
How to Compute Primal Solution from Dual One in LP
Relaxation of MAP Inference in MRF?

Tomáš Werner
Center for Machine Perception, Czech Technical University, Prague

Abstract

In LP relaxation of MAP inference in Markov random fields (MRF), the primal LP
maximizes the MAP objective over relaxed labelings (pseudomarginals) and the dual LP
minimizes an upper bound on the true MAP solution by reparameterizations. Having
solved the dual LP, we have no direct access to the corresponding primal solution. We
propose a simple way to compute an optimal primal solution from an optimal dual solution.
Precisely, we given an algorithm that either shows that the upper bound for a given
problem can be further decreased by reparameterizations (i.e., it is not dual-optimal)
or computes the corresponding optimal relaxed labeling. This is done by first removing
inactive dual constraints and then solving the resulting feasibility problem by a very simple
message-passing algorithm, sum-product diffusion.

MAP inference in undirected graphical models (Markov random fields, MRF) [16] leads to
the following NP-hard combinatorial optimization problem: given a set of variables and a set
of functions of (small) subsets of the variables, maximize the sum of the functions over all the
variables. The problem has a natural LP relaxation, proposed independently in [15, 8, 16].
The primal task in this LP relaxation maximizes the MAP objective over relaxed labelings
(pseudomarginals), the dual LP minimizes an upper bound on the true MAP solution by
reparameterizations (equivalent transformations) of the original problem.

Currently, the only known algorithms able to compute the LP relaxation for large-scale
instances are dual. Examples are algorithms based on averaging max-marginals [10, 6, 4, 5],
the Augmenting DAG / VAC algorithm [9, 1], subgradient methods [7, 14], or smoothing
approaches [20, 17, 5, 12].

Having an optimal dual solution, it is not easy to compute the corresponding primal solu-
tion (optimal relaxed labeling) for large-scale instances. However, this primal solution can be
sometimes useful. In this paper, we present a simple algorithm to compute an optimal primal
solution from an optimal dual solution in the LP relaxation. Precisely, suppose somebody gives
us a problem and claims it has the minimal upper bound among all its reparameterizations.
We want to either disprove this claim or compute the corresponding primal optimum.

Given a dual solution, we first remove inactive dual constraints, which means setting the
corresponding primal variables (pseudomarginals) to zero. We are left with a feasibility task.
This feasibility task is replaced with its a smooth optimization task such that the primal
optimum of the smoothed task is a solution of the feasibility task. The optimum of the smoothed
task can be computed with a very simple message passing algorithm, which we call sum-product
diffusion. If the dual solution was not optimal, this is detected during sum-product diffusion
and a decreasing direction for the upper bound is provided.

1

We build our paper around the particular form of LP relaxation proposed in [15] and the
max-sum diffusion algorithm [10], which were reviewed in [18]. Since researchers are most
familiar with problems with pairwise interactions, we present our algorithm on these – but it
can be straightforwardly extended to LP relaxation of problems of arbitrary order (arity), as
proposed in [19, 3].

1 MAP inference in MRF and its LP relaxation

Let V be a set of variables and E ⊆
(
V
2

)
a set of variable pairs, thus (V,E) is a graph. Variable

u ∈ V attains states xu from a finite domain Xu. An assignment (or labeling) is a tuple x ∈ X,
where X is the Cartesian product of the domains Xu for all u ∈ V . We want to maximize the
function

F (x | f) =
[∑
u∈V

fu(xu) +
∑
uv∈E

fuv(xu, xv)
]

(1)

over all x ∈ X, where the functions fu: Xu → [−∞,∞) and fuv: Xu × Xv → [−∞,∞) are
given. All numbers fu(xu) and fuv(xu, xv) form a single vector f ∈ [−∞,∞)T , where

T = { (u, xu) | u ∈ V, xu ∈ Xu } ∪ { (uv, xuxv) | uv ∈ E, xu ∈ Xu, xv ∈ Xv }

denotes the set of all states of all the functions. We understand E as an undirected graph,
adopting that fuv(xu, xv) = fvu(xv, xu). We will need also the directed version E∗ of E, such
that for any undirected edge uv ∈ E we have arcs in both directions uv ∈ E∗ and vu ∈ E∗.

