
LP Relaxations of Some NP-Hard Problems Are as Hard as Any LP∗

Daniel Pr̊uša† Tomáš Werner†

Abstract

We show that solving linear programming (LP) relaxations

of many classical NP-hard combinatorial optimization prob-

lems is as hard as solving the general LP problem. Pre-

cisely, the general LP can be reduced in linear time to the

LP relaxation of each of these problems. This result poses

a fundamental limitation for designing efficient algorithms

to solve the LP relaxations, because finding such an algo-

rithm might improve the complexity of best known algo-

rithms for the general LP. Besides linear-time reductions, we

show that the LP relaxations of the considered problems are

P-complete under log-space reduction, therefore also hard to

parallelize.

1 Introduction

NP-hard problems in combinatorial optimization can
usually be expressed as 0-1 integer linear programs with
natural LP relaxations. Solutions to these relaxations
are useful for computing exact optimal solutions (by
branch-and-bound methods using the LP relaxation to
compute lower bounds), exact optimal solutions of a
subclass of instances (namely the instances with zero
integrality gap), or approximate solutions (by rounding
schemes). Despite that the LP relaxation can be solved
in polynomial time, in practice its solution can be in-
efficient or impossible for large instances. Applications
leading to large-scale combinatorial optimization prob-
lems nowadays appear more and more frequently in dis-
ciplines dealing with ‘big data’, such as computer vision,
machine learning, artificial intelligence, data mining, or
data science.

As an example, consider the uniform metric labeling
problem, which is closely related to the multiway cut
problem and a special case of the valued constraint
satisfaction problem (VCSP) [18, 8]. It has a useful
LP relaxation [7, 1] which leads to good approximations
both in theory and practice. The problem has numerous
applications in computer vision [7, 5]. In a typical
setting, the number of problem variables is comparable
to the number of image pixels. That is, the LP can easily
have as many as 107 variables and a similar number

∗Supported by Czech Science Foundation grant no. 16-05872S.
†Czech Technical University, Faculty of Electrical Engineering,

Karlovo náměst́ı 13, 121 35 Prague, Czech Republic

of constraints. The simplex or interior point methods
cannot be applied: one reason is that the LP simply does
not fit in the computer memory. It does not help that
the constraints are initially very sparse because these
algorithms do not maintain sparsity. Alternatively, the
problem structure allows us to use subgradient methods
or ADMM, but these converge unacceptably slowly.

It is natural to ask if any LP relaxations are easier
to solve than others. In other words, if there are algo-
rithms, tailored to particular problems, to solve the LP
relaxations more efficiently than a general LP solver.
An example is LP relaxations that can be reduced in
linear time to the max-flow problem. This class in-
cludes linear programs with up to two non-zeros per col-
umn, which furthermore have half-integral solutions [4].
Another example is positive linear programs (PLPs).
There are algorithms that compute approximate solu-
tions to PLPs much faster that the general LP solvers
compute exact solutions, and such approximations often
allow constructing good approximations to the original
combinatorial problem [14, 15].

In this paper, we focus on the hardness of exactly
solving LP relaxations. We show that the LP relax-
ations of several classical NP-hard combinatorial opti-
mization problems are hard to solve. Precisely, there ex-
ists a linear-time reduction of the general linear program
to each LP relaxation. This result poses a fundamental
limitation for designing efficient algorithms to solve the
LP relaxations because finding such an algorithm might
improve the complexity of best known algorithms for
general LP.

Though our main focus in this paper is on linear-
time reductions, we also show that the considered LP
relaxations are P-complete under log-space reductions.
We prove this by reduction from the special LP repre-
senting the Boolean circuit value problem, which was
formulated in [16] to prove P-completeness of PLP.

This paper is a continuation of our previous work
in which we showed the above result for the VCSP [11]
and the uniform metric labeling problem [12]. To the
best of our knowledge, there is not much other literature
on the hardness of linear programs resulting from LP
relaxations. Somewhat related is the reduction of LP to
a slim 3-way transportation program presented in [3].

The paper is organized as follows. In §2, we define

the linear feasibility problem in equality form (LFE),
which is equivalent to the decision version of the linear
programming problem, and define its size. In §2.1, we
show that LFE with rational coefficients can be reduced
in linear time to LFE with binary (0-1) coefficients and
not more than three variables per equality. In several
subsequent sections we then show that this special
form of LFE can be reduced in linear time to the LP
relaxations of several classical combinatorial problems.

2 Linear Feasibility Problem

The linear feasibility problem seeks to decide if a sys-
tem of linear inequalities is feasible. Using auxiliary
variables, it can be transformed, in linear time, to a
linear feasibility problem in equality form (LFE)

ai1x1 + · · ·+ ainxn = bi, i = 1, . . . ,m,(2.1a)

xj ≥ 0, j = 1, . . . , n.(2.1b)

Here, aij , bi ∈ Q are the coefficients of the problem. In
matrix form, system (2.1a) reads

Ax = b

where A ∈ Qm×n and b ∈ Qm. We denote Ā =
[āij] = [A |b] ∈ Qm×(n+1) the extended matrix of the
system. We assume that each equality involves at least
one variable and each variable is involved in at least one
equality, that is, A has no zero column or zero row.

To speak about the complexity of an algorithm to
solve the LFE problem, we need to define the size of its
instance. For a scalar a ∈ Q, we define

(2.2) size(a) =
⌈
log2(|pq|+ 1)

⌉
where p, q ∈ Z are such that a = p/q assuming that q
does not divide p unless q = 1 or p = 0. For a matrix
A ∈ Qm×n, we define

(2.3) size(A) =

n∑
j=1

m∑
i=1

size(aij).

We define the size of a LFE instance to be

size(Ā) = size(A) + size(b).

As size(a) = 0 for a = 0, (2.3) underestimates the
true size of matrix A by neglecting the space needed,
e.g., for storing the indices of zero entries. This does not
matter because if the time complexity of an algorithm
is linear in size(A), it is linear also in the true size
of A. By not counting zero entries, we take explicitly
into account the sparsity of the problem1. This will

1Results on complexity of linear programming usually assume

dense encoding of the LP matrix [6]. To the best of our knowledge,
the complexity of solving sparse LPs is largely open [10].

make our results stronger, because it can happen than
an algorithm solves the problem in linear time with a
dense definition of the instance size but in superlinear
time with our sparse definition.

