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SOLVING LP RELAXATIONS OF SOME NP-HARD PROBLEMS IS
AS HARD AS SOLVING ANY LINEAR PROGRAM∗

DANIEL PRŮŠA† AND TOMÁŠ WERNER†

Abstract. We show that the general linear programming (LP) problem reduces in nearly linear
time to the LP relaxations of many classical NP-hard combinatorial problems, assuming sparse
encoding of instances. We distinguish two types of such reductions. In the first type (shown for set
cover/packing, facility location, maximum satisfiability, maximum independent set, and multiway
cut), the input linear program is feasible and bounded iff the optimum value of the LP relaxation
attains a threshold, and then optimal solutions to the input linear program correspond to optimal
solutions to the LP relaxation. In the second type (shown for exact set cover, three-dimensional
matching, and constraint satisfaction), feasible solutions to the input linear program correspond to
feasible solutions to the LP relaxations. Thus, the reduction preserves objective values of all (not
only optimal) solutions. In polyhedral terms, every polytope in standard form is a scaled coordinate
projection of the optimal or feasible set of the LP relaxation. Besides nearly linear-time reductions,
we show that the considered LP relaxations are P-complete under log-space reductions, and therefore
also hard to parallelize. These results pose a limitation on designing algorithms to compute exact or
even approximate solutions to the LP relaxations, as any lower bound on the complexity of solving
the general LP problem is inherited by the LP relaxations.
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1. Introduction. NP-hard problems in combinatorial optimization can usually
be expressed as 0-1 linear programs with natural linear programming (LP) relaxations.
Solutions to these relaxations are useful for computing exact optimal solutions (by
branch-and-bound methods using the LP relaxation to compute lower bounds), ap-
proximate solutions (by rounding schemes), or exact optimal solutions for tractable
problem subclasses (that is, those with zero integrality gap). Although LP relaxations
can be solved in polynomial time [18], solving them for large instances can be inef-
ficient or impossible. Applications leading to large-scale combinatorial optimization
nowadays frequently appear in disciplines dealing with “big data”, such as computer
vision, machine learning, artificial intelligence, data mining, or data science.

It is therefore natural to ask if some LP relaxations are easier to solve than others,
that is, if the structures of some problems allow us to design algorithms that would
solve the LP relaxations more efficiently than general LP algorithms. An example
is the LP relaxations that can be reduced in linear time to the max-flow problem.
This class includes linear programs with up to two nonzeros per column [15], which
in addition have half-integral solutions. Such a reduction is important in practice.
For example, it is a core tool for solving discrete energy minimization tasks arising
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in computer vision [17], which is enabled by the availability of very fast max-flow
solvers [2, 13] that handle large sparse input graphs easily (in linear space and em-
pirically almost linear time). Another example is positive linear programs (PLPs):
there are algorithms that compute approximate solutions to PLPs much faster than
the general LP algorithms compute exact solutions, and such approximations often
allow good approximations to the original combinatorial problem [22, 34] to be con-
structed.

We show that LP relaxations of many classical NP-hard combinatorial optimiza-
tion problems are not easier to solve than general linear programs. Precisely, we show
the following.

1. Searching for a nonnegative solution of a system of linear inequalities (the
linear feasibility problem in equality form, LFE) can be reduced to each of the LP
relaxations in nearly linear time, assuming the random access machine (RAM) model
of computation and sparse encoding of instances. More precisely, deciding the feasi-
bility of LFE reduces to deciding if the optimum value of the LP relaxation attains a
threshold, and if so then every optimal solution to the LP relaxation is, after omitting
auxiliary variables and scaling, a solution to LFE. As the LFE problem is linear-time
equivalent to the LP problem, this implies that each LP relaxation is LP-complete
under reductions in nearly linear time. In polyhedral terms, this means that every
polytope in standard form is, up to scale, a coordinate projection of the set of optimal
solutions to the LP relaxation, where this LP relaxation can be constructed from the
polytope in nearly linear time.

2. For some of the LP relaxations we show a stronger result: feasible solutions to
the LP relaxation are, after omitting auxiliary variables and scaling, in bijection with
solutions to the LFE instance. That is, every polytope in standard form is a scaled
coordinate projection of the feasible set of the LP relaxation. This implies a nearly
linear-time reduction from the LP problem to each LP relaxation that preserves all
objective values.

We construct these reductions in two steps. First (in section 3) we reduce the
LFE problem in nearly linear time to its restricted form with 0-1 coefficients and at
most three variables per equation (we call this LFE-BIN3). Then (in sections 4 and 5)
we reduce this intermediate form in linear time to the LP relaxations.

3. Though our main focus is on time complexity, we also show (in section 6) that
the LP relaxations considered are P-complete under log-space reductions.

In our previous work we showed the hardness of LP relaxation for two particular
problems, the valued CSP [28] and uniform metric labeling [29]. Here we present
a more general framework, which simplifies the proofs in [28, 29] and allows us to
obtain the hardness result for more problems. A preliminary version of this article
appeared as [27]. To the best of our knowledge, there is not much other literature
on the hardness of LP relaxations, although works showing the universality of certain
polytopes are related. Thus, [8] shows that every polytope is a projection of the slim
three-dimensional (3-D) transportation polytope. In contrast to our strong reductions,
this reduction is not in nearly linear time but does not use scaling. Integral hulls
of some NP-hard combinatorial problems are universal, e.g., [1] shows that every
polytope with 0-1 vertices is affinely equivalent to a face of some traveling salesman
polytope. Unfortunately, this does not say much about the hardness of LP relaxations.

2. Overview. To start the exposition, we describe our setup and summarize the
chains of reductions that lead to our main results. All the main results are proved
here, up to the reduction from LFE to LFE-BIN3 and the reductions from LFE-BIN3
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to the LP relaxations, which are proved later in sections 3, 4, and 5.

2.1. Assumptions. The complexity of reductions depends on the computational
model and on the way of encoding instances. As our computational model, we adopt
the RAM [26, section 2.6].

Instances of linear programming/feasibility problems are lists of rational num-
bers, i.e., rational vectors. One can consider two ways of storing such a vector
a = (a1, . . . , an) ∈ Qn in the memory. In array encoding , we simply store the list
a1, . . . , an. In index-value encoding , we store the list of pairs (i, ai) for all nonzero
components of a. Clearly, the array encoding of a vector can be transformed to its
index-value encoding in nearly linear time, but not vice versa. Recall that a function
f : N→ N is nearly linear [14, 25] if f(n) = O(n logk n) for some k ∈ N.

We assume that both the inputs and outputs of our reductions are in index-value
encoding. However, as an array encoding can be transformed to an index-value one in
nearly linear time, our main results (nearly linear-time reductions from LP problems to
LP relaxations) would not change if the input were in the array encoding. In contrast,
the assumption that the outputs (LP relaxations) are in index-value encoding cannot
be dropped, since transforming them to array encoding would in general take more
than nearly linear time. But note that array encoding is unnatural for (LP relaxations
of) combinatorial decision/optimization problems. Index-value encoding corresponds
to the usual encoding of instances of such problems, where, e.g., a (hyper)graph is
represented by a list of edges, rather than by an adjacency matrix in array encoding.

The total number of bits needed to store the index-value encoding of a rational
vector a = (a1, . . . , an) ∈ Qn is, up to multiplicative and additive constants,

(1) size(a) = ddlog2(n+ 1)e+ L(a), where L(a) =

n∑
i=1

dlog2(|piqi|+ 1)e.

Here, d is the number of nonzero components of a and pi ∈ Z and qi ∈ N are such
that ai = pi/qi, where qi does not divide pi unless qi = 1 or pi = 0. The first term
in (1) accounts for indices, and the second term L(a) for values. For a list (A, b, . . .)
of rational matrices and vectors, size(A, b, . . .) denotes the size of the vector formed
by all their entries.

2.2. Easy reductions. The linear feasibility problem (henceforth abbreviated
as LF) aims to solve a system of linear inequalities, Ax ≤ b. The linear feasibility
problem in equality form (LFE) aims to find a nonnegative solution to a system of
linear equations, i.e., to solve the system Ax = b, x ≥ 0. The linear programming
problem (LP problem) aims to minimize a linear function cTx subject to Ax ≤ b.
Linear optimization over LFE (abbreviated as LP/LFE) aims to minimize cTx subject
to Ax = b and x ≥ 0. We assume that A = [aij ] ∈ Qm×n, b = (b1, . . . , bm) ∈ Qm,
c = (c1, . . . , cn) ∈ Qn, and x = (x1, . . . , xn) ∈ Rn.

Theorem 2.1. The LF problem reduces in linear time to the LFE problem.

Proof. A system Ax ≤ b is equivalent to the system Ay−Az + u = b, y, z, u ≥ 0,
which is an LFE instance. The solutions (y, z, u) to the LFE instance map surjectively
to the solutions x to the LF instance via x = y− z. The reduction clearly takes linear
time because its job is just to construct the matrix

[
A −A I

]
from matrix A.

Theorem 2.2. The LP problem reduces in linear time to the LF problem.

Proof. By LP duality, solving a linear program min{cTx | Ax ≤ b} is equivalent
to solving the system Ax ≤ b, y ≤ 0, AT y = c, cTx = bT y, which is an LF instance. In
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particular, the LP instance is feasible and bounded iff the LF instance is feasible. The
solutions (x, y) to the LF instance are, after omitting the variables y, in bijection with
the optimal solutions to the LP instance. Linear time would be shown in a similar
way to that in the previous theorem.

