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Abstract
LP relaxation approach to soft constraint optimisation

(i.e. MAP-MRF) has been mostly considered only for binary
problems. We present its generalisation to n-ary problems,
including a simple algorithm to optimise the LP bound, n-
ary max-sum diffusion. As applications, we show that a hi-
erarchy of gradually tighter polyhedral relaxations of MAP-
MRF is obtained by adding zero interactions. We propose
a cutting plane algorithm, where cuts correspond to adding
zero interactions and the separation problem to finding an
unsatisfiable constraint satisfaction subproblem. Next, we
show that certain high-arity interactions, e.g. certain global
constraints, can be included into the framework in a prin-
cipled way. Finally, we prove that n-ary max-sum diffusion
finds global optimum for n-ary supermodular problems.

1. Introduction
Computing1 maxima of a Gibbs probability distribution

(MAP inference in MRF) is widely recognised as useful in
computer vision [20]. It is also known as soft (valued) con-
straint optimisation [12]. One of the approaches to this NP-
hard combinatorial optimisation problem is the linear pro-
gramming (LP) relaxation formulated by Schlesinger [16].
Kovalevsky and Koval [10] proposed a simple network al-
gorithm, max-sum diffusion, to solve (though suboptimally)
this LP relaxation. Works [16, 10] are surveyed in [24, 25].
An equivalent result was obtained by Kolmogorov [7]

who, using the convex upper bound by Wainwright et al.
[23], proposed the sequential tree-reweighted max-product
(TRW-S) algorithm. Max-sum diffusion yields the same
bound as TRW-S but, since it uses edge updates, is slower.
TRW-S outperforms other algorithms for MAP-MRF on
sparse graphs on a number of computer vision tasks [20].
The same LP relaxation was independently proposed

also in [5] (but only for two-state variables), in [8] (but with-
out considering LP dual) and recently in [2].
We present the following contributions to MAP-MRF:

1I thank the European Commission grant 215078 (DIPLECS) and the
Czech government grant MSM6840770038 for support.

N-ary generalisation of LP relaxation approach (§3–5).
The LP relaxation [16, 25] and max-sum diffusion were
formulated primarily for problems with binary interactions.
We generalise these to interactions of arbitrary arity.

Tighter relaxations (§6). Central to a combinatorial opti-
misation problem is the convex hull of the feasible set of its
suitable integer LP formulation (integral hull). Following
[23], we will refer to the integral hull of MAP-MRF as the
marginal polytope. The above LP relaxation can be seen as
optimising over a tractable outer bound of this polytope.
We show that gradually tighter outer bounds of the

marginal polytope can be obtained simply by adding zero
interactions. From the polyhedral view, this corresponds to
lifting, adding marginalisation constraints, and projection.
We propose a cutting plane algorithm which adds zero in-
teractions dynamically and in which finding a suitable zero
interaction (i.e., the separation problem) means identifying
an unsatisfiable constraint satisfaction subproblem.
Several approaches were proposed before to tightening

the existing LP-based outer bound of the marginal polytope.
Koster et al. [8] gave two classes of non-trivial facets of
the marginal polytope. Independently, Sontag and Jaakkola
[19] proposed tighter bounds based on the relation of the
marginal polytope and the cut polytope [4], for which sev-
eral classes of non-trivial facets are known. Besides MAP-
MRF, [19] addresses also approximation of marginals and
partition function of a MRF. Both works [8, 19] propose
also a cutting plane algorithm. Our approach is consider-
ably simpler, in particular it avoids reference to the cut poly-
tope. Moreover, while [8, 19] work explicitly in the space of
the marginal polytope (i.e. with pseudomarginals), we show
that it is more natural to consider the dual LP, which can be
optimised by n-ary max-sum diffusion.
Wainwright [23, §VI] also mentioned that progressively

tighter relaxations ofMAP-MRF could be achieved by com-
bining hypertrees rather than trees. But this has never been
done with the sequential modification [7] that ensured con-
vergence and lead to TRW-S. Moreover, by using hyper-
edges only, we bypass the (complex) hypertree formalism.
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Global interactions (§7). Any interaction, possibly of a
high arity and represented by an algorithm, can be naturally
handled by n-ary max-sum diffusion whenever certain op-
timisation problem induced by the interaction is tractable.
We demonstrate this on several global interactions.
Rother et al. [13] also used a global constraint in MAP-

MRF. To compare, they solve a more complex task but we
incorporate global constraints in a principled way.
Supermodular n-ary problems (§8). We prove that for
n-ary supermodular interactions, any fixed point of n-ary
max-sum diffusion is a global optimum of MAP-MRF.
In the sequel, 2V resp.

(
V
k

)
denotes the set of all resp. of

k-element subsets of set V . Indicator [[ω]] equals 1 if logical
expression ω is true and 0 if it is false. R denotes the reals,
R+ the non-negative reals, and R̄ = R ∪ {−∞}.

