 8. Let mm 2 RI be a vertex of the local marginal polytope defined
by ðV;E;KÞ with jKj ¼ 3. Then each component m of mm satisfies

m ¼ 0 or m � M�1
L where

ML ¼ 2jV jþ6jEj: (20)

Proof. Write the local marginal polytope in the form (4), i.e., con-
straints (2) read Ax ¼ b. Matrix A has jV j þ 6jEj rows and
3jV j þ 9jEj columns. Each row of matrix ½A jb� has exactly 4
non-zeros, each of them in f�1; 1g. By Hadamard’s inequality,

in (9) we have j detA0
jj; jdetA0j 	 ML. tu

Theorem 9. Every linear program (16) can be reduced to a linear optimi-
zation (allowing only finite costs) over a local marginal polytope with
three labels. The size of the output and the reduction time are
OðL1ðL1 þ L2ÞÞ where L2 is the description size of c.

Proof. Choose g1 ¼ 1þMLðC2 � C1Þwhere

C1 ¼
Xn
i¼1

minf0; cig; C2 ¼
Xn
i¼1

maxf0; cig:

We show that now every mm 2 L�ðgÞ satisfies (11). It suffices to
show this only for vertices of L�ðgÞ because taking convex com-
binations of vertices preserves (11).

Since mm 2 ½0; 1�I , the contribution of the unary terms to hg;mmi
is in the interval ½C1; C2�. Since P 6¼ ;, we have minmm2Lhg0;mmi ¼
0 and thereforeminmm2Lhg;mmi 	 C2.

Suppose there is a vertex mm of L�ðgÞ and a label pair
fðu; kÞ; ðv; ‘Þg such that guvðk; ‘Þ ¼ g1 and muvðk; ‘Þ > 0. By

Lemma 8, we have muvðk; ‘Þ � M�1
L . Thus

min
mm2L

hg;mmi � g1M�1
L þ C1 > C2;

which is a contradiction.
Let us prove the claimed complexity. The binary length of

g1 is OðL1 þ L2Þ. It occurs in g at OðL1Þ positions, thus the
binary length of g is OðL1ðL1 þ L2ÞÞ. tu

6 REDUCTION TO PLANAR MIN-SUM

In this section, we show that the reduction can be done even if we
require the graph ðV;EÞ of the output min-sum problem to be pla-
nar. For that, it suffices to modify the construction in Section 4.2 to
ensure that ðV;EÞ is planar.

Consider a drawing of the graph ðV;EÞ in the plane, in which
vertices are distinct points and edges are straight line segments
connecting the vertices. We assume w.l.o.g. that no three edges
intersect at a common point, except at graph vertices.

The main idea is to replace every edge crossing with an equiva-
lent planar min-sum problem. Consider a pair fu; zg; fv; wg 2 E of
crossing edges, as shown in Fig. 5a. This pair is replaced by a con-
struction in Fig. 5b. The cost functions guu0 ¼ gvv0 copy unary pseu-
domarginals, i.e., they enforce mu ¼ mu0 and mv ¼ mv0 . The other
cost functions are set as gu00z ¼ guz and gv00w ¼ gvw. Problem H is a
planar min-sum problem that enforces unary pseudomarginals in
objects u0; u00 and v0; v00 to be equal, mu0 ¼ mu00 and mv0 ¼ mv00 . This
problem can be drawn arbitrarily small so that it is not intersected
by any other edges.

Fig. 6 shows how the planar min-sum problem H can be
designed. We work with halves of unary pseudomarginals, the
first two from each object. The order of unary pseudomarginals
is changed by swapping neighbors, imitating bubble sort on
four elements.

Recall that the (non-planar) min-sum problem constructed in
Section 4.2 has E ¼ OðL1Þ object pairs. Thus, there are OðL2

1Þ
edge crossings in this problem, which yields a reduction to a
planar min-sum problem (allowing infinite costs) done in time

OðL2
1 þ L2Þ.
It turns out that a more careful strategy of drawing the graph

decreases the bound on edge crossings to OðmL1Þ. Before proving
this in Theorem 11, we need a lemma.