Theorem 2.3. There is a linear-time reduction from the LP problem to the LP/
LFE problem that preserves objective values of feasible solutions.

Proof. Minimizing cTx subject to Ax ≤ b is equivalent to minimizing cT (y − z)
subject to Ay − Az + u = b, y, z, u ≥ 0, which is an LP/LFE instance. The input
linear program is feasible iff the output linear program is feasible. The objective value
cT (y − z) of every feasible solution to the output linear program is trivially equal to
the objective value cTx of the corresponding solution x = y − z to the input linear
program.

2.3. Reduction to an intermediate form. The LFE problem can be reduced
in nearly linear time to the LFE problem with 0-1 coefficients and at most three
variables per equation, i.e., to the form Ax = b, x ≥ 0, where the entries of A and b
are in {0, 1} and each row of A has at most three 1’s. We call this restricted form
LFE-BIN3. In Theorem 2.4, extP denotes the set of extreme points (vertices) of a
convex polyhedron P . A coordinate projection1 is a projection that copies a subset of
coordinates and deletes the remaining ones, that is, a map

(2) π : Rn → Rm, π(x1, . . . , xn) = (xτ(1), . . . , xτ(m))

for some m ≤ n and some injection τ : {1, . . . ,m} → {1, . . . , n}.
Theorem 2.4. There is an algorithm that, from any LFE instance, constructs

in nearly linear time an LFE-BIN3 instance, a coordinate projection π, and a scale
σ ∈ Q, 0 < σ ≤ 1, such that

(3) extP ⊆ π(Q)/σ ⊆ P,

where P denotes the solution set of the LFE instance and Q denotes the solution set
of the LFE-BIN3 instance.

Proof. See section 3.

The coordinate projection π accounts for omitting the auxiliary variables intro-
duced in the reduction. Why is the scale σ needed? While polyhedron P can be
unbounded, Q is always bounded (since the variables and coefficients of LFE-BIN3
are nonnegative). Thus, the reduction in general cuts off a part of P . In the reduc-
tion, P is scaled down by σ so that none of its vertices is cut off. If P is bounded, (3)
implies P = π(Q). In general, (3) implies that P = ∅ iff Q = ∅, i.e., the LFE instance
is feasible iff the LFE-BIN3 instance is feasible.

Let LP/LFE-BIN3 denote the linear optimization problem over LFE-BIN3.

Corollary 2.5. There is a reduction in nearly linear time from the LP/LFE
problem to the LP/LFE-BIN3 problem with these properties: the LP/LFE instance is
feasible and bounded iff the LP/LFE-BIN3 instance is feasible, and in that case the
objective values of all their feasible solutions are equal.

Proof. We first describe the reduction for the case when the LP/LFE instance is
feasible and bounded. Apply the reduction from Theorem 2.4 to the LFE problem. As

1Called coordinate-erasing projection in [8].
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P 6= ∅, we have min{cTx | x ∈ P} = min{cTx | x ∈ extP} because every nonempty
polyhedron in the form {x | Ax = b, x ≥ 0} has a vertex. Therefore, (3) implies

(4) min{cTx | x ∈ P} = min{cTx | x ∈ π(Q)/σ} = min{σπ∗(c)T y | y ∈ Q},

where π∗ denotes the adjoint of π. Thus, we have transformed the LP/LFE instance
to an LP/LFE-BIN3 instance. Note that π∗(c) is the vector c padded with zeros in
the coordinates deleted by π. Since for every y ∈ Q and x = π(y) we trivially have
cTx = σπ∗(c)T y, this reduction preserves the objective values of feasible solutions.

Note that the case when the LP/LFE instance is infeasible is also handled by
reduction (4), because, by Theorem 2.4, we have P = ∅ iff Q = ∅.

This reduction can be generalized to the case when the input LP/LFE problem is
feasible and unbounded.2 By LP duality, a linear program min{cTx | Ax = b, x ≥ 0}
is feasible and bounded iff the linear program

(5) min{cTx | Ax = b, x ≥ 0, Ax′ = b, x′ ≥ 0, AT y′ ≤ c, cTx′ = bT y′}

is feasible, and they have the same optimal values. Thus, the above reduction applied
to (5) has the desired properties. Since (5) is an instance of LP (rather than LP/LFE),
we need to use the composition of the reductions from Theorems 2.1 and 2.4.

2.4. Reduction to LP relaxations. The LFE-BIN3 problem can be reduced in
linear time to the LP relaxations of a number of combinatorial optimization problems.
We distinguish two types of such reductions.

The first type reduces LFE-BIN3 to the LP relaxation of the decision version
(obtained by thresholding) of a combinatorial optimization problem. We present it
for minimum cost set cover/packing and their versions with unit costs, uncapacitated
facility location, maximum satisfiability, maximum independent set (clique relaxation)
and its unweighted version, and minimum multiway cut .

Theorem 2.6. For each of the above LP relaxations, there is a linear-time algo-
rithm that, for any instance of LFE-BIN3, constructs an instance of the LP relaxation,
a threshold t ∈ Q, and a coordinate projection π such that

cTx ≥ t ∀x ∈ Q,(6a)

P = π({x ∈ Q | cTx = t}),(6b)

where P denotes the solution set of the LFE-BIN3 instance, and Q and cTx denote
the feasible set and objective function, respectively, of the LP relaxation instance.

Proof. See section 4.

Condition (6a) says that t is a lower bound on the minimum value of the LP
relaxation instance. By (6b), the LFE-BIN3 instance is feasible iff this bound is
attained. In that case, the optimal solutions to the LP relaxation instance are, after
omitting auxiliary variables, in bijection with the solutions to the LFE-BIN3 instance.

The second (stronger) type reduces LFE-BIN3 to the LP relaxation of a combi-
natorial decision problem. Thus, this LP relaxation is a linear feasibility problem.
Endowing it with a linear objective function yields the LP relaxation of the optimiza-
tion version of the problem. We present this reduction for exact set cover, exact 3-D

2This case could be more easily decided by solving another LFE-BIN3 instance (a Turing reduc-
tion). Yet we want to stick to reductions that call a solver to the output problem only once (which
is analogous to many-one reductions for decision problems).
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matching, and constraint satisfaction and their optimization versions minimum-cost
exact set cover, 3-D assignment, and valued constraint satisfaction.

Theorem 2.7. For each of the above LP relaxations, there is a linear time algo-
rithm that, for any instance of LFE-BIN3, constructs an instance of the LP relaxation
and a coordinate projection π such that

(7) P = π(Q),

where P denotes the solution set of the LFE-BIN3 instance and Q denotes the feasible
set of the LP relaxation instance.

Proof. See section 5.

Equality (7) says that the feasible solutions to the LP relaxation are, after omit-
ting auxiliary variables, in bijection with the solutions to the LFE-BIN3 instance. In
particular, the LFE-BIN3 instance is feasible iff the LP relaxation is feasible.

2.5. Main results. We now combine the reductions stated so far with our main
hardness results.

Corollary 2.8. The LP problem reduces in nearly linear time to each LP relax-
ation in section 4.

Proof. Compose the reductions from Theorems 2.2, 2.1, 2.4, and 2.6.

More precisely, this reduction is such that the input LP instance is feasible and
bounded iff the optimal value of the LP relaxation instance attains a threshold, and
if so, then their optimal solutions are related by a composition of the affine map
x = y − z (see Theorem 2.1), coordinate projections, and a scaling.

Corollary 2.9. There is a reduction in nearly linear time from the LP prob-
lem to each LP relaxation in section 5 that preserves the objective values of feasible
solutions.

Proof. Compose the reductions from Theorem 2.3 and Corollary 2.5, where in the
proof of Corollary 2.5 we additionally apply the reduction from Theorem 2.7 to the
feasibility set of LP/LFE-BIN3.

This implies that solving any LP relaxation from section 5 only approximately
(i.e., finding a feasible solution with the objective value near to the optimal value) is
not easier than solving the LP problem approximately, with the same approximation
factor.

These hardness results can also be formulated in terms of input and output poly-
hedra. We say that a convex polyhedron is in equality (or standard form if it is the
solution set of an LFE instance). As usual, a polytope is a bounded convex polyhedron.

Corollary 2.10. Every polytope in standard form is, up to scale, a coordinate
projection of the set of optimal solutions to an instance of each LP relaxation from
section 4. This LP relaxation can be constructed from the polytope (described by linear
inequalities) in nearly linear time.

Proof. Apply the reduction from Theorem 2.4 to the LFE representing the poly-
tope. Since the polytope is bounded, the second inclusion in (3) holds with the
equality. Now, apply the reduction from Theorem 2.6 to the resulting LFE-BIN3.
Equality (6b) says that the polytope represented by this LFE-BIN3 is a coordinate
projection of the optimal set of each LP relaxation.
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Corollary 2.11. Every polytope in standard form is, up to scale, a coordinate
projection of the feasible set of an instance of each LP relaxation from section 5. This
LP relaxation can be constructed from the polytope (described by linear inequalities)
in nearly linear time.

