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Abstract—In our recent work, we showed that solving the LP relaxation of the

pairwise min-sum labeling problem (also known as MAP inference in graphical

models or discrete energy minimization) is not much easier than solving any linear

program. Precisely, the general linear program reduces in linear time (assuming

the Turing model of computation) to the LP relaxation of the min-sum labeling

problem. The reduction is possible, though in quadratic time, even to the min-sum

labeling problem with planar structure. Here we prove similar results for the

pairwise min-sum labeling problem with attractive Potts interactions (also known

as the uniform metric labeling problem).
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1 INTRODUCTION

THE pairwise min-sum (labeling) problem consists in minimizing a
sum of unary and binary (also called pairwise) cost functions of dis-
crete variables. It is also known as (pairwise) discrete energy mini-
mization [1], [2], valued constraint satisfaction [3], or MAP inference
in graphical models [4]. It hasmany applications in computer vision,
machine learning, and other fields. This NP-hard problem has a nat-
ural linear programming (LP) relaxation [4], [5], [6], [7], [8], which
underlies many successful algorithms to tackle the problem (see [2]
and the references therein). Therefore it would have a great practical
impact to have efficient algorithms to solve this LP relaxation. The
popular simplex and interior point methods are prohibitively ineffi-
cient for large instances of the LP relaxation, often arising, e.g., in
computer vision. Our recent work [9] showed that, unfortunately,
solving the LP relaxation of the pairwise min-sum problem with
three variable states (labels) is as hard as solving the general linear
program. Precisely, the latter reduces to the former in linear time,
assuming the Turing model of computation. Therefore it is unlikely
that a very efficient algorithm for the LP relaxation exists.

This negative result suggests the question whether there are any
interesting subclasses of the min-sum problem for which the LP
relaxation is easier than the general LP and thus there is a hope for
efficient algorithms. One such subclass is the pairwise min-sum
problem with two labels, for which the LP relaxation has half-inte-
gral solutions and reduces in linear time to max-flow [10], [11].
Thus the LP relaxation can be solved very efficiently because the
complexity of best known algorithms for max-flow is much better
than for the general LP.

Another subclass is the metric labeling problem [12], [13], [14], a
pairwise min-sum problem in which the pairwise cost functions
satisfy the axioms of a metric. An important special case is the uni-
form metric, in statistical physics known as the attractive Potts inter-
action. We refer to the pairwise min-sum problem with attractive
Potts interactions as the Potts (labeling) problem. The LP relaxation
for this (still NP-hard) problem was proposed in [13] and later

generalized to any metric in [14]. For the Potts problem, the LP
relaxation [4], [5], [6], [7], [8] coincides with that in [13], [14].

The LP relaxation is the basis for approximation algorithms to
the metric labeling problem with theoretical approximation guar-
antees, in particular for the uniform metric where the approxima-
tion ratio is most favorable [13], [14], [15]. There is another class
of approximation algorithms for metric labeling problems,
a-expansion algorithms [12], which call a max-flow solver a small
number of times and thus they are very efficient. They achieve
comparable worst-case approximation guarantees [16] but the
algorithms based on LP relaxation are often more accurate in
practice [1], [2]. Moreover, for the multiway cut problem, closely
related to the Potts labeling problem, the LP relaxation is the only
known way to achieve the best possible approximation [17].

In this article, we show that solving the LP relaxation is hard
even for the Potts labeling problem. Precisely, the general linear pro-
gram can be reduced in linear time to the LP relaxation of the Potts
labeling problem with three labels (Theorem 4). Unlike in [9] where
the input LP is directly encoded by amin-sum problem, we proceed
in a different way. By duality, the LP problem is linear-time equiva-
lent to the linear feasibility (LF) problem (Lemma 3), therefore it suf-
fices to construct a reduction from LF. We do this in two steps: first
LF with rational coefficients is reduced to LF with coefficients in
f�1; 0; 1g by algebraic manipulations (Section 3) and then this prob-
lem is reduced to the LP relaxation of the Potts problem (Section 4).

This construction allows us to strengthen the result from [9] for
general min-sum problem because infinite costs are no longer
needed to achieve linear time. It allows us to formulate several
other results. As in [9], the reduction has a polyhedral formulation
(Theorem 5): any polytope is linear-time representable as a face of
the feasible set of the LP relaxation [13] of a Potts problem, which
we call the relaxed Potts polytope. We show (Theorem 8) that the
reduction to the LP relaxation of the Potts problem can be also
understood as a reduction to the LP relaxation of the multiway cut
problem [17]. Finally, again similarly to [9], the reduction can be
modified such that the output Potts problem is planar, but this
needs more than linear time (Theorem 9).