Suppose we are given numbers a1; . . . ; ap and sets I1; . . . ; Iq �
f1; . . . ; pg and we want to compute numbers bj ¼

P
i2Ij ai,

j ¼ 1 . . . ; q. The jth sum is constructed using a binary tree, Tj, in

which every non-leaf vertex is the sum of its children (i.e., every
non-leaf vertex with two children is ADDITION and every edge is
COPY, as in Fig. 3). The leaves of Tj are ai, i 2 Ij, and its root is bj. We

refer to this construction as SUMTREES.

Lemma 10. LetSUMTREES be drawn such that the leaves a1; . . . ;ap lie
on a common horizontal line and their positions on the line are
given, and the roots b1; . . . ;bq lie on a different horizontal line

and their positions on the line can be arbitrary. Under this constraint,
SUMTREES can be drawn withOðqPq

j¼1 jIjjÞ edge crossings.

Fig. 5. Eliminating an edge crossing.

Fig. 6. Planar edge crossing using three labels.
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Proof. The construction is drawn as follows (see Fig. 7a). Each tree
is drawn without edge crossings. In each tree Tj, all the leaves
ai, i 2 Ij, have the same distance (i.e., the number of edges) to

the root bj. Let the height of a tree vertex be defined as its dis-

tance to the nearest leaf. The vertical coordinate of every non-
root vertex is equal to its height. All the roots b1; . . . ;bq have the

same vertical coordinate h ¼ dlog2 maxqj¼1jIjje.
Let us focus on tree T1. It is built in the bottom-upmanner. All

non-leaf vertices with the same height have two children except
the right-most one, which can have only one child. The horizontal
coordinate of a vertex equals the horizontal coordinate of its sec-
ond child; if there is only one child, it equals the horizontal coor-
dinate of this child. When a layer containing only one vertex has
been drawn and its height is less than h, the vertex is linked by a
single vertical edge with the layer of height h (thus, this edge can
jump over several layers), where it forms the root b1. Clearly,
adding this vertical edge does not affect the overall complexity.

The trees T2; . . . ; Tq are drawn similarly. The only differ-
ence is that all non-leaf vertices are shifted to the left by a
small offset, to ensure that the non-leaf vertices of all the
trees are distinct.

We will show that the number of edge crossings between
two trees Ti and Tj is OðjIij þ jIjjÞ. Consider all vertices with
heights k and kþ 1 (see Fig. 7b). For a vertex u with height
kþ 1, let Xu � R denote the smallest interval containing the
horizontal coordinates of u and its children. Edges going down
from u and v to height k can cross each other only if the intervals
Xu andXv intersect. Note that if u and v belong to the same tree,
thenXu andXv are disjoint.

Let qi;k and qj;k be the number of vertices with height k of Ti

and Tj, respectively. The number of pairs of intersecting inter-

vals is Oðqi;k þ qj;kÞ. To see this, observe that if an interval is

included in another, then it appears only in one intersecting
pair. If all such included intervals are discarded, each interval
intersects at most two others. Thus the number of intersections
is Oðqi;k þ qj;kÞ.

It follows that the number of edge crossings between Ti and
Tj is OðjTij þ jTjjÞ, where jT j denotes the number of vertices of

tree T . But we have jTjj ¼ OðjIjjÞ, because qj;kþ1 ¼ dqj;k=2e for

every j; k (recall, in every tree the highest non-root layer with a
single node is linked with the root layer by a single edge).

The total number of crossings in the whole SUMTREES graph isP
1	i 6¼j	q OðjIij þ jIjjÞ ¼ OðqPq

j¼1 jIjjÞ. tu
Theorem 11. Every linear program can be reduced inOðmL1 þ L2Þ time

to a linear optimization (allowing infinite costs) over a local marginal
polytope with three labels over a planar graph.

Proof. It suffices to show how to draw, in the algorithm from Sec-
tion 4.2, the graph ðV;EÞ with OðmL1Þ edge crossings. We show
this in the rest of the proof.

We start by drawing POWERS for variable x1 horizontally.
Then we draw SUMTREES over the objects of POWERS, with roots
being non-zero numbers jai1jx1, i ¼ 1; . . . ; m. The ith tree has
Oðlog2ðjai1j þ 1ÞÞ leaves, therefore, by Lemma 10, this SUMTREES

construction has OðmPm
i¼1 log2ðjai1j þ 1ÞÞ edge crossings.