Proof. The proof is as for Corollary 2.10, but we use the reduction from Theo-
rem 2.7.

Similar corollaries would also hold for the polytope in general form (i.e., the
solution set of a bounded LF problem), but the coordinate projection would have to
be precomposed with the affine map x = y − z (see Theorem 2.1).

3. Reduction to an intermediate form. Here we show that the LFE problem
can be reduced in nearly linear time to the LFE-BIN3 problem, thereby proving
Theorem 2.4. We obtain this reduction in four steps, reducing the input LFE instance
to an increasingly restricted form.

To prove the time complexity of these reductions, we will only show that the size
of the output is (nearly) linear in the size of the input, and then it becomes obvious
enough that the time of the reduction is also nearly linear. We assume, without loss
of generality, that the matrix A of the input LFE instance has no zero column or row.
We use Ā = [āij ] =

[
A b

]
∈ Qm×(n+1) to denote the extended matrix of the system

Ax = b.

Theorem 3.1. The LFE problem reduces in linear time to the LFE problem with
integer coefficients.

Proof. For each rational nonzero input coefficient aij = pij/qij with pij ∈ Z and
qij ∈ N, we introduce an auxiliary variable yij and the equation qijyij = |pij |xj .
Then, in the input system we replace each nonzero term aijxj with sgn(aij)yij . Co-
efficients bi are handled similarly. This clearly takes linear time.3

Example 3.2. The system

2
7x1 + 3

5x2 = 2,
7
3x1 −

1
2x2 = 0

is transformed to the system

2x1 = 7y11, 3x2 = 5y12, 2 = y13, y11 + y12 = y13,

7x1 = 3y21, x2 = 2y22, y21 − y22 = 0.

Theorem 3.3. The LFE problem with integer coefficients reduces in nearly linear
time to the LFE problem with coefficients {−1, 0, 1}.

Proof. The idea is similar to [8, section 3.1]. Suppose we want to construct the
product ax for a coefficient a ∈ N and a variable x. We create the system

(8)

x1 = x0 + y0, y0 = x0 = x,

x2 = x1 + y1, y1 = x1,
...

...

xd = xd−1 + yd−1, yd−1 = xd−1.

3Note that the most obvious reduction, multiplying all coefficients of each equation by the least
common multiple of their denominators, needs superlinear time.
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The first line of the system enforces x1 = 2x0, the second line enforces x2 = 2x1, etc.
In general, xk = 2kx. The product ax can be now obtained by summing appropriate
bits of the binary code for a, e.g., 11x0 = x0 + x1 + x3 because 11 = 20 + 21 + 23.

Given an input LFE instance Ax = b, x ≥ 0 with
[
A b

]
= Ā ∈ Zm×(n+1), the

reduction proceeds as follows:
1. for each j = 1, . . . , n+ 1, create system (8) with d = blog2 maxmi=1 |āij |c;
2. for each i = 1, . . . ,m, construct nonzero terms aijxj and bi and compose the
ith equation of the input system Ax = b from them.

System (8) created in step 1 for one j has O(log2 maxi |āij |) equations, each containing
at most three nonzero coefficients. The total number of equations as well as variables
created in step 1 is O(L(Ā)) because∑

j

log2 max
i
|āij | ≤

∑
i,j

log2(|āij |+ 1) ≤ L(Ā).

In step 2, the total number of terms representing one term aijxj and bi is O(L(aij))
and O(L(bi)), respectively. Hence, the system produced by step 2 has O(L(Ā)) non-
zero coefficients (and uses only the variables from step 1). To summarize, the index-
value encoding of the output system has size

O(L(Ā) log(L(Ā))) = O(size(Ā) log(size(Ā)))

and it is constructed in time linear in this size.

Example 3.4. The system

2x1 + 11x2 = 1,

3x1 − 6x2 = 5

is transformed to the system

x11 = x10 + y10, y10 = x10 = x1,

x21 = x20 + y20, y20 = x20 = x2,

x22 = x21 + y21, y21 = x21,

x23 = x22 + y22, y22 = x22,

x31 = x30 + y30, y30 = x30 = 1,

x32 = x31 + y31, y31 = x31,

x11 + (x20 + x21 + x23) = x30,

(x10 + x11)− (x21 + x22) = x30 + x32.

Theorem 3.5. The LFE problem with coefficients {−1, 0, 1} reduces in linear
time to the LFE problem involving only equations of the type xi = 0, xi = 1, xi = xj,
and xi + xj = xk.

Proof. We show this with an example. Consider the equation x1+x2−x3+x4 = 1.
By moving negative terms to the other side, it can be rewritten as x1+x2+x4 = x3+1.
This is replaced by x1 + x2 = x5, x5 + x4 = x6, x3 + x7 = x6, x7 = 1. If the initial
equation had k variables, the number of auxiliary variables is O(log k). Thus, the
reduction takes linear time.

Lemma 3.6. For any matrix A = [aij ] ∈ Rm×m it holds that

|detA| ≤
m∏
j=1

m∑
i=1

|aij |.

Proof. By Hadamard’s inequality, |detA| ≤
∏m
j=1 ‖aj‖2, where a1, . . . , am are the

columns of A. Now we use that ‖aj‖2 ≤ ‖aj‖1 =
∑m
i=1 |aij |.
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Lemma 3.7. Coordinates of every vertex x = (x1, . . . , xn) of a convex polyhedron
{x ∈ Rn | Ax = b, x ≥ 0} with

[
A b

]
= Ā ∈ Zm×(n+1) satisfy xj ≤ 2B, where4

(9) B =

n+1∑
j=1

⌈
log2

m∑
i=1

|āij |
⌉
.

Moreover, B = O(L(Ā)), and expression (9) can be computed in time O(size(Ā)).

Proof. It is well known from the theory of linear programming that the vector
x′ = (x′1, . . . , x

′
p), p ≤ n, of the nonzero coordinates of every vertex of the polyhedron

is the solution to the system A′x′ = b′, where A′ is an invertible submatrix of A and
b′ is a subvector of b. By Cramer’s rule, x′j = (detA′j)/(detA′), where A′j denotes
A′ with the jth column replaced by b′. Since A′ is invertible and has integer entries,
|detA′| ≥ 1. By Lemma 3.6,

∣∣detA′j
∣∣ ≤ n+1∏

j=1

m∑
i=1

|āij | ≤ 2B .

Using bitwise arithmetic operations, expression (9) can be computed in linear
time. To prove that B = O(L(Ā)), write

B − n− 1 ≤
n+1∑
j=1

log2

m∑
i=1

|āij | ≤
n+1∑
j=1

m∑
i=1

log2(|āij |+ 1) ≤ L(Ā),

where the second inequality follows from the fact that any nonnegative numbers ci =
|āij | satisfy

∑m
i=1 ci ≤

∏m
i=1(ci + 1).

Theorem 3.8. The LFE problem with equations of the type xi = 0, xi = 1,
xi = xj, and xi + xj = xk reduces in linear time to the LFE-BIN3 problem.

Proof. We are facing a problem here: while the input LFE instance can be un-
bounded, the LFE-BIN3 instance is bounded (all its solutions have coordinates in
the interval [0, 1]). Therefore, the reduction will in general cut off some part of the
solution set of the input LFE. We make sure that this cutoff part contains no vertices.

To that end, the solution set of the input LFE is first scaled down so that all
its vertices have coordinates in the interval [0, 1]. This is achieved by replacing each
equation of the type xi = 1 with the equation xi = σ, where σ is the scale. Us-
ing Lemma 3.7, we need to set σ = 2−B . This value of variable σ is obtained by
repetitively halving the constant 1, by introducing the system

(10)

1 = y0 = y1 + z1, y1 = z1,

y1 = y2 + z2, y2 = z2,
...

...

yB−1 = yB + zB , yB = zB = σ.

Note that these equations have the assumed types. By Lemma 3.7, the number of
equations in (10) and the time needed to compute B are linear in the input size.
Therefore, this step takes linear time.

4Bounds on vertex coordinates of a convex polyhedron with integer coefficients are well known;
however, we do not know about any such bound with linear size, e.g., [26, Lemma 2.1] shows that
xj ≤ m!αm−1β, where α = maxi,j |aij | and β = maxi |bi|. The size of this bound is superlinear in
L(Ā), whereas the size of our bound 2B is linear in L(Ā).
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Now we reduce the resulting LFE to LFE-BIN3. Equations of the types xi = 0
and xi = 1 already have the desired form. Observe that, for any xi, xj ∈ [0, 1], we have
xi = xj iff xi + xk = 1 and xj + xk = 1 for some xk ∈ [0, 1]. Therefore, each equation
xi = xj can be replaced with the system xi + xk = 1, xj + xk = 1. As this implicitly
introduces the constraints xi, xj ≤ 1, it cuts off some solutions (but no vertices).
Similarly, each equation xi + xj = xk is replaced with the system xi + xj + xl = 1,
xk + xl = 1.

The reductions from Theorems 3.1, 3.3, and 3.5 satisfy P = π(Q), where P is
the solution set of the input instance, Q is the solution set of the output instance,
and π is the coordinate projection that deletes the auxiliary variables introduced in
the reduction (such as the variables yij in Theorem 3.1). As the reduction from
Theorem 3.8 cuts off some solutions but no vertices, it satisfies only (3). To conclude,
composing the reductions from Theorems 3.1, 3.3, 3.5, and 3.8 yields Theorem 2.4.