2 LP RELAXATION OF MIN-SUM PROBLEM

The pairwise min-sum (labeling) problem is defined as

min
k2KV

 X
u2V

guðkuÞ þ
X

fu;vg2E
guvðku; kvÞ

!
; (1)

where ðV;EÞ is a graph with V a finite set of objects and E � V
2

� �
a

set of object pairs, K is a finite set of labels, and gu: K ! R and
guv: K �K ! R are unary and pairwise cost functions, adopting
that guvðk; ‘Þ ¼ gvuð‘; kÞ.

The LP relaxation of this problem reads

min
m2L

hg;mmi; (2)

where g 2 RI and mm 2 RI is the vector with components
guðkÞ; guvðk; ‘Þ and muðkÞ;muvðk; ‘Þ, respectively, and

I ¼ ðV �KÞ [ f fðu; kÞ; ðv; ‘Þg j fu; vg 2 E; k; ‘ 2 K g:
The set L � RI contains all vectors mm � 0 satisfying

X
‘2K

muvðk; ‘Þ ¼ muðkÞ; u 2 V; v 2 Nu; k 2 K; (3a)

X
k2K

muðkÞ ¼ 1; u 2 V; (3b)
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where Nu ¼ f v j fu; vg 2 E g denotes the neighbors of object u. Fol-
lowing [4], we refer to L as the local marginal polytope and to
muðkÞ;muvðk; ‘Þ as pseudomarginals. The meaning of constraints 3a is
illustrated in Fig. 1.

A reparameterization of a cost vector g 2 RI is a cost vector

g0 2 RI given by

g0uðkÞ ¼ guðkÞ �
X
v2Nu

’uvðkÞ (4a)

g0uvðk; ‘Þ ¼ guvðk; ‘Þ þ ’uvðkÞ þ ’vuð‘Þ; (4b)

where ’uvðkÞ 2 R (u 2 V , v 2 Nu, k 2 K). Reparameterizations pre-
serve hg;mmi for every mm satisfying (3).

2.1 Potts Labeling Problem

Problem (1) in which pairwise cost functions guv satisfy metric axi-
oms has been called the metric labeling problem [12], [13], [14], [15].
Its special case is obtained for the uniform metric (the attractive Potts
interaction)

guvðk; ‘Þ ¼ huv½½k 6¼ ‘��; (5)

where huv � 0, and ½½k 6¼ ‘�� ¼ 1 if k 6¼ ‘ and ½½k 6¼ ‘�� ¼ 0 if k ¼ ‘. We
refer to problem (1) with pairwise costs (5) as the Potts (labeling)
problem.

In this case, problem (2) can be simplified [14] by minimizing
out the pairwise pseudomarginals muv. For a fixed object pair
fu; vg 2 E, minimizing hguv;muvi over muv � 0 subject to (3a) is a
discrete transportation problem with transport costs guv. If guv has
the form (5), the optimal value of this problem is given explicitly as
1
2huv

P
k2K jmuðkÞ � mvðkÞj. Therefore (2) is equivalent to minimizing

X
u2V

X
k2K

guðkÞmuðkÞ þ
X

fu;vg2E

1

2
huv

X
k2K

jmuðkÞ � mvðkÞj; (6)

over unary pseudomarginals muðkÞ � 0 subject to (3b). This is the
relaxation of the Potts problem proposed by Kleinberg and
Tardos [13]. It can be written also as

min
n2P

hh; ni; (7)

where h 2 RðV�KÞ[E is the vector with components huðkÞ ¼ guðkÞ
and huv, and P is the set of all vectors n 2 ½0; 1�ðV�KÞ[E with compo-
nents nuðkÞ; nuv satisfyingX

k2K
jnuðkÞ � nvðkÞj 	 2nuv; fu; vg 2 E; (8a)

X
k2K

nuðkÞ ¼ 1; u 2 V: (8b)

We will refer to P as the relaxed Potts polytope.

3 INPUT POLYHEDRON

Our key construction in the paper will be a linear-time representa-
tion of any convex polyhedron as the optimal set of the LP

relaxation of a Potts problem. We assume the input polyhedron in
the form

P ¼ f x 2 Rn jAx ¼ 0; xn ¼ 1; x � 0 g; (9)

where A ¼ ½aij� 2 Qm�n and xn denotes the last component of the
vector x ¼ ðx1; . . . ; xnÞ. Note that the equation xn ¼ 1 makes the
homogeneous linear system Ax ¼ 0 non-homogeneous, with the
right-hand side being the negative last column of A. Each row and
column of A is assumed to have at least one non-zero.