2. Problem formulation
Let V be a finite set of variables. Each variable v ∈ V

attains states xv ∈ Xv , whereXv is a finite domain of varis-
ble v. For A ⊆ V , the Cartesian product XA =×v∈AXv

is the joint domain of variables A. To fix the order of the
factors in this product, we assume V is endowed with an
(arbitrary) total order. A joint state of variables A is a tuple
xA ∈ XA. For B ⊆ A, symbols xA and xB appearing in a
single expression do not denote independent joint states but
xB is the restriction of joint state xA to variables B.
Let E ⊆ 2V be a set of subsets of V , i.e., an undirected

hypergraph. Each joint state xA of each hyperedge A is
assigned a weight θA(xA) ∈ R̄. All these weights together
will be denoted by vector θ ∈ R̄

T (E) where

T (E) = { (A, xA) | A ∈ E, xA ∈ XA }
Alternatively, symbol θA can be understood as denoting a
function XA → R̄. The topic of this paper is the combina-
torial optimisation problem2

max
xV

∑
A∈E

θA(xA) (1)

Its instance is defined by triplet (E,XV ,θ). We will refer
to θA as an interaction, to |A| as the arity of interaction θA,
and tomaxA∈E |A| as the arity of the problem.
Example. Let V = {1, 2, 3, 4} with natural ordering on it. Let
E = {{2, 3, 4}, {1, 2}, {3, 4}, {3}}. Problem (1) reads

max
x1,x2,x3,x4

[θ234(x2, x3, x4)+θ12(x1, x2)+θ34(x3, x4)+θ3(x3)]

where e.g. θ234 denotes a ternary function of variables 2, 3, 4 and
symbol θ234(x234) = θ234(x2, x3, x4) denotes the value of this
function evaluated at given states x2, x3, x4 of these variables.

2Strictly speaking, problem (1) is more general than MAP-MRF be-
cause we allow arbitrary hyperedges (not only those induced by cliques of
an ordinary graph) and we allow that some weights equal −∞.

3. LP relaxation for n-ary problems
In §3, we generalise the LP relaxation approach to (1) by

Schlesinger [16], originally formulated for binary problems,
to n-ary problems. Doing that, we will closely follow the
author’s survey [25] of this approach.
Central to the generalisation is pair (2) of linear pro-

grams (see the next page). The left-hand (primal) program
is an LP relaxation of (1) and the right-hand program is its
dual. Duality is demonstrated more transparently by writing
the pair in a matrix form,

θ�μ→ max ψ�1→ min (3a)
Mμ = 0 ϕ ∈ R

J (3b)
Nμ = 1 ψ ∈ R

E (3c)
μ ∈ R

T (E)
+ ϕ�M +ψ�N ≥ θ� (3d)

Besides E, {Xv | v ∈ V } and θ, the pair has one more
free parameter, J . It is a set such that J ⊆ I(E) where

I(E) = {(A,B,xB) |A∈E, B ∈E, B ⊂A, xB ∈XB }
For simplicity of exposition, we assume that J satisfies

(A,B, xB) ∈ J =⇒ ∀xB ∈ XB : (A,B, xB) ∈ J (4)

Relaxing assumption (4) is sometimes useful, and is possi-
ble under mild conditions. But we keep it in the paper.
Further in §3 we will interpret the primal and the dual.

3.1. The primal program
The primal variables μ represent a collection of func-

tions μA: XA → R+, one for each hyperedge. For A ∈ E,
constraints (2c)+(2d) enforce that μA is a probability dis-
tribution on joint states XA. Marginalisation constraint
(2b) couples pairs of distributions3, enforcing that for each
triplet (called a pencil) (A,B, xB) ∈ J , number μB(xB) is
the marginal of μA. The set J determines which of all I(E)
possible marginalisation constraints are imposed.
If μ is integral, i.e. μ ∈ {0, 1}T (E), each distribution μA

represents a single joint state xA ∈ XA and the marginalisa-
tion constraint (2b) represents the restriction of xA to vari-
ables B. Thus, an integral primal feasible μ represents a
set of joint states, each for one hyperedge, that are incident
wherever two hyperedges are coupled by marginalisation.
The primal becomes an integer (0-1) LP, which is equiv-
alent to (1) provided that each variable (i.e., one-element
hyperedge) is coupled with some hyperedge, i.e., if

∀A ∈ E, v ∈ V, xv ∈ Xv: (A, {v}, xv) ∈ J (5)

The LP (2) is the continuous relaxation of this integer LP.
We will say more about the primal in §6.
3Alternatively, the marginalisation constraint could be formulated in a

more general form,
∑

xC
μA(xA) =

∑
xC

μB(xB) for C ⊆ A ∩ B
and xC ∈ XC , and the dual program modified accordingly.



∑
A∈E

∑
xA

θA(xA)μA(xA)→max
∑
A∈E

ψA→min (2a)

∑
xA\B

μA(xA) = μB(xB) ϕA,B(xB) ∈ R (A,B,xB)∈ J (2b)

∑
xA

μA(xA) = 1 ψA ∈ R A∈E (2c)

μA(xA) ≥ 0 θA(xA)+
∑

B|(A,B,xB)∈J

ϕA,B(xB)−
∑

B|(B,A,xA)∈J

ϕB,A(xA) ≤ ψA (A,xA)∈ T (E) (2d)

3.2. The dual program
Weight vectors θ,θ′ ∈ R̄

T (E) are called equivalent if
they give rise to the same objective function of problem (1),
i.e. if

∑
A∈E θA(xA) =

∑
A∈E θ

′
A(xA) for all xV ∈ XV .