For convenience, we further reduce the LFE-BIN3 problem by the following simple
transformations. First, we make the right-hand sides of all equations equal 1, by
replacing each equation xi = 0 with xi + xj = 1 and xj = 1. Now the system reads
Ax = 1, x ≥ 0, where A ∈ {0, 1}m×n. This can equivalently5 be written as∑

i∈s
xi = 1, s ∈ S,(11a)

xi ≥ 0, i ∈ I,(11b)

where I is a set of variables and S ⊆ 2I is a set of variable subsets such that |s| ≤ 3
for all s ∈ S. Second, we achieve that |s| ∈ {1, 3}6 for all s ∈ S, by replacing each
equation xi + xj = 1 with the equations xi + xj + xk = 1, xk + xl + xp = 1, xl = 1.

We introduce some more notation related to (11), to be referred to in sections 4
and 5.

• ni = |{s ∈ S | s 3 i}| is the number of equations involving variable i ∈ I.
• I1 = {i ∈ I | {i} ∈ S} is the set of variables that occur in some single-variable

equation.
• S3 = {s ∈ S | |s| = 3} is the set of three-variable equations. We assume that⋃

S3 = I, which can be achieved by introducing an equation xi+xj +xk = 1
for every equation xi = 1, where xj , xk are not in any other equation.

• φ : S3 × {1, 2, 3} → I is a map such that s = {φ(s, 1), φ(s, 2), φ(s, 3)} for
all s ∈ S3. This map introduces a local indexing of the variables in each
three-variable equation. As

⋃
S3 = I, this map is surjective.

• φ−1(i) = {(s, j) ∈ S3 × {1, 2, 3} | φ(s, j) = i} denotes the inverse of φ.

4. Weak reductions to LP relaxations. In this section we present weak re-
ductions from the LFE-BIN3 problem to the LP relaxations, proving thus Theo-
rem 2.6.

4.1. Set cover. Given a collection of n subsets of the set {1, . . . ,m}, a set
cover is a subset of the collection that covers all m elements. Given a nonnegative
cost for each subset, the minimum-cost set cover problem seeks to find a set cover

5Assuming that no two rows of A are the same. This will indeed hold if no two equations of the
input LFE instance are the same.

6Note that this final form cannot be further simplified in the following sense. If |s| = 3 for all
s ∈ S, then system (11) is trivially satisfied by setting xi = 1

3
for all i ∈ I. If |s| ∈ {1, 2} for all

s ∈ S and system (11) is feasible, then it has a half-integral solution [15].
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with minimum total cost. The well-known LP relaxation of this problem reads [36,
Chapter 13]

(12) min{cTx | Ax ≥ 1, x ≥ 0},

where A = [aij ] ∈ {0, 1}m×n is such that aij = 1 iff the jth subset contains element i,
and c ∈ Qn+ (where Q+ denotes the nonnegative rationals) are the costs.

Theorem 4.1. Let cj =
∑m
i=1 aij (that is, c = AT 1). The optimal value of (12)

is at least m, which is attained iff the variables x satisfy Ax = 1.

Proof. For every feasible solution x to (12) we have cTx = 1TAx ≥ 1T 1 = m.
This inequality is tight iff Ax = 1.

Theorem 4.1 implies Theorem 2.6, where P = {x ∈ Rn | Ax = 1, x ≥ 0},
Q = {x ∈ Rn | Ax ≥ 1, x ≥ 0}, t = m, and π in this simple case is the identity map.

4.2. Set cover, unweighted. In the previous section, each subset in the set
cover problem could have an arbitrary cost. Here we consider the restricted version
with unit costs (cj = 1 for all j = 1, . . . , n), that is, the (unweighted) minimum set
cover problem. We now show the reduction for this more difficult case.

Consider system (11) with |s| ∈ {1, 3} for all s ∈ S. Consider the linear program

min
∑
i∈I

(xi0 + xi1 + xi2)(13a)

subject to
∑
i∈s

xij ≥ 1, s ∈ S3, j ∈ {0, 1, 2},(13b)

xi0 ≥ 1, i ∈ I1,(13c)

xi0 + xi1 + xi2 ≥ 1, i ∈ I,(13d)

xij ≥ 0, i ∈ I, j ∈ {0, 1, 2}(13e)

(note, S3 and I1 are defined in section 3). This linear program has the form (12) with
c = 1.

Theorem 4.2. The optimal value of linear program (13) is at least |I|, which is
attained iff variables xi0 (i ∈ I) satisfy (11).

Proof. By (13d), the objective value of linear program (13) is at least |I|. This
value is attained iff

(14) xi0 + xi1 + xi2 = 1, i ∈ I.

For |s| = 1, (13c) and (14) imply xi0 = 1, where {i} = s. For |s| = 3, (14) implies∑
i∈s xi0 +

∑
i∈s xi1 +

∑
i∈s xi2 = 3. By (13b), each of the three terms is at least 1,

and hence each term must be 1. In particular,
∑
i∈s xi0 = 1. Therefore, the values

of xi0 form a feasible solution to (11).
For the other direction, let xi0 (i ∈ I) be a feasible solution to (11). For each

i ∈ I, set xi1 = xi2 = (1− xi0)/2. These values are feasible for (13) and satisfy (14).

Theorem 4.2 implies Theorem 2.6, where P is the solution set of (11), Q is the
feasible set of linear program (13), t = |I|, and π is the coordinate projection that
copies the variables xi0 (i ∈ I) and deletes the auxiliary variables xi1, xi2 (i ∈ I).
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4.3. Set packing. Given n subsets of the set {1, . . . ,m}, where each subset
has a nonnegative weight, the maximum-weight set packing problem seeks to choose
pairwise-disjoint subsets with maximum total weight. The well-known LP relaxation
of this problem reads

(15) max{cTx | Ax ≤ 1, x ≥ 0},

where A has the same meaning as in (12) and c ∈ Qn+ are the weights. The reductions,
for both the weighted and unweighted versions, are analogous to those for the set cover,
up to the directions of some inequalities.

4.4. Facility location. Let F be a set of facilities, C be a set of cities, E ⊆
F × C, f : F → Q+ be the costs of opening facilities, and c : E → Q+ be the costs
of connecting cities to facilities. The uncapacitated facility location problem seeks to
open a subset of facilities and, for each city, select one of the open facilities and assign
the city to it such that the total cost is minimized. The problem has the well-known
LP relaxation [36, Chapter 24]

min
∑

(i,j)∈E

cijxij +
∑
i∈F

fiyi(16a)

subject to
∑

i|(i,j)∈E

xij = 1, j ∈ C,(16b)

yi ≥ xij , (i, j) ∈ E,(16c)

xij ≥ 0, (i, j) ∈ E,(16d)

yi ≥ 0, i ∈ F.(16e)

Problem (11) can be reduced to linear program (16) by setting F = I, C = S,
E = {(i, s) ∈ I × S | i ∈ s}, cis = 0 for all (i, s) ∈ E, and fi = |{s ∈ S | i ∈ s}|.

Theorem 4.3. The constructed linear program (16) has optimal value at least |S|,
which is attained iff variables yi (i ∈ I) satisfy (11).

Proof. The objective value (16a) of the constructed linear program reads

(17)
∑
i∈I

fiyi =
∑
i∈I

∑
s∈S|i∈s

yi ≥
∑
i∈I

∑
s∈S|i∈s

xis =
∑
s∈S

∑
i∈s

xis = |S|.

The inequality in (17) is tight iff i ∈ s implies yi = xis. In this case, considering (16b),
for each s ∈ S we have 1 =

∑
i∈s xis =

∑
i∈s yi. That is, variables yi satisfy (11).

For the other direction, suppose variables yi satisfy (11). Set xis = yi whenever
i ∈ s. Now variables xis, yi form a feasible optimal solution to (16) with value |S|.

4.5. Maximum satisfiability. Let

(18)
∧
j∈C

( ∨
i∈V +

j

vi ∨
∨
i∈V −

j

¬vi
)

be a Boolean formula in conjunctive normal form with variables V and clauses C,
where V +

j , V
−
j ⊆ V is the set of variables occurring nonnegated or negated, respec-

tively, in clause j ∈ C. Let c : C → Q+ be clause weights. The maximum satisfiability
problem seeks to find the values of the variables to maximize the total weight of
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satisfied clauses. The classical LP relaxation of this problem [36, Chapter 16] reads

max
∑
j∈C

cjzj(19a)

subject to
∑
i∈V +

j

xi +
∑
i∈V −

j

(1− xi) ≥ zj , j ∈ C,(19b)

0 ≤ zj ≤ 1, j ∈ C,(19c)

0 ≤ xi ≤ 1, i ∈ V.(19d)

By eliminating variables zj , problem (19) can be written as the maximization of the
concave function

(20)
∑
j∈C

cj min

{
1,
∑
i∈V +

j

xi +
∑
i∈V −

j

(1− xi)
}

over x : V → [0, 1].
To reduce problem (11) to problem (19), let V = I and let formula (18) be

(21)
∧
s∈S

((∨
i∈s

vi

)
∧
∧
i∈s
¬vi
)
,

where each clause of type
∨
i∈s vi has weight 2 and each clause of type ¬vi has weight 1.