Here is the primal (left) and the dual (right) of the LP relaxation of the problem [15, 18]:

max
µ∈Λ
〈f ,µ〉 = min

ϕ
U(fϕ) . (2)

In the primal, Λ ⊆ [0, 1]T is the set of vectors µ ∈ [0, 1]T satisfying∑
xv

µuv(xu, xv) = µu(xu) , uv ∈ E∗, xu ∈ Xu (3a)∑
xu

µu(xu) = 1 , u ∈ V . (3b)

The set Λ is often referred to as the local marginal polytope and the components of µ as
pseudomarginals [16]. A vector µ ∈ Λ is the collection of distributions µu and µuv, subject
to marginalization constraints (3a) and normalization constraints (3b). In the scalar product
〈f ,µ〉 we define −∞× 0 = 0.

The meaning of the dual can be understood by combining two concepts, reparameterizations
and an upper bound on (1), as shown next.

A reparameterization is a linear transformation of vector f that preserves F (x | f) for all
x ∈ X. The simplest reparameterization is done as follows: pick any uv ∈ E∗, subtract an
arbitrary unary function (usually called a ‘message’) ϕuv: Xu → (−∞,∞) from function fu and
add it to function fuv:

fu(xu)← fu(xu)− ϕuv(xu) (4a)

fuv(xu, xv)← fuv(xu, xv) + ϕuv(xu) . (4b)

2

This preserves fu + fuv and hence F (· | f). Applying (4) to all uv ∈ E∗ yields

fϕu (xu) = fu(xu)−
∑
v∈Nu

ϕuv(xu) (5a)

fϕuv(xu, xv) = fuv(xu, xv) + ϕuv(xu) + ϕvu(xv) , (5b)

where Nu = { v | uv ∈ E } is the set of neighbors of variable u. Vector ϕ is the collection of
all the numbers ϕuv(xu), thus fϕ denotes the reparameterization of vector f by messages ϕ.
Reparameterizations preserve not only F (· | f) but also the primal objective, i.e., for any µ ∈ Λ
we have 〈f ,µ〉 = 〈fϕ,µ〉.

The function U in the dual is an upper bound on F (· | f),

U(f) =
∑
u∈V

max
xu

fu(xu) +
∑
uv∈E

max
xu,xv

fuv(xu, xv) ≥ max
x∈X

F (x | f) . (6)

The meaning of the dual is now evident: it minimizes the upper bound (6) by reparameteriza-
tions (5).

We will say that f is a dual optimum if it has the least upper bound among all its reparam-
eterizations, i.e., U(f) = minϕ U(fϕ). Note that this is a slight abuse of terminology because
the decision variables in the dual in (2) are ϕ rather than f .

1.1 Relations between the primal and dual

The primal and dual are related by the well-known duality theorems:

• Weak duality : For any µ ∈ Λ and any f , we have 〈f ,µ〉 ≤ U(f).

• Strong duality : For µ ∈ Λ, we have 〈f ,µ〉 = U(f) if and only if µ is a primal optimum
and f is a dual optimum.

• Complementary slackness : For µ ∈ Λ, we have 〈f ,µ〉 = U(f) if and only if[
max
yu

fu(yu)− fu(xu)
]
µu(xu) = 0 (7a)[

max
yu,yv

fuv(yu, yv)− fuv(xu, xv)
]
µuv(xuv) = 0 . (7b)

If f is not a dual optimum then there exists no µ ∈ Λ satisfying (7).

1.2 Computing primal solution as a feasibility problem

Our task in this paper is to compute a primal optimum from a dual optimum. More precisely,
somebody gives us a vector f and claims it has the minimal upper bound among all its repa-
rameterizations, U(f) = minϕ U(fϕ). Our task is either to disprove this claim or to compute
µ ∈ Λ such that 〈f ,µ〉 = U(f).