A transformation mapping a weight vector to its equivalent
is called an equivalent transformation [16, 25].
The elementary equivalent transformation is applied on

a single pencil (A,B, xB) ∈ J as follows: add a constant4
ϕA,B(xB) to the weights { θA(xA) | xA\B ∈ XA\B } and
subtract the same constant from θB(xB). Applying these
transformations on all (A,B, xB) ∈ J yields

θϕ
A(xA) = θA(xA)+

∑
B|(A,B,xB)∈J

ϕA,B(xB)−
∑

B|(B,A,xA)∈J

ϕB,A(xA)

(6)
where θϕ = θ − M�ϕ denotes the equivalent of θ cor-
responding to vector ϕ ∈ R

J . The matrix form (3) shows
clearly why equivalent transformations preserve the primal
objective: sinceMμ = 0 implies (θ� −ϕ�M)μ = θ�μ.
Sincemaxi

∑
j aij ≤

∑
j maxi aij for any aij , we have

max
xV

∑
A∈E

θA(xA) ≤
∑
A∈E

max
xA

θA(xA) (7)

thus the right-hand expression is an upper bound on (1). By
eliminating variables ψA, the dual in (2) can be written as

min
ϕ∈RJ

∑
A∈E

max
xA

θϕ
A(xA) (8)

which can be interpreted as minimising the upper bound (7)
over the equivalents of θ.

4. When is the bound exact?
The bound is exact, i.e. (7) holds with equality, if and

only if maximisers taken separately for each hyperedge
agree on a common solution5, i.e., if there exists xV ∈ XV

such that θA(xA) = maxyA
θA(yA) for all A ∈ E. As

shown in [16, 25], this can be translated to the well-known
constraint satisfaction problem as follows.

4In works developed from belief propagation, e.g. [23, 7], equivalent
transformations are called reparameterisations and ϕA,B(xB) messages.

5This can be seen as a reformulation of (hyper)tree agreement [23] for
(hyper)trees being individual (hyper)edges.

Given an indicator vector σ ∈ {0, 1}T (E), the constraint
satisfaction problem (CSP) [11] represented by (E,XV ,σ)
seeks to find a joint state xV ∈ XV such that

min
A∈E

σA(xA) = 1

If such xV exists, the CSP instance is satisfiable. The CSP
is NP-complete but proving or disproving satisfiability is
tractable for its certain subclasses.
Joint state (A, xA) such that θA(xA) = maxyA

θA(yA)
is called active. Let σA(xA) = 1 if (A, xA) is active and
σA(xA) = 0 if it is inactive. Then (7) holds with equality if
and only if the CSP instance (E,XV ,σ) is satisfiable.

5. Decreasing the upper bound
Max-sum diffusion [10, 25] is a very simple network al-

gorithm to decrease the upper bound (7) by equivalent trans-
formations (6). While it was originally defined for binary
problems, in §5 we generalise it to n-ary problems.
The single iteration of the algorithm is the elementary

equivalent transformation (see §3.2) that makes the equality
max
xA\B

θA(xA) = θB(xB) (9)

satisfied for a single pencil (A,B, xB), which is done by
letting ϕA,B(xB) = [θB(xB)−maxxA\B

θA(xA)]/2. This
improves the bound (7) in the sense of Theorem 1.
Theorem 1. Let A,B ∈ E and B ⊂ A be fixed. The
iteration done on the pencils { (A,B, xB) | xB ∈ XB } (in
any order) does not increase the upper bound 6.
Proof. Since A and B are fixed, we can denote for brevity
a(xB) = maxxA\B

θA(xA), b(xB) = θB(xB), and
c(xB) = [b(xB) − a(xB)]/2. Before the iterations, the
contribution of hyperedges A and B to the bound (7) is

max
xA

θA(xA)+max
xB

θB(xB) = max
xB

a(xB)+max
xB

b(xB) (10)

After the iterations, this contribution is

max
xB

[a(xB) + c(xB)] + max
xB

[b(xB)− c(xB)]

= max
xB

[a(xB) + b(xB)] (11)

6But the iteration on a single pencil may increase the upper bound.



Clearly, expression (11) is not greater than (10).

The complete algorithm then looks as follows.

Algorithm 1. (n-ary max-sum diffusion)
loop
for (A,B, xB) ∈ J do
ϕA,B(xB) += [θϕ

B(xB)− max
xA\B

θϕ
A(xA)]/2

end for
end loop

The algorithm converges to a state when (9) holds for
all (A,B, xB) ∈ J . As shown in [25] (but only for binary
problems), it follows that the CSP formed by the active joint
states σ is arc consistent7 (AC) [1], i.e., it satisfies

max
xA\B

σA(xA) = σB(xB), (A,B, xB) ∈ J (12)

In general, the fixed point of the algorithm need not be
a global minimum of (2); examples were given in [15, 25,
7]. As pointed out in [26], this is because Algorithm 1 is a
coordinate descent method, which need not find the global
minimum of a nonsmooth convex function, here function
(7). Despite this, global minimum is often found in practice.
The only non-trivial part of the algorithm is the calcu-

lation of maxxA\B
θϕ

A(xA). This means to solve a smaller
instance of problem (1), induced by hyperedgeA (more pre-
cisely, to compute its max-marginals associated with B).
This instance is specified by triplet (E′, XA,θ

′) where E′

and θ′ are obtained from (6) – in particular, hypergraph E′

consists of hyperedge A and its subsets involved in J .
For a large arity of interaction θA, the number of pri-

mal variables and dual constraints on line (2d) is intractable.
Importantly, this is not an obstacle to use the algorithm pro-
vided that calculatingmaxxA\B

θϕ
A(xA) is tractable.