By ‘linear time’ we mean time OðNÞ where N is the size of the
input, i.e., the number of bits needed to encode matrix A in binary.
That is, we assume the Turing model of computation. Let us define
the size of a matrix precisely. For a scalar a 2 Q, we define

sizeðaÞ ¼ log 2ðjpqj þ 1Þ; (10)

where p; q 2 Z are such that a ¼ p=q assuming that q does not
divide p unless q ¼ 1 or p ¼ 0. For a matrix A 2 Qm�n, we define

sizeðAÞ ¼
Xn
j¼1

Xm
i¼1

sizeðaijÞ: (11)

As sizeðaÞ ¼ 0 for a ¼ 0, (11) underestimates the true size of
matrix A by neglecting the space needed, e.g., for storing the indi-
ces of zero entries. This does not matter because if the time of an
algorithm is linear in sizeðAÞ, it is at most linear in the true size
of A. On the contrary, not counting zero entries makes our results
stronger because it allows for a sparse representation of A.

In the rest of this section, we transform the description (9) of the
input polyhedron by algebraic manipulations to a form suitable for
encoding by a Potts problem.

3.1 From Rationals to Integers

First, the homogeneous linear system Ax ¼ 0 in (9) with rational
coefficients is transformed to a linear system with integer coeffi-
cients.1 For each non-zero input coefficient aij ¼ pij=qij 2 Q with

pij; qij 2 Z, we create an auxiliary variable yij and the equation

jqijjyij ¼ jpijjxj: (12)

Then in the input system we replace every non-zero term aijxk with
sgnðaijÞyij. The size of the output is clearly linear in the size of the

input.2

Example 1. The system

2

7
x1 þ 3

5
x2 � 2x3 ¼ 0

7

3
x1 � 1

2
x2 ¼ 0;

is transformed to the system

2x1 ¼ 7y11 3x2 ¼ 5y12 2x3 ¼ y13
7x1 ¼ 3y21 x2 ¼ 2y22

y11 þ y12 � y13 ¼ 0
y21 � y22 ¼ 0:

3.2 From Integers to f�1; 0; 1g
The system Ax ¼ 0with integer coefficients A 2 Zm�n is now trans-
formed in linear time to a homogeneous system with coefficients
in f�1; 0; 1g.

Instead of the usual ðx1; . . . ; xnÞ, let us name the input variables
ðx10; . . . ; xn0Þ. The key idea is similar to [18, Section 3.1]. Suppose

Fig. 1. One object pair fu; vg 2 E with jKj ¼ 3 labels. Objects u; v 2 V are depicted
as boxes, labels ðu; kÞ 2 I as nodes, and label pairs fðu; kÞ; ðv; ‘Þg 2 I as edges.
Note the meaning of constraints (3): for unary pseudomarginals a; b; c and pairwise
pseudomarginals p; q; r, equality (3a) reads a ¼ pþ q þ r and equality (3b) reads
aþ bþ c ¼ 1.

1. In [9] we assumed that the input LP has integer coefficients, in other words,
this step was omitted.

2. Note that the most obvious reduction, multiplying each equation by the
least common multiple of the denominators, would take more than linear time.
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we want to construct a product aijxj0 for some aij 2 N. Create the

equation system

xj1 ¼ xj0 þ yj0 yj0 ¼ xj0
xj2 ¼ xj1 þ yj1 yj1 ¼ xj1

..

. ..
.

xj;dj ¼ xj;dj�1 þ yj;dj�1 yj;dj�1 ¼ xj;dj�1

(13)

The first line of this system enforces xj1 ¼ 2xj0, the second line
enforces xj2 ¼ 2xj1, etc. Consequently,

xjk ¼ 2kxj0: (14)

The product aijxj0 can be now obtained by summing appropriate
bits of the binary code of aij. E.g., 11xj0 ¼ xj0 þ xj1 þ xj3 because

11 ¼ 20 þ 21 þ 23.
The whole reduction proceeds as follows:

1) For each j ¼ 1; . . . ; n, create equation system 13 with

dj ¼
�
log 2maxmi¼1jaijj

�
.

2) For each i ¼ 1; . . . ;m, construct non-zero terms aijxj0, sum
them, and equate the result to zero.