Note that clauses of the second type can occur repeatedly—which does not matter
because our formulation (18) + (19) allows repeated clauses.

Theorem 4.4. The constructed linear program (19) has optimal value at most∑
s∈S(1 + |s|), which is attained iff variables xi (i ∈ I) satisfy (11).

Proof. For the constructed problem, function (20) reads

(22)
∑
s∈S

(
2 min

{
1,
∑
i∈s

xi

}
+
∑
i∈s

(1− xi)
)

=
∑
s∈S

(
h

(∑
i∈s

xi

)
+ |s|

)
where the function h : R → R is given by h(t) = 2 min{1, t} − t. This function
attains its maximum at t = 1 with value h(1) = 1. Therefore, function (22) attains a
maximum iff

∑
i∈s xi = 1 for all s ∈ S, with value

∑
s∈S(1 + |s|).

4.6. Maximum independent set. Given a graph (V,E) with E ⊆
(
V
2

)
and

vertex weights c : V → Q+, the maximum-weight independent set problem seeks to
find a subset U ⊆ V of vertices that is independent (that is, no edge has both ends
in U) and that maximizes its total weight. We consider the LP relaxation of this
problem with the clique inequalities7 [31, section 64]

max
∑
i∈V

cixi(23a)

subject to
∑
i∈C

xi ≤ 1, C ⊆ V is a clique,(23b)

xi ≥ 0, i ∈ V.(23c)

7We do not consider the (more common) LP relaxation of this problem with only cliques of size 2
(edges) because then all vertices are half-integral and hence it is not universal.
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Fig. 1. Graph (V,E) of the constructed maximum independent set problem: (a) I = {1, 2, 3},
S = {{1, 2, 3}, {1, 2}, {2, 3}}, weighted version; (b) I = {1, 2, 3}, S = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}},
unweighted version.

Theorem 4.5. Let C ⊆ 2V be a set of (not necessarily all) cliques of the graph
(V,E). Let ci = |{C ∈ C | i ∈ C}|. Then the optimal value of linear program (23) is
at most |C|, which is attained iff

∑
i∈C xi = 1 for each C ∈ C.

Proof. For every feasible solution to (23) we have∑
i∈V

cixi =
∑
i∈V

∑
C∈C|i∈C

xi =
∑
C∈C

∑
i∈C

xi ≤
∑
C∈C

1 = |C|.

This inequality is tight iff
∑
i∈C xi = 1 for each C ∈ C.

Problem (11) can be reduced to problem (23) by setting

V = I ∪ {(i, s) | i ∈ s ∈ S},
E = {{(i, s), (j, s)} | i, j ∈ s ∈ S} ∪ {{i, (i, s)} | i ∈ s ∈ S},
ci = |{s ∈ S | i ∈ s}|, i ∈ I,
cis = 2, i ∈ s ∈ S,

where cis is a shortcut for c(i,s). An example is shown in Figure 1(a). Note that the
reduction is valid for any S; our example in particular has |s| ∈ {2, 3}.

Theorem 4.6. Let si (i ∈ I) be such that i ∈ si ∈ S. The constructed linear
program (23) has optimal value at most

∑
s∈S(1 + |s|), which is attained iff variables

xisi (i ∈ I) satisfy (11).

Proof. The weights ci, cis satisfy the assumption of Theorem 4.5 for

C = {{(i, s) | i ∈ s} | s ∈ S} ∪ {{i, (i, s)} | i ∈ s ∈ S}.

Thus the constructed linear program has optimal value at most |C| =
∑
s∈S(1 + |s|),

which is attained iff its variables xi, xis satisfy∑
i∈s

xis = 1, s ∈ S,(24a)

xi + xis = 1, i ∈ s ∈ S.(24b)
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But (24b) implies that, for each i ∈ I, variables xis (s 3 i) are the same. Therefore,
by (24a), variables xisi satisfy (11a).

For the other direction, suppose that variables xisi satisfy (11). Therefore, there
exist variables xi, xis that satisfy (24); hence, they satisfy (23b) for all C ∈ C. But if
inequality (23b) holds for some C, then it holds also for every subset of C. As each
clique that is not in C is a subset of some clique in C, variables xi, xis satisfy (23b)
for all cliques, and hence are feasible solutions to (23).

Since |s| ≤ 3 for all s ∈ S, the number of all cliques in the graph is O(|S|).
Therefore, the reduction time is linear.

4.7. Maximum independent set, unweighted. Here we present the reduc-
tion for the (unweighted) maximum independent set problem, that is, we have unit
costs c = 1 in (23). As with the set cover, the reduction in this case is more complex
than for the weighted version.

Lemma 4.7. Problem (11) reduces in linear time to problem (11) in which for
each variable i ∈ I the number ni of its occurrences (defined in section 3) is divisible
by 3.

Proof. For each variable xi (i ∈ I) in the input system (11), create new variables
x′i, x

′′
i . For each equation

∑
i∈s xi = 1 (s ∈ S), create new equations

∑
i∈s x

′
i = 1 and∑

i∈s x
′′
i = 1. Now we have three copies of the input system (11). Therefore, for each

i ∈ I the number of occurrences of variables xi, x
′
i, x
′′
i is now the same. If for some

i ∈ I the number of occurrences is not divisible by 3, we increase it by 1 or 2 using
the first line or both lines, respectively, of the system

xi + yi = 1, x′i + yi= 1, x′′i + yi = 1,

xi + zi = 1, x′i + zi= 1, x′′i + zi = 1,

where yi, zi are auxiliary variables.

Lemma 4.8. For every k ∈ N there exists a connected bipartite graph (U ∪ V,E)
with partitions U and V such that |U | = 3k, |V | = 2k, deg(u) = 2 for all u ∈ U , and
deg(v) = 3 for all v ∈ V .

Proof. Partition the set U ∪ V into k subsets of size 5, each containing three
vertices from U and two vertices from V . Connect the vertices in each group by
edges, as follows (the bottom three nodes are from U , the top two nodes from V ):

Chain the groups one by one into a cycle, using the trailing edges.

Consider problem (11) in which we assume, by Lemma 4.7, that the number ni
of occurrences of each variable is divisible by 3. We now reduce this problem to the
linear program (23) with unit weights. For each i ∈ I, let (Ui ∪ Vi, Ei) be a bipartite
graph with the partitions

Ui = {(i, s) | i ∈ s ∈ S}, Vi = {(i, j) | j ∈ {1, . . . , 23 |Ui|}}

such that deg(u) = 2 for u ∈ Ui and deg(v) = 3 for v ∈ Vi. Such graphs exist by
Lemma 4.8. Now set

V =
⋃
i∈I

(Ui ∪ Vi), E = {{(i, s), (j, s)} | i, j ∈ s ∈ S} ∪
⋃
i∈I

Ei.

An example is shown in Figure 1(b).
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Theorem 4.9. Let si (i ∈ I) be such that i ∈ si ∈ S. The constructed linear
program (23) has an optimal value of at most 1

3 (|S|+ 2
∑
i∈I |Ui|), which is attained

iff variables xisi (i ∈ I) satisfy (11).

Proof. For each s ∈ S, the set Cs = {(i, s) | i ∈ s} is a clique. Therefore,∑
i∈I

∑
v∈Ui

xv =
∑
s∈S

∑
v∈Cs

xv ≤ |S|,

where the inequality is tight iff
∑
v∈Cs

xv =
∑
i∈s xis = 1.

Each vertex in Ui has two incident edges in Ei, and each vertex in Vi three incident
edges in Ei. Each edge {u, v} ∈ Ei is a clique. Therefore, for each i ∈ I we have

2
∑
u∈Ui

xu + 3
∑
v∈Vi

xv =
∑

{u,v}∈Ei

(xu + xv) ≤ 2|Ui|,

where the inequality is tight iff xu +xv = 1 for each {u, v} ∈ Ei, that is, xis +xij = 1
for each s 3 i and j = 1, . . . , 23 |Ui|.

Putting the above together, the objective function of linear program (23) reads

∑
v∈V

xv =
1

3

(∑
s∈S

∑
v∈Cs

xv +
∑
i∈I

∑
{u,v}∈Ei

(xu + xv)

)
≤ 1

3

(
|S|+ 2

∑
i∈I
|Ui|
)
,

where the inequality is tight iff∑
i∈s

xis = 1, s ∈ S,(25a)

xis + xij = 1, i ∈ s ∈ S, j = 1, . . . , 23 |Ui|.(25b)

Since each graph (Ui∪Vi, Ei) is connected, (25b) implies that, for each i ∈ I, variables
xis (s 3 i) have the same value. Hence, by (25a), variables xisi (i ∈ I) satisfy (11).

For the other direction, suppose that variables xisi (i ∈ I) satisfy (11). Set
xis = xisi and xij = 1− xis for all i ∈ s ∈ S and j = 1, . . . , 23 |Ui|, which fulfills (25).
Note that if inequality (23b) holds for some C, then it holds also for every subset
of C. Since every clique is either an element of Ei or a subset of Cs, (25) implies that
variables xis, xij form a feasible solution to (23).