Let us replace the given vector f ∈ [−∞,∞)T with vector g ∈ {−∞, 0}T defined as

gu(xu) =

−∞ if fu(xu) < max
yu

fu(yu)

0 if fu(xu) = max
yu

fu(yu)
(8a)

guv(xu, xv) =

−∞ if fuv(xu, xv) < max
yu,yv

fuv(yu, yv)

0 if fuv(xu, xv) = max
yu,yv

fuv(yu, yv)
. (8b)

3

We assume that U(f) > −∞, hence U(g) = 0. Replacing f with g can be seen as removing
inactive dual constraints and setting the corresponding primal variables to zero. This does not
change our task. Two cases can arise:

• f is not a dual optimum: Clearly, f is a dual optimum if and only if g is a dual optimum.
Hence, there exists ϕ such that U(gϕ) < 0. This ϕ is at the same time a decreasing
direction for U(f), i.e., there exists λ > 0 such that U(fλϕ) < U(f).

• f is a dual optimum: Clearly, if f is a dual optimum then problems f and g have the same
set of optimal primal solutions. Hence, there exists µ ∈ Λ satisfying (7), which is the
desired primal optimum. Condition (7) can be written in short as 〈g,µ〉 = 0, recalling
that −∞× 0 = 0.

Now, our task in this paper reduces to the following feasibility problem:

Problem 1. Given g ∈ {−∞, 0}T , find µ ∈ Λ satisfying 〈g,µ〉 = 0. If such µ does not exist,
find ϕ such that U(gϕ) < 0.

2 Solving the feasibility problem

Here we describe a solution to Problem 1. In short, the idea is to replace task (2) with its
smoothed version such that for g ∈ {−∞, 0}T , the primal optimum of the smoothed task is a
primal optimum of the original task. The (dual and primal) global optimum of the smoothed
task can be computed with a very simple message passing algorithm.

Although the smoothed version of (2) will be eventually applied to g ∈ {−∞, 0}T , we
formulate it for g ∈ [−∞, 0)T . It reads

max
µ∈Λ
〈g − logµ,µ〉 = min

ϕ
Ũ(gϕ) . (9)

The primal (left) can be understood as a minimization of a convex free energy (here, maxi-
mization of negative energy). In the dual (right), we have

Ũ(g) =
∑
u∈V

⊕
xu

gu(xu) +
∑
uv∈E

⊕
xu,xv

guv(xu, xv) ≥
⊕
x∈X

F (x |g) . (10)

where
⊕

i ai = log
∑

i exp ai denotes the log-sum-exp operation. The right-hand expression
in (10) is the log-partition function, hence Ũ is an upper bound on the log-partition function.
The bound is too loose to be useful for approximating (log-)partition function but this is not
our task here. The dual is a differentiable convex task, it is at optimum if⊕

xv

gϕuv(xu, xv) = gϕu (xu) (11)

holds for all uv ∈ E∗ and xu. The primal and dual optimum are related by

µu(xu) =
exp gϕu (xu)∑
xu

exp gϕu (xu)
, µuv(xu, xv) =

exp gϕuv(xu, xv)∑
xu,xv

exp gϕuv(xu, xv)
. (12)

We will not prove here the duality relation (9), the inequality in (10), and the optimality
condition (11). This is easy and it can be found e.g. in [20]. Plugging (12) into (11) verifies the
marginalization condition (3a), hence µ ∈ Λ.

4

We can see that to solve the dual task in (9), we need to reparameterize g to satisfy the
stationary condition (11). Then the primal solution can be read off from (12).

Note, the approach has the desirable property that pseudomarginals µ need not be explicitly
stored in the memory, they are given implicitly by (12). Therefore we need to store only unary
functions ϕ rather than unary and binary functions µ.

2.1 Enforcing arc consistency

It can happen that condition (11) is impossible to satisfy by any choice of ϕ. This is because
reparameterizations cannot change a finite weight to an infinite one or vice versa (note, messages
cannot take infinite values) – in other words, gϕu (xu) > −∞ if and only if gu(xu) > −∞, and
similarly for guv. Therefore, the finite part of g has to satisfy the property known as arc
consistency [2]: for all uv ∈ E∗ and xu we have[

max
xv

guv(xu, xv) > −∞ ⇐⇒ gu(xu) > −∞
]

(13)

Polynomial algorithms exist that recursively set some of the weights g to −∞ until g be-
comes arc consistent. This is known as relaxation labeling [13] or, in constraint satisfaction, as
enforcing arc consistency or constraint propagation [2]. It is outlined in Algorithm 1.