2.1 From Rational to Binary Coefficients. Here
we transform LFE with rational coefficients to a re-
stricted form, with binary coefficients and at most three
variables per equality. We do it by composing three
transformations described by the following theorems.

Theorem 2.1. LFE with rational coefficients can be
reduced in linear time to LFE with integer coefficients.

Proof. For2 each non-zero input coefficient aij = pij/qij
with pij , qij ∈ Z, we introduce an auxiliary variable yij
and the equation

(2.4) |qij |yij = |pij |xj .

The size of this equation is O(size(aij)). Then in the
input system we replace each non-zero term aijxj with
sgn(aij)yij . The coefficients bi are handled similarly.
The size of all these equations is at most the size of the
input. Therefore the size of the output (and, obviously,
the reduction time) is O(size(Ā)). �

Example 1. Let equation system (2.1a) be

2
7x1 + 3

5x2 = 2x3,
7
3x1 −

1
2x2 = 0.

This system is transformed to

2x1 = 7y11, 3x2 = 5y12, 2x3 = y13,

7x1 = 3y21, x2 = 2y22,

y11 + y12 = y13,

y21 − y22 = 0.

Theorem 2.2. LFE with integer coefficients can be re-
duced in linear time to LFE with coefficients {−1, 0, 1}.

Proof. The idea is similar to [3, §3.1]. Suppose we want
to construct the product aijxj for a coefficient aij ∈ N
and a variable xj ≥ 0. Renaming xj = xj0, we create
the equation system

(2.5)

xj1 = xj0 + yj0, yj0 = xj0,

xj2 = xj1 + yj1, yj1 = xj1,

...
...

xj,dj
= xj,dj−1 + yj,dj−1, yj,dj−1 = xj,dj−1.

2Note that the most obvious reduction, multiplying all coef-

ficients of each equation by the least common multiple of their
denominators, needs superlinear time.

The first line of the system enforces xj1 = 2xj0, the
second line enforces xj2 = 2xj1, etc., therefore

xjk = 2kxj .

The product aijxj can be now obtained by adding
appropriate bits of the binary encoding of aij . E.g.,
11xj = xj0 + xj1 + xj3 because 11 = 20 + 21 + 23.

The whole reduction proceeds as follows:

1. For each j = 1, . . . , n + 1, create system (2.5)
with dj =

⌊
log2 maxm

i=1 |aij |
⌋
. Add the equations

xj0 = xj (j = 1, . . . , n) and xn+1,0 = 1.

2. For each i = 1, . . . ,m, construct non-zero terms
aijxj and compose the ith equation of the input
system (2.1a) from them.

The size of system (2.5) created in Step 1 for one j
is O(dj). The total size of the terms created in Step 1
is
∑

j dj = O(size(Ā)) because∑
j

log2

m
max
i=1
|aij | ≤

∑
j

∑
i

log2(|aij |+ 1).

In Step 2, the total size of the terms representing one
term aijxj is the number of bits of aij . We conclude
that the size of the output (and the reduction time) is
O(size(Ā)). �

Example 2. Let equation system (2.1a) be

2x1 + 11x2 = 1,

3x1 − 6x2 = 5.

This system is transformed to

x10 = x1, x11 = x10 + y10, y10 = x10,

x20 = x2, x21 = x20 + y20, y20 = x20,

x22 = x21 + y21 y21, = x21,

x23 = x22 + y22 y22, = x22,

x30 = 1, x31 = x30 + y30, y30 = x30,

x32 = x31 + y31 y31, = x31,

x11 + (x20 + x21 + x23) = x30,

(x10 + x11)− (x21 + x22) = x30 + x32.

Lemma 2.1. For any matrix A ∈ Rm×m,

|det A| ≤
m∏
j=1

m∑
i=1

|aij |.

Proof. By Hadamard’s inequality,

|det A| ≤
m∏
j=1

‖aj‖2

where aj are the columns of A. Now we use ‖a‖2 ≤
‖a‖1 =

∑m
i=1 |aij |. �

Lemma 2.2. The coordinates of every vertex
(x1, . . . , xn) of polyhedron (2.1) with integer coef-
ficients satisfy xj ≤ 2B where

(2.6) B =

n+1∑
j=1

⌈
log2

m∑
i=1

|āij |
⌉
.

Moreover, B = O(size(Ā)).

Proof. It is well-known from the theory of linear pro-
gramming that the vector x′ = (x′1, . . . , x

′
p) of the non-

zero variables of any basic solution to system (2.1) is
the solution of the system A′x′ = b′ where A′ is an
invertible submatrix of A and b′ is a subvector of b.
By Cramer’s rule,

x′j =
det A′j
det A′

where A′j denotes A′ with the jth column replaced

by b′. Since A′ is invertible and has integer entries,∣∣det A′
∣∣ ≥ 1. By Lemma 2.1,

∣∣det A′j
∣∣ ≤ n+1∏

j=1

m∑
i=1

|āij | ≤ 2B .

This proves the first part of the theorem.
To prove B = O(size(Ā)), write

B − n− 1 ≤
n+1∑
j=1

log2

m∑
i=1

|āij |

≤
n+1∑
j=1

m∑
i=1

log2(|āij |+ 1) ≤ size(Ā)

where the second inequality follows from the obvious
fact that any non-negative numbers ci = |āij | satisfy∑m

i=1 ci ≤
∏m

i=1(ci + 1). �

Remark 1. Other bounds have been proposed on the
vertex coordinates of convex polyhedra with integer co-
efficients. E.g., [9, Lemma 2.1] derived xj ≤ m!αm−1β
where α = maxi,j |aij | and β = maxi |bi|. Unfortu-
nately, in contrast to our bound 2B, the size of this
bound is in general superlinear in size(Ā).

Theorem 2.3. LFE with coefficients {−1, 0, 1} can be
reduced in linear time to LFE with binary (i.e., {0, 1})
coefficients in which each equality involves one or three
variables.