It is easy to verify that the number of non-zero output terms is
linear in sizeðAÞ.
Example 2. The system

2x10 þ 11x20 � 3x30 þ x40 ¼ 0

3x10 þ 6x20 � 5x40 ¼ 0

is transformed to the system

x11 ¼ x10 þ y10 y10 ¼ x10
x21 ¼ x20 þ y20 y20 ¼ x20
x22 ¼ x21 þ y21 y21 ¼ x21
x23 ¼ x22 þ y22 y22 ¼ x22
x31 ¼ x30 þ y30 y30 ¼ x30
x41 ¼ x40 þ y40 y40 ¼ x40
x42 ¼ x41 þ y41 y41 ¼ x41

x11 þ ðx20 þ x21 þ x23Þ � ðx30 þ x31Þ þ x40 ¼ 0
ðx10 þ x11Þ þ ðx21 þ x22Þ � ðx40 þ x42Þ ¼ 0:

3.3 Scaling

A polyhedron (9) with A 2 f�1; 0; 1gm�n is now scaled down such

that all its vertices are contained in the box ½0; 1n�n. This ensures that
all quantities represented by pseudomarginals fit into the
interval ½0; 1� (see Sections 4.2 and 5.1).

Lemma 1. Each vertex x of convex polyhedron 9 with

A 2 f�1; 0; 1gm�n satisfies x 2 ½0;M�n where

M ¼
Yn
j¼1

Xm
i¼1

jaijj: (15)

Moreover, sizeðMÞ ¼ OðsizeðAÞÞ.
Proof. See Lemma 4 and Section 4.3 in [9]. tu

By Lemma 1, the polyhedron must be scaled down by the
factor nM . This can be conveniently done during the transforma-

tion in Section 3.2. Let A 2 f�1; 0; 1gm�n be the output matrix and
j the index of the last variable of the input system in Section 3.2.
Without scaling, we would set xj ¼ 1. To achieve scaling, set

dj ¼ dlog 2ðnMÞe and xj;dj ¼ 1. By (14), this yields xj ¼
2�dj 	 ðnMÞ�1.

Though the number nM can be big, by Lemma 1 its size, and
hence the number of added equations, is OðsizeðAÞÞ.

To summarize Section 3, polyhedron (9) with rational coeffi-
cients has been transformed in linear time to a polyhedron of the
same form with coefficients f�1; 0; 1g and vertices in ½0; 1n�n. More
precisely, the input polyhedron is a scaled coordinate-erasing pro-
jection of the output polyhedron, where the erased coordinates cor-
respond to the auxiliary variables introduced in Sections 3.1
and 3.2. Here, we call a projection coordinate-erasing if it acts by
erasing a subset of coordinates.

4 ENCODING BY POTTS PROBLEM

Here we will represent the polyhedron obtained in Section 3 by the
LP relaxation of a Potts problem. In fact, the output problem will
be a reparameterized Potts problem, i.e., a min-sum problem with
arbitrary unary costs guðkÞ and pairwise costs (4b) with guvðk; ‘Þ
given by (5). By moving ’uvðkÞ to the unary costs, such a problem
can be reparameterized in linear time to a Potts problem with
unary costs (4a) and pairwise costs (5).

4.1 Gadgets

We will construct the output problem by gluing small subpro-
blems, called gadgets,3 which encode simple operations on unary
pseudomarginals. Each gadget is a reparameterized Potts problem
with unary costs guðkÞ 2 f0; 1g and pairwise costs

guvðk; ‘Þ ¼ 2½½k 6¼ ‘�� þ ’uvðkÞ þ ’vuð‘Þ; (16)

(i.e., we set4 huv ¼ 2 for all fu; vg 2 E in (5)) where
’uvðkÞ 2 f�1; 0; 1g. In addition, the costs satisfy

min
k2K

guðkÞ ¼ 0; u 2 V; (17a)

min
k;‘2K

guvðk; ‘Þ ¼ 0; fu; vg 2 E: (17b)

Each gadget is designed such that its LP relaxation has zero opti-
mal value. It follows that anymm 2 L is optimal to (2) if and only if

guðkÞmuðkÞ ¼ 0; u 2 V; k 2 K; (18a)

guvðk; ‘Þmuvðk; ‘Þ ¼ 0; fu; vg 2 E; k; ‘ 2 K; (18b)

i.e., whenever a cost is positive then the corresponding pseudomar-
ginal must vanish.