Algorithm 1 Enforcing arc consistency.
1: repeat
2: Find uv ∈ E∗ and xu violating (13).
3: gu(xu)← −∞
4: guv(xu, xv)← −∞ for all xv
5: until no change is possible

It can be shown that enforcing arc consistency does not change the optimum of (9). In
particular, if Algorithm 1 sets all weights to −∞ (g = −∞), Problem 1 is infeasible.

2.2 Message passing algorithm

The dual in (9) can be solved by coordinate descent, which leads to a message passing algorithm.
The algorithm repeats the following iteration until convergence:

Pick any uv ∈ E∗ and enforce equality (11) by reparameterization (4).

This strictly monotonically decreases Ũ(gϕ). On convergence, (11) holds globally.

Algorithm 2 The (⊕,+)-diffusion algorithm.

1: repeat
2: for uv ∈ E∗ and xu ∈ Xu such that gu(xu) > −∞ do

3: ϕuv(xu)← ϕuv(xu) +
1

2

[
gϕu (xu)−

⊕
xv

gϕuv(xu, xv)
]

4: end for
5: until convergence

5

This is summarized in Algorithm 2. It is precisely analogical to max-sum diffusion [10, 18],
only the function max was replaced with the log-sum-exp function ⊕. The algorithm assumes
that g is arc consistent – then, the condition gu(xu) > −∞ ensures that ϕuv(xu) is never set to
−∞ or ∞.

2.3 Solving the feasibility problem

Let us put things together and see how to solve Problem 1. For g ∈ {−∞, 0}T , any µ ∈ Λ
satisfying 〈g − logµ,µ〉 > −∞ satisfies also 〈g,µ〉 = 0. Hence, any µ feasible to the primal
in (9) solves Problem 1.

For any g we have Ũ(g) ≥ U(g) because the log-sum-exp function upper bounds the maxi-
mum,

⊕
i ai ≥ maxi ai, Hence, if during Algorithm 2 we get Ũ(gϕ) < 0, it implies U(gϕ) < 0.

Thus, Problem 1 is solved as follows:

1. Enforce arc consistency, Algorithm 1. If g = −∞, stop (Problem 1 is infeasible).

2. Run Algorithm 2. If Ũ(gϕ) < 0 any time during the algorithm, stop (Problem 1 is
infeasible).

3. Otherwise, let Algorithm 2 converge and then compute a solution µ of Problem 1 from (12).

Before convergence of Algorithm 2, µ given by (12) satisfies 〈g,µ〉 = 0 but violates the marginal-
ization constraint (3a). On convergence, µ satisfies (3a), hence µ ∈ Λ.

� ������ ��
e

(a) (b)

Figure 1: The depicted reparameterization decreases edge e to an arbitrarily small value α.

2.4 Unbounded messages

The algorithm has an interesting but undesired property: even if problem (9) is bounded, its
optimum may be attained for ‖ϕ‖ → ∞. In that case, during Algorithm 2 some of the messages
ϕuv(xu) will diverge to −∞ or ∞.

Figure 1a shows an example of this phenomenon. It shows a problem with V = 3 variables,
the complete graph E, and |Xu| = 2 labels. All the nodes have weights gu(xu) = 0. The
shown edges have weights guv(xu, xv) = 0, the remaining (not shown) edges have weights
guv(xu, xv) = −∞.

Consider the reparameterization ϕ given by setting ϕuv(xu) = α for the six messages de-
picted by blue line segments, and ϕuv(xu) = 0 for the remaining six messages. For any α,
this reparameterization changes the weight of edge e to gϕ(e) = −α and leaves the remaining
weights unchanged. For any α ≥ 0, we have U(gϕ) = U(g) = 0. By complementary slackness,
it necessarily follows that µ(e) = 0.