Proof. As the first step, we scale down the input
polyhedron (2.1) so that the coordinates of its vertices
satisfy xj ≤ 1

n . This is done by replacing the system
Ax = b of (2.1) with the system Ax = bσ where 0 <
σ ≤ 1 is a suitable scale. Applying Lemma 2.2, we set
σ = 2−dlog2 ne−B . The number σ is constructed, using
equations with coefficients {−1, 0, 1}, by repetitively
halving the number 1 similarly as in system (2.5).
By Lemma 2.2, the number of added equations is
O(size(Ā)). Expression (2.6) can be computed in time
O(size(Ā)) using bit-wise arithmetic operations.

As the second step, the resulting LFE is trans-
formed, using auxiliary variables, to a LFE containing
only equations of the following three types:

• xi = 1,

• xi = xj ,

• xi + xj = xk (where i, j, k are different).

This is indeed possible in linear time. E.g., let one of
the equalities (2.1a) be x1 + x2 − x3 + x4 = 1. By
moving negative terms to the other side, this is first
rewritten as x1 + x2 + x4 = x3 + 1. This is now
replaced by x1 + x2 = x5, x5 + x4 = x6, x3 + x7 = x6,
x7 = 1 where x5, x6, x7 ≥ 0. Note that the above scaling
causes the coordinates xj of every vertex of the resulting
polyhedron (2.1) to satisfy xj ≤ 1.

As the third step, the resulting LFE is transformed
to a LFE with coefficients {0, 1} in which each equal-
ity (2.1a) has one or three variables:

• Equations of the type xi = 1 are already in this
form.

• Each equation of the type xi = xj (where xi ≤ 1,
by the scaling) is replaced by the system

xi + xk + xl = 1,

xj + xk + xl = 1,

xk, xl ≥ 0.

• Each equation of the type xi+xj = xk (where again
xk ≤ 1) is replaced by the system

xi + xj + xl = 1,

xk + xl + xp = 1,

xl ≥ 0,

xp = 0.

In the above three steps, the input LFE has been
transformed to a LFE with coefficients {0, 1}. As the
coefficients of the output problem are {0, 1}, the output

polyhedron is bounded, contained in the box [0, 1]n.
Therefore, if the input polyhedron is unbounded, the
transformation cuts off some solutions. However, thanks
to the scaling, the cut-off part contains no vertices.
Since every polyhedron in the form (2.1) has at least
one vertex, this means that the input LFE is feasible iff
the output LFE is feasible. �

Theorem 2.4. LFE with rational coefficients can be
reduced in linear time to LFE with binary coefficients in
which each equality involves at one or three variables.

Proof. Compose the reductions described in Theo-
rems 2.1, 2.2, and 2.3. �

The resulting LFE, with binary coefficients and one
or three variables per equality, can be transformed to
the yet simpler form with bi = 1 for all i = 1, . . . ,m.
Indeed, xi = 0 is implied by xi + xj + xk = 1, xj = 1,
xk ≥ 0. We will write this LFE as∑

i∈s
xi = 1, s ∈ S,(2.7a)

xi ≥ 0, i ∈ I(2.7b)

where I = {1, . . . , n} is the set of variables and S ⊆ 2I

is a collection of variable subsets (a hypergraph over I)
such that |s| ∈ {1, 3} for all s ∈ S.

This problem can be no longer simplified, in the
following sense. If |s| = 3 for all s ∈ S, then system (2.7)
is trivially satisfied by setting xi = 1

3 for each i ∈ I. If
|s| ∈ {1, 2} for all s ∈ S and system (2.7) is feasible,
then it has a half-integral solution [4].

2.2 P-completeness. Although our primary inter-
est in this paper is in linear-time reductions, we will
also consider log-space reductions. For that we state
the following result.

Theorem 2.5. LFE with binary coefficients and one
or three variables per equality is P-complete under
logarithmic space reduction.

Proof. Consider the reduction from the (P-complete)
Boolean circuit value problem to linear programming
proposed in [16, (LP1)]. There are gates g1, . . . , gm
forming a circuit with output gate gm. In0 (In1) denotes
the set of indices of input gates with value zero (one).
Neg denotes the set of pairs (i, k) such that gk is a
negation gate taking its input from gj . Or denotes
the set of triplets (i, j, k) such that gk is a disjunction
gate with taking its input from gi and gj . Variable xi
represents the output of gate gi. The circuit outputs

one iff the following system is feasible:

xm = 1,(2.8a)

xk = 1, k ∈ In1,(2.8b)

xk = 0, k ∈ In0,(2.8c)

xk ≥ xi, (i, j, k) ∈ Or,(2.8d)

xk ≥ xj , (i, j, k) ∈ Or,(2.8e)

xk ≤ xi + xj , (i, j, k) ∈ Or,(2.8f)

xk + xj = 1, (j, k) ∈ Neg,(2.8g)

0 ≤ xi ≤ 1, i ∈ {1, . . . ,m}.(2.8h)

By adding slack variables, we replace inequalities by
equalities:

xm = 1,(2.9a)

xk = 1, k ∈ In1,(2.9b)

xk = 0, k ∈ In0,(2.9c)

xk = xi + uik, (i, j, k) ∈ Or,(2.9d)

xk = xj + vjk, (i, j, k) ∈ Or,(2.9e)

xk + wijk = xi + xj , (i, j, k) ∈ Or,(2.9f)

xk + xj = 1, (j, k) ∈ Neg,(2.9g)

xi + ti = 1, i ∈ {1, . . . ,m},(2.9h)

xi, ti, uik, vjk, wijk ≥ 0.(2.9i)

This LFE with coefficients {−1, 0, 1} can be reduced to a
LFE with binary coefficients and one or three variables
per equality, as described in Theorem 2.3. Since the
values on any LHS and RHS are at most 2, it suffices
to take the scale σ = 1

2 . Such a reduction can be done
deterministically in logarithmic space. �

3 Reductions to LP Relaxations

Here we show that LFE with binary coefficients and
one or three variables per equality can be reduced to
the LP relaxations of several classical combinatorial
optimization problems. These reductions will need
linear time or logarithmic space (that is, a constant
number of counters) – this will mostly be obvious and
we will not prove it explicitly.