We will define gadgets by diagrams such as in Fig. 1, adopting
the following conventions. Each non-zero number ’uvðkÞ is written
near node ðu; kÞ on the side of object v, where ‘þ’ stands for
’uvðkÞ ¼ 1 and ‘�’ for ’uvðkÞ ¼ �1. A node ðu; kÞ is black if
guðkÞ ¼ 0 and white if guðkÞ ¼ 1. An edge fðu; kÞ; ðv; ‘Þg is drawn
only if guvðk; ‘Þ ¼ 0 and both of its end-nodes are black, otherwise
it is invisible. Fig. 2 shows an example.

We will use the following gadgets, defined in Fig. 3:

� SWAP swaps two unary pseudomarginals, one of them zero.
Precisely, the LP relaxation of this gadget has zero optimal
value if and only if the unary pseudomarginals linked by
visible edges are equal and the unary pseudomarginals in
the white nodes are zero.

� PERMUTE applies SWAP several times to arbitrarily permute
all the three unary pseudomarginals, one of them zero. The
figure shows one possible permutation.

� COPY copies all the three unary pseudomarginals, one of
them zero, from one object to another object.

3. When constructing reductions in complexity theory, a gadget is a small
instance of the output problem that implements a certain simple functionality of
the input problem. In [9] we used the term ‘elementary construction’ instead of
‘gadget’.

4. We could have just as well set huv ¼ 1; we chose huv ¼ 2 only for conve-
nience because then all ’uvðkÞ can be integer.
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� UNIT enforces a unary pseudomarginal to be 1.
� ADD1 adds two unary pseudomarginals in a single object

and copies the result in another object. The third unary
pseudomarginal is copied.

� ADD adds two unary pseudomarginals in two different
objects. This is done by gluing three ADD1gadgets.

Each gadget has several versions obtained by permuting the
three labels. Each interface object of COPY, SWAP and ADD has two
black nodes and one white node. This ensures that any versions of
COPY and ADD can be glued together, possibly after permuting the
nodes by PERMUTE. UNIT can be glued with any gadget with black
node linked to the black node labeled 1. When several gadets are
glued, the unary costs in identified nodes ðu; kÞ of their interface
objects are summed.

4.2 Encoding

We now describe the encoding algorithm. The input of the algo-
rithm is a polyhedron (9) with A 2 f�1; 0; 1gm�n and the vertices in

½0; 1n�n. Its output is a reparameterized Potts problem with jKj ¼ 3

labels.
First, we rewrite the system Ax ¼ 0 in (9) as

Aþx ¼ A�x; (19)

where aþij ¼ maxfaij; 0g and a�ij ¼ maxf�aij; 0g so that

aþij; a
�
ij 2 f0; 1g. That is, we have moved negative terms in each

equation to the other side of the equation.
Let the three labels of the output problem be named

K ¼ f1; 2; 3g. The encoding proceeds as follows:

1) Set V ¼ f1; . . . ; ng and E ¼ ;. Each variable xj is now rep-
resented by unary pseudomarginal mjð1Þ.

2) For each i ¼ 1; . . . ;m, encode the ith equation of system (19)
as follows:
a) Construct a unary pseudomarginal equal to the LHS of

the equation using ADD, permuting labels by PERMUTE

if necessary.
b) Do the same for the RHS.
c) Equate the LHS and RHS using COPY, permuting labels

by PERMUTE if necessary.
3) Encode the equation xn ¼ 1 using UNIT.
Assume that the input polyhedron P is bounded (i.e., a poly-

tope). Due to the scaling done in Section 3.3, Aþx ¼ A�x 	 1 for
all x 2 P . Therefore every expression formed in Steps 2a and 2b
fits into the feasible interval ½0; 1� of pseudomarginals. Recall
that the LP relaxation of each gadget has zero optimal value.
Since the gadgets are glued such that they encode the input sys-
tem Ax ¼ 0, the LP relaxation of the output problem will have
zero optimal value if and only if P is non-empty. In other
words, the output min-sum problem encodes the input polytope
as follows:

� If P ¼ ; thenminmm2Lhg;mmi > 0.
� If P 6¼ ; thenminmm2Lhg;mmi ¼ 0 and

P ¼ p
�
argmin

mm2L
hg;mmi

�
; (20)

where ‘argmin’ denotes the set of all minimizers and

p: RI ! Rn; pðmmÞ ¼ ðm1ð1Þ; . . . ;mnð1ÞÞ; (21)

is the coordinate-erasing projection that erases all pseudo-
marginals not representing the input variables (see Step 1
of the algorithm).