6

Although the bound U(gϕ) is the same for any α ≥ 0, the smoothed upper bound Ũ(gϕ)
decreases with increasing α. Since Algorithm 2 minimizes Ũ(gϕ), it will keep increasing α (and
hence decreasing gϕ(e)) without any limits. This must be so because by (12), for µ(e) = 0 we
need gϕ(e) = −∞.

This behavior can lead to numerical problems because in (5) we can get expressions like
gϕuv(xu, xv) = guv(xu, xv) + α − α where α is a very large number. This can be alleviated by
doing reparameterizations (4) ‘in-place’ by directly changing g (Algorithm 3) rather than by
storing messages – but in that case we may instead have problems with error accumulation.
Moreover, modifying binary functions guv(·, ·) typically needs more memory than storing only
unary functions ϕuv(·).

Algorithm 3 The (⊕,+)-diffusion algorithm, message-free version.

1: repeat
2: for uv ∈ E∗ and xu ∈ Xu such that gu(xu) > −∞ do

3: ϕ← 1

2

[
gu(xu)−

⊕
xv

guv(xu, xv)
]

4: gu(xu)← gu(xu)− ϕ
5: guv(xu, xv)← guv(xu, xv) + ϕ for all xv
6: end for
7: until convergence

The phenomenon can be further clarified as follows. Let two vectors g,g′ ∈ [−∞,∞)T be
called equivalent if they define the same function F (· |g). An equivalent transformation is a
change of vector g to its equivalent. Now, three classes of equivalent transformations can be
distinguished [20]:

1. Transformations that are compositions of a finite number of local reparameterizations (4).
These are precisely the linear transformations (5).

2. Transformations that are compositions of an infinite number of local reparameteriza-
tions (4). The resulting transformations are not all covered by (5) because (5) does
not allow to change a finite weight to −∞ or vice versa.

3. Transformations that are not compositions of any number of local reparameterizations (4).
E.g., any unsatisfiable CSP is equivalent to the empty CSP.

The problems in Figure 1a and 1b are equivalent in the second sense. Hence, there exists no ϕ
that would reparameterize Figure 1a to Figure 1b or vice versa.

2.5 Sum-product version of the algorithm

Algorithms 2 and 3 require time-consuming evaluation of the log-sum-exp function. By applying
the exponential function to all involved quantities, these algorithms (and the theory in §2) can
be translated from the semiring ([−∞,∞),⊕,+) into the sum-product semiring ([0,∞),+,×).
Then, the algorithms will use only addition, multiplication, division, and square root. We refer
to the resulting algorithm as sum-product diffusion. Its message-free version is Algorithm 4.
Its input is a vector g ∈ [0,∞)T that is assumed to be arc consistent, i.e., maxxv guv(xu, xv) > 0
if and only if gu(xu) > 0.

7

Algorithm 4 The sum-product diffusion algorithm, message-free version.
1: repeat
2: for uv ∈ E∗ and xu ∈ Xu such that gu(xu) > 0 do

3: ϕ←
[
gu(xu)

/∑
xv

guv(xu, xv)
]1/2

4: gu(xu)← gu(xu)/ϕ
5: guv(xu, xv)← guv(xu, xv)ϕ for all xv
6: end for
7: until convergence

In the sum-product form, the core idea of our paper is especially obvious. Inequality (10)
reads

Ũ(g) =
[∏
u∈V

∑
xu

gu(xu)
][∏

uv∈E

∑
xu,xv

guv(xu, xv)
]
≥
∑
x∈X

F (x |g) , (14)

where
F (x |g) =

∏
u∈V

gu(xu)
∏
uv∈E

guv(xu, xv) . (15)

The stationary condition (11) reads∑
xv

guv(xu, xv) = gu(xu) . (16)

Now, Problem 1 is solved simply by applying sum-product diffusion to g ∈ {0, 1}T . It is obvious
that after convergence, the optimal µ coincides with g (up to normalization) – because (16) is
the marginalization condition (3a) we want to impose.