Each reduction will have the following pattern. For
each instance of problem (2.7), we construct an instance
of the considered combinatorial problem and a number d
such that the optimal value of the LP relaxation of
the problem is at least d (assuming the problem is a
minimization), and it is equal to d iff (2.7) is feasible.
In this way, feasibility of (2.7) is decided by solving the
LP relaxation.

3.1 Set Cover. Let (V,E) with E ⊆ 2V be a
hypergraph and c: E → Z+ be hyperedge costs. The set
cover problem seeks to find a subset of E with minimal
total cost that covers V . This problem has the well-

known LP relaxation [17, Chapter 13]

min
∑
e∈E

cexe,(3.10a)

s.t.
∑

e: i∈e∈E
xe ≥ 1, i ∈ V,(3.10b)

xe ≥ 0, e ∈ E.(3.10c)

3.1.1 Weighted Version. First we construct the
reduction for the case when the costs ce are allowed
to be arbitrary.

Proposition 3.1. For each e ∈ E, let ce = |e|. The
optimal value of (3.10) is at least |V |, which is attained
iff all constraints (3.10b) are active.

Proof. For every feasible solution to (3.10) we have∑
e∈E

cexe =
∑
e∈E

∑
i∈e

xe =
∑
i∈V

∑
e: i∈e∈E

xe ≥
∑
i∈V

1 = |V |.

This inequality holds with equality iff
∑

e: i∈e∈E xe = 1
for all i ∈ V . �

The following result is now obvious.

Theorem 3.1. Let (V,E) be the dual hypergraph to
(I, S) and let ce = |e| for each e ∈ E. Then linear
program (3.10) has the optimal value |V | iff system (2.7)
is feasible.

3.1.2 Unit Weights. The set cover problem has a
natural meaning for the case of unit costs, ce = 1 for all
e ∈ E. We now construct the reduction for this more
difficult situation.

Consider system (2.7) with |s| ∈ {1, 3} for all s ∈ S.
Let I1 = { i ∈ V | (∃s ∈ S)(i ∈ s, |s| = 1) } denote the
set of variables i that occur in some equality (2.7a) of
the type xi = 1. Construct the linear program

min
∑
i∈I1

xi +
∑

i∈IrI1

(xi + x′i + x′′i),(3.11a)

s.t.
∑
i∈s

xi ≥ 1, s ∈ S, |s| = 3,(3.11b) ∑
i∈s

x′i ≥ 1, s ∈ S, |s| = 3,(3.11c) ∑
i∈s

x′′i ≥ 1, s ∈ S, |s| = 3,(3.11d)

xi + x′i + x′′i ≥ 1, i ∈ I,(3.11e)

xi ≥ 0, i ∈ I,(3.11f)

x′i, x
′′
i ≥ 0, i ∈ I r I1.(3.11g)

Clearly, this linear program is the LP relaxation of a set
cover problem with unit costs.

Proposition 3.2. The optimal value of linear pro-
gram (3.11) is at least |I|, which is attained iff sys-
tem (2.7) is feasible.

Proof. By (3.11e)–(3.11g), the objective value of the
linear program is at least |I|. This value is attained
iff

xi = 1, i ∈ I1,(3.12a)

xi + x′i + x′′i = 1, i ∈ I r I1.(3.12b)

For s = {i} (i.e., |s| = 1), (3.12) implies xi = 1. For
|s| = 3, (3.12) implies

∑
i∈s xi +

∑
i∈s x

′
i +
∑

i∈s x
′′
i = 3.

By (3.11b)-(3.11d), each of the three summands is at
least 1, hence each summand must be 1. In particular,∑

i∈s xi = 1. Thus xi form a feasible solution to (2.7).
For the other direction, let xi (i ∈ I) be a feasible

solution to (2.7). For each i ∈ I r I1, set x′i = x′′i =
(1 − xi)/2. These values are feasible to (3.11) and
satisfy (3.12). �

3.2 Set Packing. Let (V,E) with E ⊆ 2V be a
hypergraph and c: E → Z+ be hyperedge weights. The
set packing problem seeks to find a disjoint subset of E
with maximum total weight. This problem has the LP
relaxation

max
∑
e∈E

cexe,(3.13a)

s.t.
∑

e: i∈e∈E
xe ≤ 1, i ∈ V,(3.13b)

xe ≥ 0, e ∈ E.(3.13c)

The reductions, for both the weighted and un-
weighted version, are entirely analogous to those for the
set cover problem, up to the directions of appropriate
inequalities.

3.3 Facility Location. Given is a set F of facilities,
a set C of cities, costs f : F → Z+ of opening facilities,
and costs c: F × C → Z+ ∪ {∞} of connecting cities
to facilities. The uncapacitated facility location problem
seeks to open a subset of facilities and assign each city
to an open facility such that the total cost is minimized.

The problem has the well-known LP relaxation [17,
Chapter 24]

min
∑
i∈F

∑
j∈C

cijxij +
∑
i∈F

fiyi,(3.14a)

s.t.
∑
i∈F

xij = 1, j ∈ C,(3.14b)

yi ≥ xij , i ∈ F, j ∈ C,(3.14c)

xij ≥ 0, i ∈ F, j ∈ C,(3.14d)

yi ≥ 0, i ∈ F(3.14e)

where for cij =∞ and xij = 0 we define cijxij = 0.
Problem (2.7) can be reduced to problem (3.14) by

setting

F = I,

C = S,

fi = |{s ∈ S | i ∈ s}|, i ∈ I,

cis =

{
a if i ∈ s
b if i /∈ s

, i ∈ s ∈ S

where a, b ≥ 0 are constants satisfying b > a+ 1.

Theorem 3.2. The constructed linear program (3.14)
has optimal value at least |S|(a + 1), which is attained
iff system (2.7) is feasible.