Fig. 4 shows the constructed reparameterized Potts problem for
an example input polyhedron.

As for each aij 6¼ 0 a constant number of objects and object pairs
is created, the encoding time is OðsizeðAÞÞ.

5 OBTAINED REDUCTIONS

In Sections 3 and 4 we described our core construction. Here we
describe several reductions that are more or less straightforward
consequences of this construction.

5.1 Reduction from LF and LP

The linear feasibility problem is the problem of solving a system of
linear inequalities. In our formulation, given a matrix A (with ratio-
nal entries) the aim is to decide if the polyhedron P is nonempty
and if so, to find an element x 2 P .

Theorem 2. The linear feasibility problem reduces in linear time to the
LP relaxation of the Potts problem with three labels.

Proof. If P is bounded, the claim holds by composing the reduc-
tions in Sections 3 and 4. If P is unbounded, it has at least one
vertex. The reduction in Section 4 cuts off a part of P because the
pseudomarginals are bounded by 1. But, due to the scaling
in Section 3.3, this part does not contain any vertex. Therefore,
cutting this part off preserves at least some solutions to the input
problem. tu

Fig. 2. Our notation for gadgets. (a) shows a gadget in our notation. (b) is the corre-
sponding reparameterized Potts problem with unary costs written inside nodes and
pairwise costs written next to edges; each þ [�] contributes by 1 [�1] to the pair-
wise cost of the adjacent edge. (c) is the corresponding Potts problem; each þ [�]
contributes by 1 [�1] to the unary cost of the adjacent node, each white node
contributes to its unary cost by additional increment 1.

Fig. 3. Potts problems used as gadgets.
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The linear programming problem is the problem of minimizing a
linear function subject to linear inequalities.

Lemma 3. The linear programming problem reduces in linear time to the
linear feasibility problem.

Proof. By strong duality, any linear program

minf hc; xi jAx ¼ b; x � 0 g;
can be solved by solving the system

Ax ¼ b; ATyþ z ¼ c; hc; xi ¼ hb;yi; x; z � 0:

Plugging y ¼ yþ � y� where yþ;y� � 0 puts this system into
form 9. The system is feasible if and only if the input LP is feasi-
ble and bounded. The reduction takes linear time because it
essentially copies A;b; c twice to the output. tu
This gives us the central result of our paper.

Theorem 4. The linear programming problem reduces in linear time to
the LP relaxation of the Potts problem with three labels.

Proof. Combine Lemma 3 and Theorem 2. tu

5.2 Polyhedral Interpretation

Composing the reductions done in Sections 3 and 4 (see equal-
ity (20)) yields that the input polytope P is a (scaled) coordinate-
erasing projection of a face of a local marginal polytope L. This
recovers our result [9, Theorem 1] with the constraint that the out-
put problem is a (reparameterized) Potts problem. Here we refor-
mulate this result in terms of the relaxed Potts polytope P.

By moving the numbers ’uvðkÞ to the unary costs, (20) can be
expressed in terms of P rather than L. Defining vector

h 2 RðV�KÞ[E by huðkÞ ¼ guðkÞ �
P

v2Nu
’uvðkÞ and huv ¼ 2, we

indeed have

p
�
argmin

mm2L
hg;mmi

�
¼ p0

�
argmin

n2P
hh; ni

�
; (22)

where p0: RðV�KÞ[E ! Rn is the coordinate-erasing projection
given by p0ðnÞ ¼ ðn1ð1Þ; . . . ; nnð1ÞÞ. Comparing (20) with (22) yields
the following result.

Theorem 5. Every polytope is (up to scale) a coordinate-erasing projec-
tion of a face of a relaxed Potts polytope with three labels, whose
description (by a set of linear inequalities) can be computed from the
description of the input polytope in linear time.

5.3 Relation to the Dual LP Relaxation

Rather than linear program (2) it is often better to solve its
dual. As shown, e.g., in [6], the dual LP relaxation maximizes
the function

LðgÞ ¼
X
u2V

min
k2K

guðkÞ þ
X

fu;vg2E
min
k;‘2K

guvðk; ‘Þ; (23)

over reparameterization of g (i.e., we maximize Lðg0Þ over ’, where
g0 is given by (4). Function (23) is a lower bound on (2),

min
mm2L

hg;mmi � LðgÞ: (24)

By strong duality, inequality (24) holds with equality if and only if
g is dual-optimal, i.e., no reparameterization of g can increase the
lower bound.