4.8. Multiway cut. Let (V,E) with E ⊆
(
V
2

)
be an undirected graph with edge

costs c : E → Q+, and T ⊆ V be a set of terminals. The minimum multiway cut
problem seeks to find a subset F ⊆ E of edges with minimum total cost such that
in the graph (V,E r F ) each terminal is in a different component. We consider the
relaxation of this problem proposed in [6] (see also [36, Chapter 19]):

min
∑

{u,v}∈E

cuv
2

∑
i∈T
|xui − xvi|(26a)

subject to
∑
i∈T

xui = 1, u ∈ V,(26b)

xii = 1, i ∈ T,(26c)

xui ≥ 0, u ∈ V, i ∈ T.(26d)

This is not a linear program but it can easily be transformed into one.
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Although this textbook definition assumes that cuv ≥ 0 for all {u, v} ∈ E, it
turns out that cuv can be negative whenever u ∈ T or v ∈ T . Indeed, this does not
destroy the convexity of (26), by Lemma 4.10. Nonnegative costs can be recovered by
replacing cut with cut + du (where du are suitable constants), which does not change
the set of optimal solutions. Therefore, later on we assume that c : E → Q, where
cuv > 0 whenever u, v /∈ T .

Lemma 4.10. Let v ∈ T . Let xui, xvi (i ∈ T ) be feasible for (26). Then

(27)
1

2

∑
i∈T
|xui − xvi| =

∑
i∈Tr{v}

xui.

Proof. By (26b)–(26d), xvi = 1 if i = v and xvi = 0 if i 6= v. By (26b) and (26d),
|xuv − 1| = |1− xuv| = 1− xuv =

∑
i∈Tr{v} xui. Now, (27) easily follows.

We will use three gadgets, described by the following theorems (see also Figure 2).
Each gadget is a multiway cut instance with the optimum value of (26) equal to 0.

Theorem 4.11. Let gadget Unit(u; i), where u /∈ {1, 2, 3} 3 i, be defined by T =
{1, 2, 3}, V = {u} ∪ T , E = {{u, i}}, and cui = 1. For this gadget, problem (26) has
optimal value 0, attained iff xui = 1 and xuj = xuk = 0, where {i, j, k} = {1, 2, 3}.

Proof. By Lemma 4.10, the objective (26a) for this gadget reads xuj + xuk. This
attains a minimum iff xui = 1 and xuj = xuk = 0.

Theorem 4.12. Let gadget Add(u, v; i, j, k), u, v /∈ {i, j, k} = {1, 2, 3}, be defined
by T = {1, 2, 3}, V = {u, v} ∪ T , E = {{u, v}, {u, i}, {u, j}, {u, k}, {v, i}, {v, j}},
cuv = 2, cui = −2, cuj = −3, cuk = −1, cvi = 3, cvj = 4. For this gadget,
problem (26) has optimal value 0, attained iff xvj = xuj + xuk and xvi = xui.

Proof. Using Lemma 4.10, the objective (26a) for this gadget reads

− 2(xuj + xuk)− 3(xui + xuk)− (xui + xuj)

+ 3(xvj + xvk) + 4(xvi + xvk) +
∑3
t=1 |xut − xvt|

= −3xuj − 5xuk − 4xui + 3xvj + 7xvk + 4xvi +
∑3
t=1 |xut − xvt|

= (xuj − xvj + |xuj − xvj |) + (xvk − xuk + |xuk − xvk|) + 2xvk + |xui − xvi|.

This attains minimum iff xuj ≤ xvj , xvk = 0, and xui = xvi. In the one direction,
xvk = 0 and xui = xvi imply xvj = 1 − xvi − xvk = 1 − xui = xuj + xuk. In the
other direction, xvj = xuj + xuk and xvi = xui imply xvk = 0 and xuj ≤ xvj , so the
minimum is attained iff xvj = xuj + xuk and xvi = xui.

Theorem 4.13. Let gadget Perm(u, v; i, j, k), where u, v /∈ {i, j, k} = {1, 2, 3}, be
defined by T = {1, 2, 3}, V = {u, v} ∪ T , E = {{u, v}, {u, j}, {u, k}, {v, j}, {v, k}},
cuv = 2, cuj = −4, cuk = −1, cvj = 4, cvk = 3. For this gadget, problem (26) has
optimal value 0, attained iff xuj = xvi = 0, xui = xvj, and xuk = xvk.

Proof. Using Lemma 4.10, the objective (26a) for this gadget reads

− (xui + xuj)− 4(xui + xuk) + 3(xvi + xvj) + 4(xvi + xvk) +
∑3
t=1 |xut − xvt|

= (xvi − xui + |xui − xvi|) + (xuj − xvj + |xuj − xvj |) + 2xuj + 2xvi + |xuk − xvk|.

This attains minimum iff xuj = xvi = 0 and xuk = xvk, which implies xui = xvj .
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Fig. 2. Multiway cut gadgets: (a) Unit(u; i) enforces xui = 1, (b) Add(u, v; i, j, k) enforces
xvj = xuj +xuk and xvi = xui, (c) Perm(u, v; i, j, k) enforces xuj = xvi = 0, xui = xvj , xuk = xvk.

Next, we define what it means to combine several multiway cut instances together.
A multiway cut instance is defined by a tuple (V,E, T, c). Combining two instances
(V1, E1, T, c1) and (V2, E2, T, c2) results in instance (V1∪V2, E1∪E2, T, c1+c2), where
the cost function c1 + c2 : E1 ∪ E2 → Q is given by

(c1 + c2)uv =


c1,uv if {u, v} ∈ E1 r E2,

c2,uv if {u, v} ∈ E2 r E1,

c1,uv + c2,uv if {u, v} ∈ E1 ∩ E2.

Lemma 4.14. Let the optimal value of problem (26) for instances (V1, E1, T, c1),
(V2, E2, T, c2), and (V1 ∪ V2, E1 ∪E2, T, c1 + c2) be y∗1 , y∗2 , and y∗, respectively. Then
y∗ ≥ y∗1 + y∗2 , which holds with the equality iff some minimizers of (26) for instances
(V1, E1, T, c1) and (V2, E2, T, c2) share the values of common variables.

Proof. The proof follows from the well-known fact that for any f, g : X → R we
have

min
x∈X

[f(x) + g(x)] ≥ min
x∈X

f(x) + min
x∈X

g(x),

which holds with the equality iff functions f and g share a minimizer on X.

We now construct a reduction from the LFE-BIN3 problem to problem (26).
Initially, set T = {1, 2, 3}, V = S3∪T , and E = ∅. Variables xsi (s ∈ S3, i ∈ {1, 2, 3})
are intended to represent the variables of (11), such that variable xsi of (26) equals
variable xφ(s,i) of (11). Equalities (11a) with |s| = 3 are automatically enforced
by (26b). In addition, we need to enforce equalities (11a) for |s| = 1, and equalities of
different variables of (26) that represent the same variable of (11). That is, we need
to enforce that

φ(s, i) ∈ I1 =⇒ xsi = 1,(28a)

φ(s, i) = φ(t, j) =⇒ xsi = xtj .(28b)

This is done by combining the initial problem with suitable gadgets.
• Enforcing equality xsi = 1 is easy, using Unit(s; i).
• Enforcing equality xsi = xtj , with i 6= j, is achieved by combining gadgets
Add(s, u; i, k, j), Perm(u, v; i, j, k), and Add(t, v; j, k, i), where u, v are new
vertices and {i, j, k} = {1, 2, 3}. To attain optimum, the first gadget enforces
xuk = xsk + xsj and xui = xsi, the second gadget enforces xvj = xui and
xvk = xuk, and the third gadget enforces xti + xtk = xvk and xtj = xvj .
These equalities hold iff xsi = xtj and xsj + xsk = xti + xtk.
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• Enforcing xsi = xti is achieved by combining gadgets Add(s, u; i, j, k) and
Add(t, u; i, j, k), where u is a new vertex and {i, j, k} = {1, 2, 3}. We can
verify that xuj = xsj + xsk, xui = xsi (enforced by the first gadget) and
xuj = xtj + xtk, xui = xti (enforced by the second gadget) yield xsi = xti
and xsj + xsk = xtj + xtk.

For each group of ni variables of (26) that represent the same variable xi of (11), it
suffices to enforce ni − 1 equalities (28b). By Lemma 4.14, the optimal value for the
constructed multiway cut instance is at least 0. To summarize, we have the following.

Theorem 4.15. Let si, ji (i ∈ I) be such that φ(si, ji) = i. The constructed
problem (26) has an optimal value at least 0, which is attained iff variables xsiji
(i ∈ I) satisfy (11).

5. Strong reductions to LP relaxations. Here we present reductions from
the LFE-BIN3 problem to the LP relaxations of three more combinatorial problems,
thereby proving Theorem 2.7. In contrast to section 4, here the solution set of an
LFE-BIN3 instance is a coordinate projection of the feasible (rather than optimal)
set of each LP relaxation.

5.1. Exact set cover. The exact set cover problem is a classical NP-complete
decision problem [19], which seeks to find a set cover (see section 4.1) that covers
each element exactly once (that is, a partition of the ground set). Its LP relaxation
has the form Ax = 1, x ≥ 0 (with no objective function), where A is as in sec-
tion 4.1. By endowing it with a linear objective function, we obtain the LP relaxation
of the minimum-cost exact set cover problem, which seeks to find an exact cover with
minimum total cost.