Proof. Define fis = 1 if i ∈ s and fis = 0 if i /∈ s. Now
fi =

∑
s∈S fis. The objective value of the constructed

LP (3.14) satisfies

∑
i∈I

∑
s∈S

cisxis +
∑
i∈I

fiyi =
∑
s∈S

∑
i∈I

(cisxis + fisyi)

(3.15a)

≥
∑
s∈S

∑
i∈I

(cis + fis)xis(3.15b)

≥
∑
s∈S

∑
i∈I

(a+ 1)xis(3.15c)

= |S|(a+ 1).(3.15d)

Inequality (3.15b) becomes equality iff i ∈ s implies
yi = xis. Inequality (3.15c) becomes equality iff xis > 0
implies i ∈ s. In this case, for each s ∈ S we have 1 =∑

i∈I xis =
∑

i∈s xis =
∑

i∈s yi. That is, variables yi
satisfy (2.7). In the other direction, every feasible
solution to (2.7) attains the optimal value |S|(a + 1).
�

3.3.1 Non-metric version. Let us set a = 0 and
b = ∞. In this case, variables xij with cij = ∞ are in-
evitably zero, if problem (3.14) is to be feasible. So these
variables can be omitted from linear program (3.14).
More precisely, this can be done by introducing a bipar-
tite digraph (F ∪ C,E) with (i, j) ∈ E iff cij <∞, and
writing (3.14) in terms of this digraph. The size of this
linear program is linear in the size of system (2.7), that
is, O(

∑
s∈S |s|).

3.3.2 Metric version. If the costs c can be extended
to a map c: (F ∪ C)2 → Z+ ∪ {∞} that satisfies

(3.16) cij + cjk ≥ cik, i, j, k ∈ F ∪ C,

we speak about metric facility location.

The choice a = 0 and b = ∞ does not result
in a metric problem. However, any a, b satisfying
0 ≤ a ≤ b ≤ 2a and b > a + 1 (e.g., a = 3 and
b = 5) yield a metric problem. Unfortunately, the size
of linear program (3.14) is O(|F | · |C|) = O(|I| · |S|) >
O(
∑

s∈S |s|), so this reduction takes superlinear time.

3.4 Maximum Satisfiability. Let

(3.17)
∧
j∈C

(∨
i∈S+

j

vi ∨
∨

i∈S−j

¬vi
)

be a Boolean formula in conjunctive normal form with
variables V and clauses C, where S+

j (S−j) is the set
of variables occurring non-negated (negated) in clause
j ∈ C. Let c: C → Z+ be clause weights. The
maximum satisfiability problem seeks to find the values
of the variables to maximize the total weight of satisfied
clauses. The classical LP relaxation of this problem [17,
Chapter 16] reads

max
∑
j∈C

cjzj ,(3.18a)

s.t.
∑
i∈S+

j

xi +
∑
i∈S−j

(1− xi) ≥ zj , j ∈ C,(3.18b)

0 ≤ zj ≤ 1, j ∈ C,(3.18c)

0 ≤ xi ≤ 1, i ∈ V.(3.18d)

Problem (2.7) can be reduced to problem (3.18) as
follows. Let V = I and define formula (3.17) as

(3.19)
∧
s∈S

((∨
i∈s

vi

)
∧
∧
i∈s
¬vi
)
,

where each clause
∨

i∈s vi has weight 2 and each clause
¬vi has weight 1.

Proposition 3.3. The constructed LP (3.18) has op-
timal value at most

∑
s∈S(1 + |s|), which is attained iff

system (2.7) is feasible.

Proof. By eliminating variables zj , the LP relax-
ation (3.18) can be written as the maximization of the
concave function

(3.20)
∑
j∈C

cj min
{

1,
∑
i∈S+

j

xi +
∑
i∈S−j

(1− xi)
}

subject to (3.18d). For the constructed maximum
satisfiability problem, (3.20) reads

(3.21)
∑
s∈S

(
2 min

{
1,
∑
i∈s

xi

}
+
∑
i∈s

(1− xi)
)

=
∑
s∈S

(
φ
(∑

i∈s
xi

)
+ |s|

)

where the function φ: R→ R is defined by

(3.22) φ(t) = 2 min{1, t} − t.

Function φ attains its maximum at t = 1 with value
φ(1) = 1. Therefore, (3.21) attains its maximum iff∑

i∈s xi = 1 for all s ∈ S, with maximum value∑
s∈S(1 + |s|). �

3.5 Maximum Independent Set. Given a graph
(V,E) with E ⊆

(
V
2

)
and vertex weights c: V → Z+,

the maximum independent set problem seeks to find a
subset U ⊆ V of vertices that is independent (i.e., no
edge has both ends in U) and that maximizes its total
weight. For this problem, we consider the LP relaxation

max
∑
i∈V

cixi,(3.23a)

s.t.
∑
i∈C

xi ≤ 1, C ⊆ V is a clique,(3.23b)

xi ≥ 0, i ∈ V.(3.23c)

3.5.1 Weighted Version. Let us first consider the
easier case when the costs ci are allowed to be arbitrary.

Proposition 3.4. Let C ⊆ 2V be a set of (not neces-
sarily all) cliques of the graph (V,E). Let ci = |{C ∈
C | i ∈ C }|. Then the optimal value of linear pro-
gram (3.23) is at most |C|, which is attained iff con-
straint (3.23b) is active for each C ∈ C.

Proof. For every feasible solution to (3.23) we have∑
i∈V

cixi =
∑
i∈V

∑
C: i∈C∈C

xi =
∑
C∈C

∑
i∈C

xi ≤
∑
C∈C

1 = |C|.

This inequality holds with equality iff
∑

i∈C xi = 1 for
each C ∈ C. �

Problem (2.7) can be reduced to problem (3.23) by
setting

V = I ∪ { (i, s) | i ∈ s ∈ S },
E = { {(i, s), (j, s)} | i, j ∈ s ∈ S }

∪ { {i, (i, s)} | i ∈ s ∈ S },
ci = |{ s ∈ S | i ∈ s }|, i ∈ I,
cis = 2, i ∈ s ∈ S

where cis is a shortcut for c(i,s). An example is shown in
Figure 1. Note that the reduction is valid for any S with
arbitrarily sized elements. Hence we present examples
where |s| ∈ {2, 3} for s ∈ S.

C12 C23

C123

22

1

1

1

2

3

3

3

2

Figure 1: Graph (V,E) of the constructed weighted
maximum independent set problem with I = {1, 2, 3}
and S = {{1, 2, 3}, {1, 2}, {2, 3}}.