For the Potts problem, the dual optimal value does not change if
we add to the dual the constraints

’uvðkÞ þ ’vuðkÞ ¼ 0; fu; vg 2 E; k 2 K (25a)

j’uvðkÞj 	
1

2
huv; u 2 V; v 2 Nu; k 2 K: (25b)

This is proved by writing the dual of the Kleinberg-Tardos
relaxation (7), see Theorem 10 in Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2016.2582165. Note that
the numbers ’uvðkÞ used in our gadgets satisfy (25).

Let us emphasize that the reduction from Section 4 applies only
to the primal LP relaxation. The question whether there is a linear-
time reduction of the general LP to the dual LP relaxation is left
open in this paper. Does our reduction relate in any way to the dual
LP relaxation? The reparameterized Potts problem constructed
in Section 4.2 satisfies (17), hence it hasLðgÞ ¼ 0. Therefore:

� If P ¼ ; thenminmm2Lhg;mmi > LðgÞ ¼ 0.
� If P 6¼ ; thenminmm2Lhg;mmi ¼ LðgÞ ¼ 0.
This shows that the linear feasibility problem in fact reduces to

a simpler problem than the LP relaxation (2), namely, to deciding
whether g is dual optimal.

Theorem 6. The linear feasibility problem reduces in linear time to the
following problem: given a reparameterized Potts problem with three
labels, decide if its cost vector is optimal to the dual LP relaxation.

5.4 Reduction to Multiway Cut Problem

Closely related to the Potts problem is the multiway cut problem. For
its LP relaxation, given in [17], we prove a result analogous to
Theorem 4.

A multiway cut in a graph ðV [K;E0Þ, where K are terminals

and E0 � V [K
2

� �
, is a subset of edges whose removal leaves each ter-

minal in a separate component. Given edge costs h0
uv � 0, the goal

of the multiway cut problem is to find a multicut with minimum
total cost. The LP relaxation of this problem [17] reads

Fig. 4. A reparameterized Potts problem that encodes the polyhedron
P ¼ f ðx1; x2; x3; x4Þ 2 R4 j x1 þ x2 ¼ x4; x2 þ x3 ¼ x1; x1 � 0; x2 � 0; x3 � 0; x4 ¼ 1 g.
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minimize
X

fu;vg2E0

1

2
h0
uv

X
k2K

jmuðkÞ � mvðkÞj (26a)

subject to
X
k2K

muðkÞ ¼ 1; u 2 V [K (26b)

mkðkÞ ¼ 1; k 2 K (26c)

muðkÞ � 0; u 2 V; k 2 K: (26d)

Theorem 7. The LP relaxation of the Potts problem reduces in linear
time to the LP relaxation of the multiway cut problem.

Proof. As shown, e.g., in [12, Section 7.1], the Potts problem with
graph ðV;EÞ, unary costs guðkÞ, and Potts costs huv reduces to the
multiway cut problem with graph ðV [K;E0Þ where
E0 ¼ E [ f fu; kg ju 2 V; k 2 K g, and costs h0

uv ¼ huv for

fu; vg 2 E and h0
uk ¼ cu � guðkÞ for u 2 V , k 2 K, where

cu ¼ maxkguðkÞ. Since jKj is constant in our case, the reduction
takes linear time.

We show that this reduction preserves the LP relaxation. The
objective (26a) reads

X
fu;vg2E

1

2
huv

X
k2K

jmuðkÞ � mvðkÞj

þ
X
u2V

X
k2K

1

2
½cu � guðkÞ�

X
‘2K

jmuð‘Þ � mkð‘Þj:
(27)

Using (26c) we have

X
‘2K

jmuð‘Þ � mkð‘Þj ¼ ½1� muðkÞ� þ
X
‘ 6¼k

muð‘Þ ¼ 2½1� muðkÞ�;

so the second sum in 27 is

X
u2V

X
k2K

½cu � guðkÞ�½1� muðkÞ� ¼ C þ
X
u2V

X
k2K

guðkÞmuðkÞ:

Therefore (27) equals (6) up to a constant C. tu
Theorem 8. The linear programming problem reduces in linear time to

the LP relaxation of the multiway cut problem with three terminals.

Proof. Combine Theorems 4 and 7. tu

5.5 Reduction to Planar Potts Problem

As in [9], reduction to the Potts problem is possible even if this
problem is required to have planar structure, at the expense of
increasing the reduction complexity.