For binary problems, Algorithm 1 can be shown equiva-
lent to TRW-S [7] with the trees being individual edges. It is
known that using edge updates is slower than using tree up-
dates [23, 7]. Thus, e.g. on images Algorithm 1 is typically
several times slower than TRW-S on monotonic chains with
the chains being image rows and columns [7].

6. A hierarchy of polyhedral relaxations
Consider adding a hyperedge A /∈ E to hypergraph E

and setting the interaction θA identically to zero. This does
not change the original problem (1) but it may improve its
LP relaxation (2). The rest of §6 formalises this observation.

6.1. The marginal polytope
Let mapping δE : XV → {0, 1}T (E) be defined by: the

(A, yA)-component of vector δE(xV ) equals [[xA = yA]],
7Often, the term arc consistency is used only for binary problems and

for n-ary problems the term generalised arc consistency is used [1]. Binary
arc consistency can be shown equivalent to weak tree agreement [7].

i.e., it equals 1 iff yA is the restriction of xV to variables A.
This lets us rewrite the objective of (1) as a scalar product,
∑
A∈E

θA(xA) =
∑
A∈E

∑
yA

θA(yA) [[xA = yA]] = θ�δE(xV )

Problem (1) can be reformulated by the equalities

max
xV

∑
A∈E

θA(xA) = max
{
θ�δE(xV )

∣∣ xV ∈XV

}
(13a)

= max
{
θ�μ

∣∣μ∈ δE(XV )} (13b)
= max

{
θ�μ

∣∣μ∈ convδE(XV )} (13c)
where δE(XV ) = { δE(xV ) | xV ∈ XV }. Equality (13c)
follows from the fact that a linear program attains its opti-
mum at least one vertex. Note that (13c) formulates prob-
lem (1) as a linear program over polytope conv δE(XV ).
Denoting the coefficients of convex combination by μV ,

an element μ of the polytope conv δE(XV ) is given by

μ =
∑
xV

μV (xV ) δE(xV ) (14)

where μV (xV ) ≥ 0 and
∑

xV
μV (xV ) = 1. Substituting

for δE(xV ) yields that the (A, yA)-component of μ equals

μA(yA) =
∑
xV

μV (xV ) [[xA = yA]] =
∑
yV \A

μV (yV ) (15)

where the second equality is easily verified. Thus, μ ∈
conv δE(XV ) if and only if μ are the marginals of some
distribution μV . For this reason, conv δE(XV ) is referred
to as the marginal polytope (associated with E) in [23].
This shows that the marginal polytope can be seen as a

projection of a larger polytope, living in a space that besides
dimensions {μA | A ∈ E } includes also dimensions μV :

conv δE(XV ) = πT (E)[P (E ∪ {V }, I(E ∪ {V } ))] (16a)
= πT (E)[P (2V , I(2V ))] (16b)

where P (E, J) denotes the polytope of vectors μ satisfying
primal constraints (2b)+(2c)+(2d) and πD′(Y ) ∈ R

D′
de-

notes the projection of set Y ⊆ R
D on dimensionsD′ ⊆ D.

Equality (16a) is obtained by rewriting (15) using the pro-
jection. Equality (16b) is true because extra dimensions are
just removed by the projection. Note, P (2V , I(2V )) is the
marginal polytope of the complete hypergraph 2V .

6.2. Outer bounds of the marginal polytope
Let us have Ē1, J1, Ē2, J2 such that E ⊆ E1 ⊆ 2V ,

J1 ⊆ I(E1), E ⊆ E2 ⊆ 2V , and J2 ⊆ I(E2). Then

J2 ⊆ J1 =⇒ πT (E)[P (Ē1,J1))]⊆ πT (E)[P (Ē2,J2))] (17)

To see (17), see that πT (E)[P (Ē, J))] = πT (E)[P (2V , J))]
because the dimensions not coupled with any other dimen-
sions (i.e., not participating in J) are removed by the pro-



jection without any effect. Now, see that J2 ⊆ J1 implies
πT (E)[P (2V , J1))] ⊆ πT (E)[P (2V , J2))] because the latter
polytope is less constrained.
By (16b) and (17), for any Ē and J such that

E ⊆ Ē ⊆ 2V , J ⊆ I(Ē) (18)

the polytope πT (E)[P (Ē, J))] is an outer bound of the
marginal polytope. This polytope is defined by Ē and J ,
but it is in fact fully determined by J alone because once an
arbitrary J ⊆ I(2V ) is chosen, taking any (e.g. the smallest)
hypergraph Ē satisfying (18) yields the same polytope8.
Note, two sets J1 �= J2 may sometimes yield the same

relaxation, πT (E)[P (Ē1, J1)] = πT (E)[P (Ē2, J2)]. Char-
acterising when exactly this happens is an open problem.
Implication (17) further establishes that the outer bounds

πT (E)[P (Ē, J))] form a hierarchy, partially ordered by in-
clusion on I(2V ). The extreme choices are J = I(2V ) for
exact solution and J = ∅ for maximising each interaction
independently. In between, there is a range of intermediate
relaxations. One of them is the LP relaxation [16, 8, 23], ob-
tained for J = I(E); then πT (E)[P (Ē, J))] = P (E, I(E))
is called the local polytope [23].