Proposition 3.5. The constructed linear pro-
gram (3.23) has optimal value at most

∑
s∈S(1 + |s|),

which is attained iff system (2.7) is feasible.

Proof. The weights ci, cis satisfy the assumption of
Proposition 3.4 for

C = { { (i, s) | i ∈ s } | s ∈ S }∪{ { i, (i, s) } | i ∈ s ∈ S }.

Therefore the constructed LP has optimal value at most
|C| =

∑
s∈S(1 + |s|), which is attained iff its variables

xi, xis are feasible and satisfy∑
i∈s

xis = 1, s ∈ S,(3.24a)

xi + xis = 1, i ∈ s ∈ S.(3.24b)

But (3.24b) implies xis = xi for all s ∈ S, hence (3.24)
is equivalent to (2.7a).

If inequality (3.23b) holds for some set C then it
clearly holds for every subset of C. As each clique of
graph (V,E) that is not in C is a subset of some clique
in C, (3.24b) implies (3.23b) for all cliques of (V,E).
Therefore, (2.7) implies feasibility of xi, xis. �

For general graph (V,E), linear program (3.23)
can have exponentially many inequalities (3.23b) and
solving it is in fact NP-hard3. However, the linear
program (3.23) resulting from our reduction is small.
If the input problem (2.7) has |s| ≤ 3 for all s ∈ S, the
number of all cliques in the graph (V,E) is O(

∑
s∈S |s|).

If |s| in (2.7) are allowed to be unbounded, the graph
(V,E) has O(

∑
s∈S |s|) maximal cliques (though the

number of all cliques is exponential). But in (3.23) it
suffices to impose inequalities (3.23b) only for maximal
cliques because this implies (3.23b) for all cliques. In
both cases, the size of the constructed linear program is
linear.

3For unit weights ci = 1, the optimal value of (3.23) is known

as the fractional clique number of the graph, which by duality is
the same as its fractional chromatic number [13].

C123

1

2

3

2
C12 C23

1 3

C13

V2

V1 V3

2

1 3

Figure 2: Graph (V,E) of the constructed unweighted
maximum independent set problem with I = {1, 2, 3}
and S = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}}.

3.5.2 Unit Weights. Now we construct the reduc-
tion for the more difficult case of unit weights, ci = 1
for all i ∈ V .

Lemma 3.1. Any system (2.7) can be extended to an
equivalent system (2.7) in which for each i ∈ I, the
number |{s ∈ S | i ∈ s}| of occurrences of variable i is
divisible by 3.

Proof. For each variable xi (i ∈ I) in the input sys-
tem (2.7), create new variables x′i, x

′′
i . For each equation∑

i∈s xi = 1 (s ∈ S), create new equations
∑

i∈s x
′
i = 1

and
∑

i∈s x
′′
i = 1. Now we have three copies of the in-

put system (2.7). Therefore, for each i ∈ I the number
of occurrences of variables xi, x

′
i, x
′′
i is now the same.

If for some i ∈ I the number of occurrences is not
divisible by 3, we increase it by 1 or 2 using the first or
both columns of the following systems, respectively:

xi + yi1 + yi2 = 1, xi + yi3 + yi4 = 1,

x′i + yi1 + yi2 = 1, x′i + yi3 + yi4 = 1,

x′′i + yi1 + yi2 = 1, x′′i + yi3 + yi4 = 1.

Note that yi1, yi2, yi3, yi4 are new variables.
Clearly, the input problem is feasible iff the output

problem is feasible. �

Lemma 3.2. For every k ∈ N there exists a connected
bipartite graph (U ∪V,E) with partitions U and V such
that |U | = 3k, |V | = 2k, deg(u) = 2 for all u ∈ U ,
deg(v) = 3 for all v ∈ V .

Proof. Partition the set U ∪ V into k subsets of size 5,
each of them containing 3 vertices from U and 2 vertices
from V . Connect the vertices in each group by the
scheme in Figure 3. Chain the groups one by one into
a cycle (using the trailing edges). The resulting graph
has the desired properties. �

u1 u2 u3

v1 v2

Figure 3: The basic building block of the bipartite graph
construction. It consists of vertices {u1, u2, u3} ⊆ U and
{v1, v2} ⊆ V . All the incident edges are displayed. The
trailing edges connect to neighboring groups.

Consider problem (2.7) in which we assume, by
Lemma 3.1, that the number of occurrences of each
variable is divisible by 3. We now reduce this problem
to linear program (3.23) with unit costs. For i ∈ I,
denote

Ui = { (i, s) | i ∈ s ∈ S },
Vi = { (i, j) | j ∈ {1, . . . , 23 |Ui|} }

and Ei to be the edge set of bipartite graph (Ui∪Vi, Ei)
constructed as in Lemma 3.2. Now set

V =
⋃
i∈I

(Ui ∪ Vi),

E = { {(i, s), (j, s)} | i, j ∈ s ∈ S } ∪
⋃
i∈I

Ei.

An example is shown in Figure 2.

Proposition 3.6. The constructed linear pro-
gram (3.23) has optimal value at most

1

3
(|S|+ 2

∑
i∈I
|Ui|),

which is attained iff system (2.7) is feasible.

Proof. For each s ∈ S, the set Cs = { (i, s) | i ∈ s } is a
clique in graph (V,E). Therefore∑

i∈I

∑
v∈Ui

xv =
∑
s∈S

∑
v∈Cs

xv ≤ |S|,

where the inequality becomes equality iff
∑

v∈Cs
xv =∑

i∈s xis = 1.
Each vertex in Ui has two and each vertex in Vi

three incident edges in Ei. Each edge {u, v} ∈ Ei is a
clique in graph (V,E). Therefore, for each i ∈ I we have

2
∑
u∈Ui

xu + 3
∑
v∈Vi

xv =
∑

{u,v}∈Ei

(xu + xv) ≤ 2|Ui|,

where the inequality becomes equality iff xu + xv = 1
for each {u, v} ∈ Ei, that is, xis +xij = 1 for each s 3 i
and j = 1, . . . , 23 |Ui|. Since the graph (Ui ∪ Vi, Ei) is
connected, this implies that all variables xis (s 3 i) are

equal, that is, there exists yi such that xis = yi for each
s 3 i.