Theorem 9. The linear programming problem reduces in quadratic time
to the LP relaxation of the planar Potts problem with three labels,
whose size is quadratic.

Proof. Consider the reparameterized Potts problem constructed
in Section 4.2, with graph ðV;EÞ. We will replace this problem
with a planar reparameterized Potts problem with the same LP
relaxation.

Let the graph ðV;EÞ be drawn in the plane, such that the ver-
tices are distinct points and the edges are line segments

connecting the vertices. We assume w.l.o.g. that no three edges
intersect at a common point, except at graph vertices. We will
replace every edge crossing with a planar reparameterized Potts
problem.

Let fu; zg; fv; wg 2 E be a pair of crossing edges, as shown in
Fig. 5a. This pair of edges is replaced by a construction outlined
in Fig. 5b. Object u is linked to object u0 and v0 is linked to v0

using COPY. Object z is linked to u00 and w is linked to v00, setting
gu00z ¼ guz and gv00w ¼ gvw. The encircled objects are linked to a
gadget, named CROSS, that enforces unary pseudomarginals in
objects u0; u00 and v0; v00 to be equal. If necessary, labels are again
permuted using PERMUTE. The construction can be drawn arbi-
trarily small so that it is not intersected by any other edges.

The CROSS gadget is shown in Fig. 6. It is composed of four
ADD1 gadgets. It works correctly only if aþ b 	 1. To ensure
this, all pseudomarginals representing input variables in
the output problem are scaled down by the factor of 2. This can

be done by replacing the equation xn ¼ 1 in (9) with xn ¼ 1
2,

where the constant 1
2 is constructed similarly as in Section 3.2,

which can be done using a reparameterized Potts problem with
planar structure.

Since the total number of edge crossings in a graph ðV;EÞ is
OðjEj2Þ, the reduction time and the output size are quadratic. tu
The encoding time and the size of the output can be improved

using [9, Lemma 10].

6 CONCLUDING REMARKS

We have constructed a linear-time reduction from the general lin-
ear program to the LP relaxation of the Potts problem with three
labels. This shows that there is little hope to find a very efficient
algorithm (based, e.g., on simple combinatorial principles) to solve
the LP relaxation of the Potts problem. This negative result applies
also to labeling problems with metric and semimetric pairwise cost
functions (of which Potts is a special case), which often arise in
computer vision [1], [2].

Let us compare this result with our previous work [9] where we
constructed a linear-time reduction from LP to the LP relaxation of
the min-sum problem with costs in Z [ f1g [9, Theorem 2] and a
quadratic-time reduction from LP to the LP relaxation of the min-
sum problem with costs in Z [9, Theorem 9].

Theorem 4 is stronger than [9, Theorem 9] because the output
min-sum problem (being the Potts problem) has costs in Z and our
reduction is in linear time.

Theorem 4 is stronger than [9, Theorem 2] because there costs
Z [ f1g are needed for linear-time reduction. However, there is a
price for this. The reduction [9, Theorem 2] has the desirable prop-
erty of preserving approximation ratio: if a sub-optimal (i.e., feasi-
ble) solution of the LP relaxation of the output min-sum problem is
found, the ratio of the optimal and suboptimal objective value is
the same as for the input LP. We did not mention this property
in [9] but it is rather obvious. Reductions with finite output costs
do not have this property. It is open whether there exists a linear-
time reduction from the general LP to the LP relaxation of the

Fig. 5. Eliminating an edge crossing.

Fig. 6. Gadget CROSS.
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min-sum problem with finite costs (or even the Potts problem) that
preserves approximation ratio.

Another difference from [9] is that there we encoded the input
polyhedron directly by a min-sum problem while here we first pre-
process it to the form with coefficients f�1; 0; 1g. In fact, this
preprocessing could be used to simplify the reduction in [9].

On the other hand, our results in this paper could be proved in
an alternative way, shorter but less transparent. In [9, Section 4.2]
we constructed a linear-time reduction from LF to the LP relaxa-
tion (2) of the min-sum problem with costs in f0;1g. This LP relax-
ation has the form 9 with coefficients f�1; 0; 1g and every x 2 P

satisfying Aþx ¼ A�x 	 1, so it can be encoded by a Potts problem
as described in Section 4.

Finally, our work is related to [18], [19] where polyhedral uni-
versality results similar to our Theorem 5 are derived for the three-
way transportation polytope and the traveling salesman polytope.
However, the reduction time in these works is not shown to be
linear.
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