6.3. Projection = adding zero interactions
By (13c), for any Ē and J satisfying (18),

max
{
θ�μ

∣∣μ ∈ πT (E)[P (Ē, J)]
}

(19)

is an upper bound on (1). But (19) is clearly equal to

max
{
θ̄
�
μ̄
∣∣ μ̄ ∈ P (Ē, J)

}
(20)

where θ̄ ∈ R̄
T (Ē) is given by

θ̄A(xA) =
{
θA(xA) if A ∈ E
0 if A ∈ Ē \ E

i.e., projection can be realised simply by adding extra zero
components to θ. Note that (20) is an instance of LP (2).
Thus, the LP relaxation of problem (1) can be improved

by adding interaction(s) with zero weight. From the poly-
hedral point of view, this corresponds to lifting the marginal
polytope to spaceR

T (Ē), imposing the marginalisation con-
straints given by J , and projecting back to R

T (E).

6.4. Cutting plane algorithm
The cutting plane algorithm is a well-known approach

to integer LPs. Let P ∗ be the convex hull of the feasible
set of an integer LP (integral hull), typically described by
an intractable number of constraints. Let polytope P ⊇ P ∗

be an outer bound of P ∗, described by an LP. If the current
optimal solution is μ ∈ P \ P ∗, a halfspace is found con-

8Without any constraints on Ē and J , not all integral vertices of
πT (E)[P (Ē, J)] need be optimal; for that, we would need e.g. (5).

taining P ∗ but notμ. The linear inequality representing this
halfspace is then added to the LP description of P . Finding
a violated inequality is known as the separation problem.
Suppose Algorithm 1 has converged and found an opti-

mum of (2). Let us replace E with E ∪ {A}, set interaction
θA to zero, and replace J by a suitable larger set J ∪ J ′.
This has no effect on the current upper bound (7) because it
just means adding zero to it. However, since the algorithm
can never increase the upper bound, its future iterations will
either leave it unchanged or decrease it. If they happen to
decrease it, we have succeeded to cut off a part of the poly-
tope P (E, J) that was not in conv δE(XV ).
Implicitly, this means we have added a set of primal con-

straints (2b) for (A,B, xB) ∈ J ′. Explicitly, we have added
dual variables ϕA,B(xB). Note, adding a single marginali-
sation constraint in the space R

T (Ē) may mean adding sev-
eral cutting planes in R

T (E), induced in a non-trivial way
by the primal constraints and the projection. This is in con-
trast to the algorithms in [8, 19] which add a single plane at
a time and they do it explicitly in the primal space R

T (E).
In fact, we can add a zero interaction even before Algo-

rithm 1 converged. This may or may not lead to a better
relaxation in future. If it does not, all we will lose is the
memory occupied by the added dual variables ϕA,B(xB).
The separation problem corresponds to finding unsatisfi-

able CSP subproblems: if the active joint states of the aux-
iliary problem (E′, XA,θ

′) induced by hyperedge A (see
§5) do not form a satisfiable CSP, then adding A results in
a strictly better bound. We currently omit the proof of this
statement and demonstrate it in §6.5 on an example.

6.5. Example: adding cycles to binary problems
To demonstrate higher-order relaxations and the cutting

plane algorithm, we will show for binary problems how the
well-known LP relaxation improves by adding cycles9.
The problem structure, E =

(
V
1

) ∪ E′ where E′ ⊆ (
V
2

)
,

was the 2-dimensional 4-connected m ×m grid. We com-
pared the relaxation (19) for two choices of (Ē, J):

Ē = E, J = I(E) (21a)
Ē = E ∪ { all cycles of length four }, J = I(Ē) (21b)

Recall that (21a) is equivalent to the tree-based relaxation in
the sense of [23, 7]. In (21b), maxxA\B

θϕ
A(xA) for the cy-

cle subproblems was computed by dynamic programming.
Figure 1a shows the active joint states (here, individual

states and state pairs) after convergence of the algorithm for
relaxation (21a) applied on an instance with size m = 8,
|Xv| = 4 labels, and random weights θ. This solution can-
not be optimal because of the unsatisfiable 4-cycle enclosed
by the red curve. Let A denote the four enclosed variables.

9When we say ‘adding a cycle’, we in fact mean adding a hyperedgeA
inducing subproblem (E′, XA, θ′) (defined in §5) such thatE′ is a cycle.



(a) (b)

(c) (d) (e)
Figure 1. (a,b,c) show the steps of the cutting plane algorithm for
for an instance random with m = 8 and |Xv| = 4. (d,e) is the
smallest unsatisfiable CSP for relaxation (21a) resp. (21b).