5.2. Three-dimensional matching/assignment. Given a finite set V and a
set of triplets E ⊆ V 3, a subset F ⊆ E is a three-dimensional (3-D) matching if no
two elements of F agree in any coordinate. The 3-D (exact) matching problem (see,
e.g., [19]) seeks to find a 3-D matching such that |F | = |V |. Its LP relaxation reads [3]

∑
j,k|(i,j,k)∈E

xijk = 1, i ∈ V,(29a)

∑
i,k|(i,j,k)∈E

xijk = 1, j ∈ V,(29b)

∑
i,j|(i,j,k)∈E

xijk = 1, k ∈ V,(29c)

xijk ≥ 0, (i, j, k) ∈ E.(29d)

An equality (11a) with |s| = 3 can be encoded with a single gadget (see Fig-
ure 3(a)), which is an instance of system (29) defined by

(30) V = {0, 1, 2, 3}, E =
⋃

i∈{1,2,3}

{(0, i, i), (i, 0, 0), (i, i, i)}.

For this instance, equalities (29a)–(29c) read

x011 + x022 + x033 = x100 + x200 + x300 = 1,

x0ii + xiii = xi00 + xiii = 1, i ∈ {1, 2, 3}.
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Fig. 3. The three-dimensional matching gadgets. (a) Any solution to (29) fulfills x+ y+ z = 1,
where x, y, z are shortcuts for x011, x022, x033, respectively. Each polyline corresponds to one
element of E and each ellipse corresponds to one equation (29a)–(29c). (b) If edge (1, 1, 1) is
removed, then any solution to (29) fulfills x = 1 and y = z = 0.

x1 x2 x3 x1 x2 x4 x1 x5 x6

Fig. 4. The three-dimensional matching instance representing the system x1 + x2 + x3 =
x1 + x2 + x4 = x1 + x5 + x6 = 1, x2 = 1, x1, . . . , x6 ≥ 0. The dotted edges are the original gadget
edges. The solid edges enforce the equality of three occurrences of x1 and of two occurrences of x2
(they correspond to the cyclic permutations πk).

This gadget can be easily modified to also encode an equality (11a) with |s| = 1:
by omitting edge (i, i, i) for some i ∈ {1, 2, 3} (see Figure 3(b)), it enforces x0ii = 1.

To construct a reduction from the LFE-BIN3 problem to problem (29), we create
an instance of system (29) consisting of one copy of gadget (30) for each element of S3.
To ensure that the variables of (29) representing the same variable of (11) attain the
same value, we rewire some of the links in the bottom part of the gadgets (see Figure 4
for an example). To this end, for each i ∈ I we choose a cyclic permutation πi on
the set φ−1(i), i.e., such that the orbit of any element of φ−1(i) under πi is the whole
φ−1(i). We write π(s, i) as a shortcut for πφ(s,i)(s, i). The resulting instance is defined
as

V = S3 × {0, 1, 2, 3}, E =
⋃
s∈S3

⋃
i∈{1,2,3}

Esi,

Esi = {((s, 0), (s, i), π(s, i)), ((s, i), (s, 0), (s, 0))} ∪ {((s, i), (s, i), (s, i)) | φ(s, i) /∈ I1}.

To prove correctness, we show that, for every s ∈ S3 and i ∈ {1, 2, 3}, variable
xs0,si,π(s,i) of (29) represents variable xφ(s,i) of (11), where xsi,sj,sk is a shortcut for
x(s,i),(s,j),(s,k). That is,

φ(s, i) ∈ I1 =⇒ xs0,si,π(s,i) = 1,(31a)

φ(s, i) = φ(t, j) =⇒ xs0,si,π(s,i) = xt0,tj,π(t,j).(31b)

Consider s, t ∈ S3 and i, j ∈ {1, 2, 3} such that π(s, i) = (t, j).
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• If ((t, j), (t, j), (t, j)) ∈ E (i.e., φ(t, j) /∈ I1), then (29c) + (29b) reads

xs0,si,π(s,i) + xtj,tj,tj = xt0,tj,π(t,j) + xtj,tj,tj = 1.

This implies xs0,si,π(s,i) = xt0,tj,π(t,j).
• If ((t, j), (t, j), (t, j)) /∈ E (i.e., φ(t, j) ∈ I1), then the equations have the form
xs0,si,π(s,i) = xt0,tj,π(t,j) = 1.

Since
⋃
S3 = I (see section 3) and πφ(s,i) cycles through all representatives of vari-

able xφ(s,i) in (11), implications (31) hold. We have the following.

Theorem 5.1. Let si, ji (i ∈ I) be such that φ(si, ji) = i. Then variables
xsi0,siji,π(si,ji) (i ∈ I) satisfy (11) iff they can be extended to a solution to (29).

In other words, the solution set of system (11) is a coordinate projection of the
solution set of the constructed system (29).

By endowing system (29) with a linear objective function, we obtain the LP
relaxation of a weighted version of the 3-D matching problem, known as the 3-D
assignment problem [3].

5.3. Constraint satisfaction. Let (V,E) be an undirected graph, where V is
a set of variables, and E ⊆

(
V
2

)
a set of variable pairs. Let D be a finite domain of

the variables. The (binary) constraint satisfaction problem (CSP) [23, 10] seeks an
assignment λ : V → D to the variables such that

λ(u) ∈ Du, u ∈ V,(32a)

(λ(u), λ(v)) ∈ Duv, {u, v} ∈ E,(32b)

where Du ⊆ D and Duv ⊆ D×D are given unary and binary relations, and we adopt
the convention that (i, j) ∈ Duv iff (j, i) ∈ Dvu. This problem has the natural LP
relaxation8 ∑

j∈D
xuv(i, j) = xu(i), u ∈ V, v ∈ Eu, i ∈ D,(33a) ∑
i∈D

xu(i) = 1, u ∈ V,(33b)

xu(i) ≥ 0, u ∈ V, i ∈ D,(33c)

xuv(i, j) ≥ 0, {u, v} ∈ E, (i, j) ∈ D ×D,(33d)

xu(i) = 0, u ∈ V, i ∈ D rDu,(33e)

xuv(i, j) = 0, {u, v} ∈ E, (i, j) ∈ (D ×D) rDuv,(33f)

where Eu = {v ∈ V | {u, v} ∈ E} denote the neighbors of variable u ∈ V , and we
again adopt the convention that xuv(i, j) = xvu(j, i).

We will use two gadgets (see Figure 5). They are instances of problem (33) defined
by V = {u, v}, D = {1, 2, 3}, E = {{u, v}}, Du = Dv = D, and Duv given as follows.

• Gadget Copy(u, v; i, j), where i, j ∈ {1, 2, 3}, has

Duv = {(i, j)} ∪ {(k, l) | k ∈ {1, 2, 3}r {i}, l ∈ {1, 2, 3}r {j}}.

This enforces xu(i) = xv(j).

8This LP relaxation of CSP is folklore, so we do not give any references here. But it is a special
case of the LP relaxation of the valued CSP, for which we give references later.
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Fig. 5. CSP gadgets: (a) Copy(u, v; i, j) enforces xu(i) = xv(j), (b) Perm(u, v; i, j, k) enforces
xu(1) = xv(i), xu(2) = xv(j), xu(3) = xv(k). The boxes, circles, and edges depict elements of V ,
D, and Duv, respectively (as in [39, 28]).

• Gadget Perm(u, v; i, j, k), where {i, j, k} = {1, 2, 3}, has

Duv = {(1, i), (2, j), (3, k)}.

This enforces xu(1) = xv(i), xu(2) = xv(j), xu(3) = xv(k).
We omit the proofs of the claimed properties of the gadgets because they are easy.

We now reduce the LFE-BIN3 problem to problem (33). We assume that
⋃
S3 = I

(see section 3). Initially, set D = {1, 2, 3}, V = S3, E = ∅, and Ds = D for each
s ∈ S3. Variables xs(i) are intended to represent the variables of (11), such that
variable xs(i) of (33) equals variable xφ(s,i) of (11). Equalities (11a) for |s| = 3 hold
by (33b). In addition, we need to enforce equalities (11a) for |s| = 1 and equalities of
different variables of (33) that represent the same variable of (11). That is, we need
to enforce that

φ(s, i) ∈ I1 =⇒ xs(i) = 1,(34a)

φ(s, i) = φ(t, j) =⇒ xs(i) = xt(j).(34b)

This is done as follows.
• Equality xs(i) = 1 is enforced by changing Ds = D to Ds = {i}.
• If |s ∩ t| = 1, equality xs(i) = xt(j) is enforced by Copy(s, t; i, j).
• If |s ∩ t| > 1, equalities xs(i) = xt(j) are enforced by Perm. Note here that

if the two equations (11a) share two variables, their third variables have the
same value (e.g., x1 + x2 + x3 = 1 and x1 + x2 + x4 = 1 implies x3 = x4).

For each group of ni variables of (33) that represent the same variable xi of (11), it
suffices to enforce only ni − 1 equalities (34b). We have the following.

Theorem 5.2. Let si, ji (i ∈ I) be such that φ(si, ji) = i. Variables xsi(ji) (i ∈ I)
satisfy (11) iff they can be extended to a solution to (33).