Putting the above together, the objective value of
LP (3.23) can be expressed as

∑
v∈V

xv =
1

3

(∑
s∈S

∑
v∈Cs

xv +
∑
i∈I

∑
{u,v}∈Ei

(xu + xv)

)

≤ 1

3

(
|S|+ 2

∑
i∈I
|Ui|
)

where the inequality becomes equality iff
∑

i∈s xis = 1
for all s ∈ S and xis = yi for all i ∈ I and s ∈ S, that
is, iff the variables yi satisfy (2.7). �

3.6 Multiway Cut. Let (V,E) with E ⊆
(
V
2

)
be

an undirected graph with edge costs c: E → Z+, and
T ⊆ V be a set of terminals. The minimum multiway
cut problem seeks to find a subset F ⊆ E of edges with
minimum total cost such that in the graph (V,E r F)
each terminal is in a different component. We consider
its relaxation proposed in [2] (see also [17, Chapter 19]):

min
1

2

∑
{i,j}∈E

cij
∑
t∈T
|xit − xjt|,(3.25a)

s.t.
∑
t∈T

xit = 1, i ∈ V,(3.25b)

xtt = 1, t ∈ T,(3.25c)

xit ≥ 0, i ∈ V, t ∈ T.(3.25d)

This is not a linear program but it is readily transformed
to one. An instance of linear program (3.25) is defined
by a tuple (V,E, T, c).

We have presented a linear-time reduction from the
general LP to (3.25) in [12]. Here we present a more
direct reduction from problem (2.7) to problem (3.25).

The output multiway cut problem will be con-
structed by gluing small multiway cut problems (gad-
gets). First we show that gluing gadgets cannot increase
the LP optimum.

Proposition 3.7. Let two instances (V1, E1, T, c1) and
(V2, E2, T, c2) of problem (3.25) have optimal values
Opt1 and Opt2, respectively. Define V = V1 ∪ V2,
E = E1 ∪ E2 and c: E → Z+ where

cij =


c1,ij if {i, j} ∈ E1 r E2,

c2,ij if {i, j} ∈ E2 r E1,

c1,ij + c2,ij if {i, j} ∈ E1 ∩ E2.

Let Opt be the optimal value of instance (V,E, T, c).
Then, Opt ≥ Opt1 + Opt2.

Proof. Clearly,

(3.26)
∑
{i,j}∈E

cij
∑
t∈T
|xit − xjt|

=
∑

{i,j}∈E1

c1,ij
∑
t∈T
|xit−xjt|+

∑
{i,j}∈E2

c2,ij
∑
t∈T
|xit−xjt|.

Let X ⊆ RV×T denote the set of feasible solutions
to (3.25). Now minimize each side of (3.26) over X,
using that min

x∈X
[f(x) + g(x)] ≥ min

x∈X
f(x) + min

x∈X
g(x) for

any functions f, g. �

We now describe the gadgets, which are defined in
Figure 4. From now on, we fix the terminals to be
T = {1, 2, 3}.

Proposition 3.8. The LP relaxation of the multiway
cut problem in Figure 4(a) has optimal value 0, attained
iff xu1 = 1 and xu2 = xu3 = 0.

Proof. Obvious: (3.25) minimizes 1
2 (|1−xu1|+xu2+xu3)

subject to xu1 + xu2 + xu3 = 1. �

Proposition 3.9. The LP relaxation of the multiway
cut problem in Figure 4(b) has optimal value 3, attained
iff xv2 = xu2 + xu3 and xv1 = xu1.

Proof. Taking into account constraint (3.25b), the ob-
jective value of (3.25) is

(xu2 + xu3) + 2(xu1 + xu2) + 3(xv2 + xv3)

+4(xv1 + xv3) +
∑3

i=1 |xui − xvi| =
3 + (xu2 − xv2 + |xu2 − xv2|)

+ (xv3 − xu3 + |xu3 − xv3|) + 2xv3 + |xu1 − xv1|.

This attains the minimum value, 3, iff xu2 ≤ xv2, xv3 =
0 and xu1 = xv1, which is equivalent to xv2 = xu2 +xu3
and xv1 = xu1. �

By permuting the terminals, we obtain gadgets en-
forcing xvj = xuj +xuk and xvi = xui for any {i, j, k} =
{1, 2, 3}. We denote this gadget by Add(u, v, i, j, k).

Proposition 3.10. The LP relaxation of the multiway
cut problem in Figure 4(c) has optimal value 4, attained
iff xu2 = xv1 = 0, xu3 = xv3, and xu1 = xv2.

Proof. Taking into account constraint (3.25b), the ob-
jective value of (3.25) is

4(xu2 + xu3) + 3(xu1 + xu2) + 4(xv1 + xv3)

+3(xv1 + xv2) +
∑3

i=1 |xui − xvi| =
4 + (xv1 − xu1 + |xu1 − xv1|) + 2xu2 + 2xv1

+ (xu2 − xv2 + |xu2 − xv2|) + |xu3 − xv3|.

This attains the minimum value, 4, iff xu2 = xv1 = 0
and xu3 = xv3, which implies xu1 = xv2. �

u

3

2

11

(a)

u

3

2

1

v

1

2

3

4

2

(b)

u

3

2

1

v

3

4

3

4

2

(c)

Figure 4: Gadgets enforcing specific equalities among
the variables of LP (3.25) at its optimum: (a) xu1 = 1,
xu2 = xu3 = 0; (b) xv2 = xu2 + xu3, xv1 = xu1; (c)
xu2 = xv1 = 0, xu1 = xv2, xu3 = xv3.

By permuting the terminals, we obtain gadgets
enforcing xuj = xvi = 0, xuk = xvk and xui = xvj
for any {i, j, k} = {1, 2, 3}. We denote this gadget by
Perm(u, v, i, j, k).

Theorem 3.3. For problem (2.7) with |s| ∈ {1, 3}, one
can in linear time construct problem (3.25) that has
optimal value at least

∑
i∈I 10(|Ki| − 1) where Ki =

{ s ∈ S | i ∈ s }, which is attained iff problem (2.7) is
feasible.