We added hyperedge A to E and extended J to maintain10
J = I(E). Running the algorithm on this extended prob-
lem yielded Figure 1b with an improved bound. Adding the
inconsistent 4-cycle shown in Figure 1b resulted in the op-
timal solution, Figure 1c. In fact, this solution is equivalent
to the result of relaxation (21b), in which all the 4-cycles
are present all the time, but we needed considerably fewer
dual variables because we added only some of these cycles.
On a number of instances, we counted how many in-

stances were solved to optimality (i.e., the relaxation was
exact). We tested five types of instances:

• random: all weights θv(xv) and θvv′(xv, xv′) were in-
dependently drawn from the normal distributionN [0; 1].

• Potts: θvv′(xv, xv′) = [[xv = xv′ ]] and θv(xv) were
drawn from N [0; 1.6]. We chose standard deviation 1.6
because it yielded (by trial) the hardest Potts instances.

In the three other types, θv(xv) were drawn from N [0; 1]
and θvv′(xv, xv′) ∈ {−∞, 0}, i.e., the binary interactions
were crisp. They were taken over from [24] as follows:

• lines: θvv′(xv, xv′) are as in Figure 19a in [24].
• curve: θvv′(xv, xv′) are as in Figure 15a in [24].
• Pi: θvv′(xv, xv′) are as in Figure 12d in [24].
10Maintaining J = I(E) is in fact a bit wasteful. It requires adding

the pencils (A, B, xB) to J where (B, xB) are all joint states such that
B ⊂ A, i.e., 4 × 4 + 4 × 16 = 80 pencils. But the inconsistent cycle is
supported by only 2 (rather than 4) states in each variable, thus we could
add less pencils. Note, this would require to relax assumption (4).

type m |Xv| rtree r4cycle

random 15 5 0.01 1.00
random 25 3 0.00 0.98
random 100 3 0.00 0.72
Potts 15 5 0.79 0.99
Potts 25 5 0.48 0.98
Potts 100 5 0.00 0.81
lines 10 4 0.72 0.88
lines 25 4 0.00 0.00
curve 10 9 0.17 0.65
curve 15 9 0.00 0.24
curve 25 9 0.00 0.00
Pi 15 5 0.00 0.82

Table 1. Experimental comparison of relaxations (21a) and (21b).
The columns mean: ‘type’ is the problem type, m is the image
side, |Xv| is the number of labels, rtree resp. r4cycle is the pro-
portion of instances solved to optimality by relaxation (21a) resp.
(21b). There were 100 instances randomly drawn from each type.

Table 1 shows the results. For random and Potts,
relaxation (21b) was exact far more often than relaxation
(21a). Form = 25, relaxation (21b) solved random in fact
always and relaxation (21a) never. For crisp binary interac-
tions, relaxation (21b) also clearly beat (21a). However, for
m ≥ 25 lines and curve were unsolvable. To conclude,
(21b) was surprisingly successful for random and Potts.
Let us remark that lines, curve and Pi are much

harder than instances typical in low-level vision, such as
the benchmarks in [20]. In more detail, as observed in [24],
they are easy if the data terms θv(xv) are ‘close to a feasible
image’ but this is not at all the case for random θv(xv).
An insight why (21b) is notably more successful than

(21a) is as follows. Figure 1d resp. 1e shows the smallest
unsatisfiable CSP for relaxation (21a) resp. (21b). The sub-
problem in Figure 1d is more likely to occur than Figure 1e.
The number of 4-cycles added by the cutting plane al-

gorithm ranged between 0−10% of the total number of 4-
cycles. Rarely, it was even more.
Currently, the described cutting plane algorithm is inef-

ficient – we have shown only the principle. This is because,
e.g., Algorithm 1 is based on hyperedge updates (which
is slow) and it is re-run until convergence each time after
adding a zero interaction. In fact, the runtime was lower
when all the 4-cycles were present all the time: then, the
runtime for random or Potts withm = 100 and |K| = 4
was several minutes (for a non-optimised Matlab+C code).
Remarks. One can think of adding more complex tractable
subproblems than cycles, such as problems with small
treewidth. It is even possible to add (reasonably small) sub-
problems that are not tractable and solve them with a non-
polynomial algorithm, like branch&bound.
The results of §6 and §6.4 can be used with other algo-

rithms to minimize the upper bound (7). E.g., the augment-
ing DAG algorithm [9, 25, 24] may turn out more appropri-
ate for the cutting plane scheme than Algorithm 1.



7. Global interactions
A low-arity interaction θA is typically represented exten-

sionally, i.e., by explicitly storing the weights { θA(xA) |
xA ∈ XA }. This is impossible for high-arity interactions
(because the weights are too many), which have to be repre-
sented intensionally, i.e., by an algorithm. An intensionally
defined interaction can be used in Algorithm 1 whenever
computingmaxxA\B

θϕ
A(xA) is tractable. Although the last

statement is trivial given the results of §5, it is very signif-
icant: it shows how to incorporate high-arity interactions
into the LP relaxation framework in a principled way.
For instance, consider a binary problem plus an interac-

tion on all variables, E =
(
V
1

)∪E′∪{V } whereE′ ⊆ (
V
2

)
.