This is repeated for the remaining variables x2; . . . xn, result-
ing in n independent SUMTREES constructions. The numbers

2�dbi, i ¼ 1; . . . ;m, are constructed similarly, by drawing SUM-

TREES over NEGPOWERS. The total number of edge crossings is

O
�Xn

j¼1

m
Xm
i¼1

log2ðjaijj þ 1Þ þm
Xm
i¼1

log2ðjbij þ 1Þ
�
¼OðmL1Þ:

At this stage, we have objects representing all non-zero num-
bers jaijjxj and 2�dbi. We assume that the vertical positions of all
SUMTREES were such that all these objects lie on a single horizon-
tal line. Now we proceed to sum the terms of each side of each
equality (7). This is done by drawing SUMTREES over these
objects, with 2m roots being the left-hand and right-hand sides
of all equalities (7). The tree associated with any side of the ith
equality (7) has OðniÞ leaves, where ni is the number of non-
zeros in the ith row of A. Therefore, the number of edge cross-

ings is OðmPm
i¼1 niÞ ¼ OðmL1Þ.

At this stage, all objects representing both sides of all equali-
ties (7) lie on a common horizontal line. It remains to join corre-
sponding left- and right-hand sides using COPY. This creates

Oðm2Þ � OðmL1Þ edge crossings. tu

7 CONSEQUENCES

Let us discuss some consequences of our results.
Most importantly, our results show that solving the LP relaxa-

tion of the min-sum problem is comparably hard as solving any
LP. This is straightforward if infinite costs are allowed. Then, by
Theorem 2, the reduction is done in time OðLÞ where L ¼ L1 þ L2,
while the best known algorithm [10] for general LP has time com-

plexity5 Oðn3:5L2 log L log log LÞ. Finding a very fast algorithm,

such as OðL2 log LÞ, to solve the LP relaxation would imply
improving the best-known complexity of LP, which is unlikely.

The cases in which the reduction time is polynomial but higher
than linear (Theorems 11 and 9) still impose a restriction on possi-
ble search for an efficient algorithm to solve the LP relaxation.
There are not many principles how to solve the general LP in poly-
nomial time (one is the ellipsoid algorithm), and finding a new
such principle is expected to be difficult. Therefore, we should
restrict our search to modifying these known principles rather than
to discovering a new principle.

Our results make more precise the known observation that the
LP relaxation of the min-sum problem is easier for two labels than
for the general case. It is known that for two labels the LP relaxa-
tion reduces in linear time to max-flow [3], [17] and the local mar-
ginal polytope has half-integral vertices [11], [23]. For three labels,
the coordinates of the vertices of local marginal polytopes can have
much more general values, as shown in Section 4.1. Moreover,
there is not much difference in complexity between the LP relaxa-
tion for three labels and for more than three labels (allowing infi-
nite costs) because, by Theorem 2, the latter can be reduced to the
former in linear time.

Rather than solving directly the LP relaxation (3), it is often
more desirable to solve its dual. The dual seeks to maximize a
lower bound on (1) by reparameterizations. One class of algorithms
to tackle this dual LP converges only to its local minimum,

Fig. 7. (a) A drawing of SUMTREES for p ¼ 6, q ¼ 2, I1 ¼ f1; 3; 4; 5g, I2 ¼
f2; 3; 4; 5; 6g. (b) Crossing edges between two layers.

5. Note, Karmarkar [10] assumes full encoding of the LP matrix but we allow
sparse encoding (see Section 4.3). To the best of our knowledge, the complexity of
solving sparse LPs is largely open [16].
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characterized by arc consistency. This class includes popular mes-
sage passing algorithms [23, Section 6], [11], [7] and the algorithms
[14], [23, Section 7], [5]. Theorem 6 has an interesting consequence.
Suppose we are given a fixed point of say min-sum diffusion [23,
Section 6] and want to decide whether it is (globally) optimal to the
dual LP relaxation and if so, find a corresponding optimal solution
to the primal LP (3). This problem is equivalent to the LP relaxation
of an arc consistent min-sum problem with costs in f0;1g, there-
fore it is as hard as solving the general system of linear inequalities.
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