Proof. In input problem (2.7), denote S3 = { s ∈ S |
|s| = 3 }. The desired multiway cut problem (V,E, T, c)
with terminals T = {1, 2, 3} is constructed as follows.
Initially, set V = S3 ∪ T and E = ∅. The variables xst
(s ∈ S3, t ∈ T) of (3.25) are intended to represent
the variables xi of (2.7). By adding suitable gadgets to
this initial problem (which enlarges sets V and E and
defines new costs cij), it is now necessary to enforce
equalities (2.7a) for |s| = 1, and to enforce equalities of
different variables xst of (3.25) that represent the same
variable xi in (2.7a).

The former is easy, using the gadget in Figure 4(a).
The latter is achieved by combining the gadgets

Add and Perm. Let {i, j, k} = {1, 2, 3}. Suppose xsi
and xs′j represent the same variable of (2.7a). To
enforce xsi = xs′j , introduce gadgets Add(s, u, i, j, k),
Perm(u, v, i, j, k) and Add(s′, v, j, k, i) where u, v are
new vertices. By Proposition 3.7, the optimal value
attained over this combination of the three gadgets
is 10. Enforcing equality xsi = xs′i is even easier, by
introducing gadgets Add(s, u, i, j, k) and Add(s, u, i, j, k)
where u is a new vertex. This combination attains
minimal value 6. To attain 10 instead, simply increase
the costs cu1, cu2, cu3 by 4.

For a group of |Ki| variables of (3.25) that represent
the same variable xi of (2.7a), it is required to enforce
|Ki| − 1 equalities to ensure that all the representatives
attain the same value in the minimum. Hence, by

Proposition 3.7, the LP relaxation attains minimum∑
i∈I 10(|Ki| − 1) iff the problem (2.7) is feasible. �

4 Final Hardness Results

Now we are able to combine the material from §2 and §3
to obtain the main results of this paper.

The linear programming problem seeks to decide if
a linear function can attain a value not greater than a
threshold, subject to a set of linear inequalities.

Theorem 4.1. The linear programming problem can be
reduced in linear time to each LP relaxation from §3
(except for metric facility location, §3.3.2, which takes
quadratic time).

Proof. Using auxiliary variables, LP reduces in linear
time to LFE with rational coefficients. By Theorem 2.4,
this problem reduces in linear time to LFE with binary
coefficients and one or three variables per equality. As
shown in §3, this problem is reduced in linear time to
each LP relaxation. �

Theorem 4.2. Each LP relaxation from §3 is P-
complete under logarithmic space reduction.

Proof. Each reduction in §3 can be performed in a
logarithmic space. Composing this reduction with that
in Theorem 2.5 gives the result. �

References

[1] Chandra Chekuri, Sanjeev Khanna, Joseph Naor, and
Leonid Zosin. A linear programming formulation and
approximation algorithms for the metric labeling prob-
lem. SIAM J. on Discrete Mathematics, 18(3):608–625,
2005.

[2] Gruia Călinescu, Howard Karloff, and Yuval Rabani.
An improved approximation algorithm for multiway
cut. In 13th Annual ACM Symposium on Theory of
Computing (STOC), pages 48–52, 1998.

[3] Jesús A. De Loera and Shmuel Onn. All linear
and integer programs are slim 3-way transportation
programs. SIAM J. on Optimization, 17(3):806–821,
2006.

[4] Dorit S. Hochbaum. Monotonizing linear programs
with up to two nonzeroes per column. Operations
Research Lett., 32(1):49–58, 2004.

[5] Jörg H. Kappes, Bjoern Andres, Fred A. Hamprecht,
Christoph Schnörr, Sebastian Nowozin, Dhruv Ba-
tra, Sungwoong Kim, Bernhard X. Kausler, Thor-
ben Kröger, Jan Lellmann, Nikos Komodakis, Bog-
dan Savchynskyy, and Carsten Rother. A compara-
tive study of modern inference techniques for struc-
tured discrete energy minimization problems. Intl. J.
of Computer Vision, 115(2):155–184, 2015.

[6] Narendra Karmarkar. A new polynomial-time algo-
rithm for linear programming. In ACM Symp. on The-
ory of Computing, pages 302–311, 1984.

[7] Jon Kleinberg and Eva Tardos. Approximation algo-
rithms for classification problems with pairwise rela-
tionships: Metric labeling and Markov random fields.
J. of ACM, 49(5):616–639, 2002.

[8] Vladimir Kolmogorov, Johan Thapper, and Stanislav
Živný. The power of linear programming for general-
valued CSPs. SIAM J. on Comp., 44(1):1–36, 2015.

[9] Christos H. Papadimitriou and Kenneth Steiglitz.
Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications, 1998.

[10] Panos M. Pardalos and Stephen A. Vavasis. Open
questions in complexity theory for numerical optimiza-
tion. Math. Program., 57:337–339, 1992.

[11] Daniel Pr̊uša and Tomáš Werner. Universality of
the local marginal polytope. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence, 37(4):898–904,
April 2015.

[12] Daniel Pr̊uša and Tomáš Werner. LP relaxation of the
Potts labeling problem is as hard as any linear pro-
gram. IEEE Trans. on Pattern Analysis and Machine
Intelligence, PP(99), 2016.

[13] Edward R. Scheinerman and Daniel H. Ullman. Frac-
tional Graph Theory: a Rational Approach to the The-
ory of Graphs. Dover Publications, 2013.

[14] Luca Trevisan. Parallel approximation algorithms by
positive linear programming. Algorithmica, 21(1):72–
88, 1998.

[15] Luca Trevisan. Erratum: A correction to ”parallel
approximation algorithms by positive linear program-
ming”. Algorithmica, 27(2):115–119, 2000.

[16] Luca Trevisan and Fatos Xhafa. The parallel complex-
ity of positive linear programming. Parallel Processing
Lett., 8(4):527–533, 1998.

[17] Vijay V. Vazirani. Approximation Algorithms.
Springer-Verlag New York, 2001.

[18] Stanislav Živný. The Complexity of Valued Con-
straint Satisfaction Problems. Cognitive Technologies.
Springer, 2012.