In Algorithm 1, besides the updates done between unary and
binary interactions, we need to compute maxxV \A

θϕ
V (xV )

for (V,A, xA) ∈ J . If J = I(E), this would read

max
xV \A

[
θV (xV )−

∑
v∈V

ϕV,v(xv)−
∑

vv′∈E

ϕV,vv′(xv, xv′)
]

for all A ∈ (
V
1

)∪E′. This is clearly intractable because the
last two terms already form a binary problem (1). But let
J = { (A, {v}, xv) | A ∈ E′ ∪ {V }, v ∈ V, xv ∈ Xv }.
This yields a looser relaxation but we need to compute only

max
xV \{v}

θϕ
V (xV ) = max

xV \{v}

[
θV (xV )−

∑
u∈V

ϕV,u(xu)
]
(22)

for all v ∈ V , which is tractable for a number of interesting
functions θV which may be useful in applications.
To demonstrate this, we will define several class size

constraints, constraining the number of variables with a
given state in various ways. They are examples of global
interactions, which in constraint satisfaction are understood
as functions of a non-fixed set of variables [22, 1] (thus, not
necessarily of all the variables as in [13]).
E.g., let θV be the crisp equality constraint, given by

θV (xV ) =
{

0 if
∑

v∈V [[xv = x̄]] = n
−∞ otherwise

(23)

which enforces the number of variables with state x̄ to
be n. To compute (22), a simple greedy algorithm is op-
timal, the core of which is sorting the numbers {ϕV,v −
maxx�=x̄ ϕV,v(x̄) | v ∈ V }. Using a suitable data structure,
this can be done efficiently in an incremental manner.
As an evidence that the approach yields plausible ap-

proximation for real instances, we will show an experiment
with image segmentation. The first image in Figure 2 is
the input binary image corrupted with additive Gaussian
noise. Let Xv = {BG,FG} (background, foreground),
θv = −[f(xv) − gv]2 where f(x) is the expected inten-
sity of a pixel with label x and gv is the actual intensity of
pixel v in the input image, and θvv′(xv, xv′) = [[xv = xv′ ]]
(Ising model). The constraint (23) is imposed with x̄ = FG.

2000 3000 4000 5000 5368 6000 7000 8000 9000
2008 3004 4011 5006 5368 6004 7024 7982 9032

Figure 2. Applying Ising model with global costraint (23) to image
segmentation. The left-hand image: a binary image corrupted with
additive Gaussian noise; the uncorrupted image had 5368 black
pixels. Other images: the segmentation results; the first and sec-
ond number under each image is the number of black pixels re-
quired (n in (23)) and actually achieved, respectively.

Note, this task is equivalent to the minimum st-cut problem
with prescribed partition size, which is NP-hard. The binary
images in Figure 2 show the results for different n.
Another example is the soft version of (23) given by

θV (xV ) = −∣∣∑
v∈V [[xv = x̄]]− n∣∣. Or the region balance

constraint θA∪B that constrains the number of variables
with state x̄ to be the same in two given regions A,B ⊂ V .
The interaction θV (xV ) =

∣∣∑
v∈V [[xv = x̄]]−n∣∣ encour-

ages the number of variables with state x̄ to be far from n.
Interestingly, this function is supermodular11 and if the bi-
nary interactions are also supermodular, Algorithm 1 finds
the global optimum of (1), as we shall prove in §8.

8. Supermodular n-ary problems
Since maximising a supermodular function on a distribu-

tive lattice is tractable [18], problem (1) is tractable if all
interactions are supermodular. For binary problems, it is in
addition known that the LP relaxation is exact [17, 25].
In §8, we show that the LP relaxation is exact for n-

ary supermodular problems. We do this by generalising
Schlesinger’s proof [17], using our revision of this proof in
[25]. More strongly, we show that for n-ary supermodular
problems, any fixed point of Algorithm 1 is an optimum of
(2) (which may not be the case for non-supermodular prob-
lems, see §5) and hence also of (1).
We assume that each domain Xv is endowed with a

known total order ≤v . A function θA is supermodular if

θA(xA ∧ yA) + θA(xA ∨ yA) ≥ θA(xA) + θA(yA)

for any xA, yA ∈ XA, where ∧ (∨) denotes the componen-
twise minimum (maximum) w.r.t. ≤v .

Theorem 2. Let (5) hold. Let functions θA be supermod-
ular for A ∈ E. Let Algorithm 1 converge, such that (9)
holds for (A,B, xB) ∈ J . Let xV be the joint state defined
as follows: xv is the lowest (w.r.t. the order≤v) active state
of variable v. Then xV is a solution to problem (1).
11In this light, tractability of (22) for θV equal to (23) may be surprising

because the function (23) (and also its soft version) is submodular.