Moreover, the test for infeasibility of Problem 1 has an interesting interpretation in terms
of the constraint satisfaction problem (CSP) [11]. A vector g ∈ {0, 1}T can be understood as a
(pairwise) CSP, the functions gu: Xu → {0, 1} and guv: Xu ×Xv → {0, 1} representing unary
and binary relations. A solution of the CSP is an assignment x ∈ X satisfying all the relations,
i.e., F (x |g) = 1. The CSP is satisfiable if it has at least one solution.

For g ∈ {0, 1}T , the right-hand side of inequality (14) is the number of solutions of the
CSP. This is known as the counting constraint satisfaction problem (#CSP). Thus, Ũ(g) is
an upper bound on the number of solutions of the CSP. This bound is too loose to be useful,
except in one situation: Ũ(g) < 1 implies that the CSP is unsatisfiable. Algorithm 4 minimizes
Ũ(g) by reparameterizing g, hence preserving F (· |g). If any time during the algorithm we get
Ũ(g) < 1, we know that the CSP is unsatisfiable. Therefore, sum-product diffusion provides
a test to disprove satisfiability of a CSP . This test is dissimilar to all tests based on local
consistencies [2], used in constraint programming. However, note that it is not apparent at the
first sight that this test is equivalent to satisfiability of Problem 1 – to show this, we needed
the duality relation (9).

3 What about non-optimal dual solutions?

Many algorithms to tackle the dual in (2) yield only suboptimal dual solutions f – most impor-
tantly, the algorithms based on averaging max-marginals, such as max-sum diffusion [10, 18] or
TRW-S [6]. An example of a problem that is a fixed point of these algorithms but is not a dual

8

Figure 2: An example of a fixed point of max-sum diffusion (or TRW-S) that is not a dual
optimum (given by Schlesinger [18]).

optimum is in Figure 2. In that case, Algorithm 2 does not converge and achieves Ũ(gϕ) < 0.
Therefore, it would be useful to compute a suboptimal primal solution from a suboptimal dual
solution. We do not know how to modify our algorithm in a principled way to achieve this.
But one can think of several heuristics.

Of the duality relations (§1.1), one can sacrifice either primal feasibility or zero duality gap.
One option is to minimize primal infeasibility (violation of (3a)) subject to zero duality gap –
but we do not know how to do this for large instances. However, our algorithm can be modified
to find a feasible primal solution with possibly small (but in general not minimal) duality gap.
Instead of (8), let g be defined by

gu(xu) =

−δ if fu(xu) < max
yu

fu(yu)− ε

0 if fu(xu) ≥ max
yu

fu(yu)− ε
(17a)

guv(xu, xv) =

−δ if fuv(xu, xv) < max
yu,yv

fuv(yu, yv)− ε

0 if fuv(xu, xv) ≥ max
yu,yv

fuv(yu, yv)− ε
. (17b)

For any ε ≥ 0 and δ > 0, Algorithm 2 will converge (with either sign of Ũ(gϕ)) and (12) will
be a feasible primal solution µ ∈ Λ. With a small ε and large δ, one can expect a reasonably
small duality gap U(f) − 〈f ,µ〉. Unfortunately, this cannot be guaranteed based on solely ε
and δ because for unbounded weights g the gap can be unbounded in general. Currently, we
cannot provide a bound on the duality gap based on ε, δ and g.

4 Conclusion

We have proposed an algorithm to compute a primal optimal solution from an optimal dual
solution in the LP relaxation of MAP-MRF inference. If the dual solution is not optimal, we
provide a decreasing direction as a certificate of non-optimality. The main idea of our approach
is extremely simple, in fact being summarized by §2.5. We have discussed an interesting but
undesirable behavior of the algorithm, unbounded messages.

In this paper, we do not provide enough empirical evidence that our approach is useful
in practice. We tested the algorithm on instances with a sparse (grid) graph E and random
weights f drawn i.i.d. from the normal distribution. Dual solutions were obtained by max-sum

9

diffusion. For instances with V = 202 variables, the dual solution was optimal in approx. 50%
cases, for instances with V = 502 variables almost never. For optimal dual solutions, optimal
primal solutions could always be found up to a small primal infeasibility. Unbounded messages
never caused a serious problem.