The CSP has a weighted version, known under several names, such as the valued
CSP [24, 37], discrete energy minimization [17], MAP inference in graphical mod-
els [38], and the max-sum labeling problem [39]. Its LP relaxation [33, 39, 20, 4] is
obtained by endowing system (33) with a linear objective function.

6. P-completeness. Our (nearly) linear time reductions show that, for sequen-
tial algorithms, many LP relaxations are as hard as the general LP problem. Here
we show they are hard also for parallel algorithms, since they are P-complete under
log-space reductions.

The LP problem is P-complete under log-space reductions, by reduction from
the Boolean circuit value problem (CVP) [30, 35]. A reduction in [16] even im-
plies P-completeness for linear programs with coefficients {−1, 0, 1}. By modifying
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these known reductions, it is straightforward to show that the LFE-BIN3 problem is
P-complete, which in turn implies P-completeness of our LP relaxations.

Theorem 6.1. The LFE-BIN3 problem is P-complete under log-space reduction.

Proof. The reduction from the (P-complete) CVP to the LP problem proposed
in [35, (LP1)] can be rewritten, using slack variables, to an LFE with coefficients
{−1, 0, 1}. This LFE reduces to LFE-BIN3, by Theorems 3.5 and 3.8. Since the
variables of the LFE take values from [0, 1] and each equation has at most two variables
with coefficient −1 and at most two variables with coefficient 1, in Theorem 3.8 it
suffices to use the scale σ = 1

2 . Such a reduction can be done deterministically in
logarithmic space.

Theorem 6.2. Each LP relaxation from sections 4 and 5 is P-complete under
log-space reductions.

Proof. We presented the reductions in sections 4 and 5 as reductions in linear time.
These reductions can be modified such that they need only deterministic logarithmic
space9 (but not necessarily linear time). Indeed, it is easy to check that each reduction
can be performed using a constant number of counters. Thus, by Theorem 6.1, the
LP relaxations are P-complete under log-space reductions.

It is known that even approximating the general LP problem (i.e., finding a fea-
sible point with the objective value near to the optimum value) is P-complete under
log-space reductions [32]. The proof considers the problem of computing the number
of true gates in the Boolean circuit with bounded fan-out/fan-in gates. This result
implies the following theorem.

Theorem 6.3. To approximate any of the LP relaxations from section 5 within
any fixed approximation factor is P-complete under log-space reductions.

Proof. The problem of counting true gates in the circuit can be formulated as an
LP problem [32]. This LP problem reduces to LP/LFE-BIN3 with the scale σ bounded
by a constant independent on the circuit size (because each variable takes values from
[0, 1] and each constraint has a bounded number of variables). By Theorem 2.7,
LP/LFE-BIN3 reduces further to each LP relaxation from section 5. And again, all
the considered reductions can be done in deterministic logarithmic space.

The situation is different for the LP relaxations from section 4. The LP relax-
ations of set cover, set packing and maximum satisfiability belong to the class of pos-
itive linear programs (PLP),10 for which efficient approximation parallel algorithms
exist [22, 35, 34].

7. Comments. In this final section we give some additional comments on the
presented results, anticipating possible questions by the reader.

7.1. Consequences for designing algorithms. Arguably, the most important
consequences of our reductions are constraints on algorithms to solve the LP relax-
ations. Leaving runtime aside, they show that such algorithms cannot be arbitrarily
simple since they must be able to solve any linear program. Considering runtime, the
nearly linear time of the reductions implies that the size of the output LP relaxation
is nearly linear in the size of the input linear program. Thus, any (worst case) lower

9Unlike for linear-time reductions, here the Turing machine suffices as the computational model.
10A linear program is a PLP if it has the form min{cT x | Ax ≥ b, x ≥ 0} or max{cT x | Ax ≤

b, x ≥ 0}, where all entries of A, b, c are nonnegative.
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bound on time complexity of the LP problem (measured only by its size (1)) is inher-
ited by such algorithms. In this sense, solving the LP relaxations is not easier than
solving any linear program.

Let us emphasize that this statement assumes that solving different LP instances
of the same size takes comparable time. In reality, runtimes of LP algorithms to some
extent depend not only on the instance size but also, e.g., on the number of variables
and constraints. But the nearly linear time of our reductions does not imply that the
number of variables/constraints of the output LP relaxation is linear in the number of
variables/constraints of the input linear program, e.g., when an LFE problem kx = 1,
x ≥ 0 (which has one variable and one equation with coefficient k ∈ N) is reduced
to the LFE-BIN3 problem as described in section 3, the result has Θ(log k) variables
and equations.

The LP algorithms can, moreover, be affected by the scale σ, introduced in The-
orem 3.8. In general, the magnitude of σ is exponentially small (but its number of
bits is still linear in the input size), and hence the variable values in the solved LP
problem can be negligible relative to the coefficients. Note, however, that for some
input problems it is possible to find a much tighter bound on vertex coordinates than
the one given by Lemma 3.7 and hence on a larger scale (an example is in the proof
of Theorem 6.1).

Our results imply that any two of the LP relaxations considered reduce to each
other in nearly linear time. At least for some of these reductions, the number of
output variables and constraints is linear in the number of input ones, because LP
relaxations have small (bounded) coefficients and so the system (8) will have constant
size.

7.2. Easy vs. hard LP relaxations. What LP relaxations are easy, such that
the LP problem cannot be reduced to them in nearly linear time? Allowing general
reductions (in which solutions to input instances can be obtained from solutions to
output instances by any nearly linear-time algorithm, see e.g., [36, section A.3.1]),
this question is ill-posed as we cannot exclude that the LP problem is solvable in
nearly linear time.

Our reductions are not general because solutions to output instances are mapped
to solutions to input instances by simple affine maps. Restricting ourselves to such
reductions, we can ask which LP relaxations are such that their optimal set cannot be
an arbitrary polytope (up to an affine map). These include LP relaxations such that
the vertices of their feasible set cannot be arbitrary fractions. One such class is formed
by half-integral LP relaxations of problems such as vertex cover [36] or node multiway
cut [11]. Another example is the knapsack problem, whose LP relaxation always has
an optimum solution with at most one fractional component [7]. Another potential
candidate is linear optimization over the metric polytope (an LP relaxation of the
max-cut problem) [9]. Its vertices can have arbitrary (other than 2) denominators [21,
Proposition 4.1]. However, to construct a vertex with denominator d, a graph with
n ≥ 3d− 1 vertices is needed in the proof. It is open if a graph with O(log d) vertices
would suffice.

7.3. Weak vs. strong reductions. Similarly, one can ask why some LP relax-
ations allow only weak reduction while some allow a strong one. One distinction is
that, for the LP relaxations from section 4, finding a feasible solution is trivial but
finding an optimal solution is hard, e.g., the covering linear program (12) is feasible
iff each row of A is nonzero, and in that case it has a trivial feasible solution x = 1.
For the LP relaxations from section 5, finding a feasible solution is already hard.
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Another distinction is that feasible sets of the LP relaxations from section 4 are
not universal (i.e., affinely equivalent to any polytope) but their optimal sets are,
while feasible sets of LP relaxations from section 5 are universal.

One might think that there is no qualitative difference between the weak and
strong reductions because it is possible to optimize over a polytope face by adding a
suitable multiple of the face-supporting objective to the final objective. However, to
reduce the general linear program in this way requires the multiple to be very large,
which might prevent any benefit from approximate solutions of the obtained linear
program.

7.4. Relation to extension complexity. Our results can be related to exten-
sion complexity theory (see, e.g., [5]), which seeks to simplify descriptions of integral
hulls of combinatorial problems by representing them as projections of other polytopes
(i.e., by introducing auxiliary variables). A polytope Q is an extended formulation
of a polytope P if P is an affine projection of Q. The size |Q| of Q is defined as the
number of facets of Q. The extension complexity of P , xc(P ), is the smallest size of
an extended formulation of P .

One can consider a restricted version of extended complexity, xcF (P ), by requiring
the polytopesQ to be from some family F of polytopes. We assume that F is universal,
i.e., every polytope is a projection of some polytope from F . In our case, F can be
the solution sets of the LFE-BIN3 problem or the optimal sets of some LP relaxation
from sections 4 or 5. If P = {x | Ax ≤ b}, we denote L(A, b) by L(P ) (where L was
defined in (1)). We have L(P ) ≥ |P | because L(P ) takes into account the sizes of
coefficients while |P | only counts (nonredundant) inequalities.

Clearly, xc(P ) ≤ |P |. The reductions presented imply xcF (P ) = O(L(P )), but
xcF (P ) ≤ |P | generally holds only if P ∈ F , e.g., for P = {x ∈ R | kx = 1, x ≥ 0}
(where k ∈ N) we have |P | = 1 but xcF (P ) = Θ(log k). On the other hand, the per-
mutohedron Pperm of order n fulfills |Pperm| = Θ(2n) and xc(Pperm) = Θ(n log n) [12].
It has an extension Q such that L(Q) = O(n2 log n), and hence xcF (Pperm) < |Pperm|.
To summarize, we have

xc(P ) ≤ |P | ≤ L(P ), (35a)

xc(P ) ≤ xcF (P ) = O(L(P )), (35b)

while |P | and xcF (P ) are incomparable. In future research, it might be valuable to
better understand the relations between xc(P ), xcF (P ), |P |, and L(P ) for interesting
families F and families of polytopes P .
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