Proof. After convergence of Algorithm 1, all interactions
are supermodular because supermodularity of θA is pre-
served by equivalent transformations. Moreover, the CSP
formed by the active joint states σ is AC (as said in §5).
It is known [21] that maximisers of a supermodular func-

tion on a distributive lattice form a sublattice of this lattice.
Therefore, the active joint states σA of each interaction θA

form a lattice, i.e., σA(xA) = σA(yA) = 1 implies that
σA(xA ∧ yA) = σA(xA ∨ yA) = 1 for any xA, yA ∈ XA.
Due to this property, the CSP formed by the active joint

states σ belongs to a tractable CSP subclass, the semilattice
(min-closed) CSP [6]. It is known that if a semilattice CSP
is AC then it is satisfiable and the solution can be read off
simply by taking the lowest state xv of each variable.
Finally, it is not hard to see that assumption (5) is needed

for an AC semilattice CSP to be satisfiable.

Optimality of the LP relaxation for n-ary supermodular
problems has been recently shown also by Cooper [3]. To
compare, our statement is stronger (it suffices that (9) holds
for all pencils) and our proof is much simpler. Furthermore,
note that while binary supermodular problems can be trans-
lated to the minimum graph st-cut problem [14], our result
does not imply that this can be done for n-ary problems.

References
[1] C. Bessiere. Constraint propagation. In Handbook of Con-

straint Programming, chapter 3. Elsevier, 2006. Also tech-
nical report LIRMM 06020.

[2] M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc
consistency. In Proc. IJCAI, Hyderabad, India, 2007.

[3] M. C. Cooper. Minimization of locally-defined submodular
functions by optimal soft arc consistency. Constraints, 13(4),
2008.

[4] M. M. Deza and M. Laurent. Geometry of Cuts and Met-
rics. Number 15 in Algorithms and Combinatorics. Springer,
Berlin, Germany, 1997.

[5] P. L. Hammer, P. Hansen, and B. Simeone. Roof duality,
complementation and persistency in quadratic 0-1 optimiza-
tion. Math. Programming, 28:121–155, 1984.

[6] P. Jeavons and M. Cooper. Tractable constraints on ordered
domains. Artificial Intelligence, 79(2):327–339, 1995.

[7] V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. IEEE Trans. Pattern Analysis
and Machine Intelligence, 28(10):1568–1583, 2006.

[8] A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The par-
tial constraint satisfaction problem: Facets and lifting theo-
rems. Operations Research Letters, 23(3–5):89–97, 1998.

[9] V. K. Koval and M. I. Schlesinger. Two-dimensional pro-
gramming in image analysis problems. USSR Academy of
Science, Automatics and Telemechanics, 8:149–168, 1976.
In Russian.

[10] V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for
decreasing energy of max-sum labeling problem. Glushkov

Institute of Cybernetics, Kiev, USSR. Unpublished, approx.
1975.

[11] A. Mackworth. Constraint satisfaction. In Encyclopaedia of
Artificial Intelligence, pages 285–292. Wiley, 1991.

[12] P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In
Handbook of Constraint Programming, chapter 9. Elsevier,
2006.

[13] C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Coseg-
mentation of image pairs by histogram matching – incorpo-
rating a global constraint into MRFs. In Conf. Computer
Vision and Pattern Recognition (CVPR), 2006.

[14] D. Schlesinger and B. Flach. Transforming an arbitrary Min-
Sum problem into a binary one. Technical Report TUD-
FI06-01, Dresden University of Technology, Germany, April
2006.

[15] M. I. Schlesinger. False minima of the algorithm for mini-
mizing energy of max-sum labeling problem. Glushkov In-
stitute of Cybernetics, Kiev, USSR. Unpublished, 1976.

[16] M. I. Schlesinger. Syntactic analysis of two-dimensional vi-
sual signals in noisy conditions. Kibernetika, 4:113–130,
1976. In Russian.

[17] M. I. Schlesinger and B. Flach. Some solvable subclasses of
structural recognition problems. In Czech Pattern Recogni-
tion Workshop, 2000.

[18] A. Schrijver. A combinatorial algorithm minimizing sub-
modular functions in strongly polynomial time. Combinato-
rial Theory, Ser. B, 80(2):346–355, 2000.

[19] D. Sontag and T. Jaakkola. New outer bounds on the
marginal polytope. In Proc. Neural Information Processing
Systems (NIPS). MIT Press, 2007.

[20] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-
parative study of energy minimization methods for Markov
random fields. In European Conf. Computer Vision (ECCV),
pages II: 16–29, 2006.

[21] D. M. Topkis. Supermodularity and Complementarity. Fron-
tiers of Economic Research. Princeton University Press,
Princeton, NJ, 1998.

[22] W.-J. van Hoeve and I. Katriel. Global constraints. In Hand-
book of Constraint Programming, chapter 7. Elsevier, 2006.

[23] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estima-
tion via agreement on (hyper)trees: message passing and lin-
ear programming approaches. IEEE Trans. Information The-
ory, 51(11):3697–3717, 2005.

[24] T. Werner. A linear programming approach to max-sum
problem: A review. Technical Report CTU–CMP–2005–25,
Center for Machine Perception, Czech Technical University,
December 2005.

[25] T. Werner. A linear programming approach to max-sum
problem: A review. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, 29(7):1165–1179, July 2007.

[26] T. Werner and A. Shekhovtsov. Unified framework for
semiring-based arc consistency and relaxation labeling. In
M. Grabner and H. Grabner, editors, 12th Computer Vision
Winter Workshop, St. Lambrecht, Austria, pages 27–34. Graz
University of Technology, February 2007.