We formulated the algorithm for one particular form of the LP dual [15, 18], closely related
to max-sum diffusion [10, 18]. However, it can be easily extended to algorithms with tree-based
updates, both using max-marginal averaging [6] and subgradients [7, 14]. In that case, the
problem g would have to be defined in a different way than by (8).

Acknowledgment

This research has been supported by the European Community project FP7-ICT-247022 (MASH)
and by the Czech government grant MSM6840770038. The author thanks Sebastian Nowozin
for useful discussions.

References

[1] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, and T. Werner. Soft arc consis-
tency revisited. Artificial Intelligence, 174(7-8):449–478, May 2010.

[2] Romuald Debruyne and Christian Bessière. Domain filtering consistencies. Journal of Artificial
Intelligence Research, (14):205–230, 2001.

[3] V. Franc, S. Sonnenburg, and T. Werner. Cutting plane methods in machine learning. In S. Sra,
S. Nowozin, and S. J. Wright, editors, Optimization for Machine Learning. MIT Press, 2011. To
appear.

[4] Amir Globerson and Tommi Jaakkola. Fixing max-product: Convergent message passing al-
gorithms for MAP LP-relaxations. In Neural Information Processing Systems (NIPS), pages
553–560, 2008.

[5] Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky. Lagrangian relaxation for MAP
estimation in graphical models. In Allerton Conf. Communication, Control and Computing, 2007.

[6] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE Trans. Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

[7] Nikos Komodakis, Nikos Paragios, and Georgios Tziritas. MRF optimization via dual decompo-
sition: Message-passing revisited. In Intl. Conf. Computer Vision (ICCV), 2007.

[8] Arie Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint satisfaction problem:
Facets and lifting theorems. Operations Research Letters, 23(3–5):89–97, 1998.

[9] V. K. Koval and M. I. Schlesinger. Dvumernoe programmirovanie v zadachakh analiza izo-
brazheniy (Two-dimensional programming in image analysis problems). USSR Academy of Sci-
ence, Automatics and Telemechanics, 8:149–168, 1976. In Russian.

[10] V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the energy of the max-
sum labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR. Unpublished, approx.
1975.

[11] A. Mackworth. Constraint satisfaction. In Encyclopaedia of Artificial Intelligence, pages 285–292.
Wiley, 1991.

10

[12] Pradeep Ravikumar, Alekh Agarwal, and Martin J. Wainwright. Message-passing for graph-
structured linear programs: Proximal methods and rounding schemes. Journal of Machine Learn-
ing Research, 11:1043–1080, 2010.

[13] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labeling by relaxation operations. IEEE
Trans. on Systems, Man, and Cybernetics, 6(6):420–433, June 1976.

[14] Michail I. Schlesinger and V. V. Giginjak. Solving (max,+) problems of structural pattern recog-
nition using equivalent transformations. Upravlyayushchie Sistemy i Mashiny (Control Systems
and Machines), Kiev, Naukova Dumka, 1 and 2, 2007. In Russian, English translation available
on www.

[15] M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in noisy conditions. Cyber-
netics and Systems Analysis, 12(4):612–628, 1976. Translation from Russian.

[16] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and varia-
tional inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

[17] Yair Weiss, Chen Yanover, and Talya Meltzer. MAP estimation, linear programming and belief
propagation with convex free energies. In Conf. Uncertainty in Artificial Intelligence (UAI), 2007.

[18] Tomáš Werner. A linear programming approach to max-sum problem: A review. IEEE Trans.
Pattern Analysis and Machine Intelligence, 29(7):1165–1179, July 2007.

[19] Tomáš Werner. Revisiting the linear programming relaxation approach to Gibbs energy mini-
mization and weighted constraint satisfaction. IEEE Trans. Pattern Analysis and Machine In-
telligence, August 2010. To appear in August 2010.

[20] Tomáš Werner and Alexander Shekhovtsov. Unified framework for semiring-based arc consistency
and relaxation labeling. In 12th Computer Vision Winter Workshop, St. Lambrecht, Austria,
pages 27–34. Graz University of Technology, February 2007.

11

