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Abstract—Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and

multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent

message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound

such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of the

partition function such that their product remains the same and their overlapping marginals become equal. In many commutative

semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every pair of

factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically

decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic costraint propagation (or

local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly

higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss

instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.

Index Terms—Partition function, commutative semiring, graphical model, Markov random field, linear programming relaxation,

message passing, max-sum diffusion, soft constraint satisfaction, local consistency, constraint propagation

Ç

1 INTRODUCTION

A partially separable function is the product
Q

A2E fAðxAÞ
where E � 2V is a hypergraph and each factor fA is a

function of variables xA ¼ ðxiÞi2A. The sum of the values

of this function over all the variables xV ¼ ðxiÞi2V is the

partition function X
xV

Y
A2E

fAðxAÞ: (1)

E.g., for V ¼ f1; 2; 3; 4g and E ¼ ff1; 3; 4g; f1; 2g; f2; 3gg the
partition function is the numberX

x1;x2;x3;x4

f134ðx1; x3; x4Þ � f12ðx1; x2Þ � f23ðx2; x3Þ;

where we abbreviated ff1;3;4g by f134, etc.
It is known [1], [6], [7], [35], [52], [59] that many inference

tasks in pattern recognition and artificial intelligence lead to
expressions of the form (1) where þ and � are not the ordi-
nary arithmetic operations but abstract binary operations
on some set S such that both operations are associative and
commutative and � distributes over þ. Such a structure
ðS;þ;�Þ is known as the commutative semiring [24], [26].

The simplest instance is obtained for the or-and semiring
ðf0; 1g;max;minÞ. Here the semiring operations have
the meaning of logical disjunction and conjunction and
(1) is the decision problem asking whether there is a

configuration satisfying all the predicates fA. This prob-
lem is known in computer vision and pattern recognition
as the consistent labeling problem [27], [28] and in artificial
intelligence and constraint programming [55] as the con-
straint satisfaction problem (CSP) [20], [45]. The latter name
is more widely used today. Here, the factors fA are usu-
ally called constraints and the collection fA, A 2 E, a
network of constraints.

The ordinary ‘crisp’ CSP has been generalized to handle
‘soft’ constraints, which can be partially satisfied rather
than completely satisfied or completely violated [48]. This
leads to optimization problems. One important such formu-
lation is obtained for the max-min semiring ð½0; 1�;max;minÞ.
This problem was first proposed in [54] but it is more
widely known as the fuzzy CSP [17]. Another important for-
mulation is obtained for the max-sum semirings ðR;max;þÞ
and ðR [ f�1g;max;þÞ where þ is the ordinary addition.
In computer vision and pattern recognition, this problem
has been called a two-dimensional grammar [58], [61], dis-
crete energy minimization [8], [33], [66], MAP inference in
graphical models [69], or the max-sum labeling problem
[72]. In constraint programming, it has been called the par-
tial [40], weighted [48] or valued [68] CSP. Several other soft
CSP formulations exist [5], [48].

Two abstract frameworks have been proposed in con-
straint programming to unify various formulations of soft
CSPs, [56] and [6], [7]. The latter is strictly more general than
the former [5] and closely related to our formulation. The
main difference to our formulation is that [6], [7], [56] assume
that the semiring addition is idempotent (aþ a ¼ a for all
a 2 S) because otherwise (1) might no longer be an optimiza-
tion problem (such as if it is the ordinary partition function).

For the max-sum semiring, a class of approaches to
problem (1) is based on linear programming relaxation
[10], [37], [40], [61], [67], [69], [72] or, equivalently, dual
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decomposition [32], [39], [64]. To solve this LP relaxation,
convergent message-passing algorithms have been pro-
posed [23], [32], [37], [41], [47], [64] that monotonically
decrease a convex upper bound on (1) by minimizations
over blocks of variables. These algorithms are closely
related to one another: they converge in infinite time to
a fixed point, which is a local (with respect to block-
coordinate moves) optimum of the relaxation. The sim-
plest and oldest of them is max-sum diffusion, proposed
in 1970’s for purely unary constraints but never pub-
lished [41], and recently revisited in [72], [74].

Convergent message passing algorithms repeat a simple
local operation which propagates information through the
network and monotonically decreases some quantity. In
this respect, they resemble local consistency (or constraint
propagation) algorithms [4], [15], [50], used in constraint pro-
gramming to prune the search space of the CSP. The most
widely known local consistency is arc consistency [46], [4,
Section 4]. In computer vision, an algorithm equivalent to
enforcing arc consistency was proposed by Waltz [70] and
revisited by Rosenfeld et al. [54], who called it discrete relaxa-
tion labeling. Unlike message passing algorithms, local con-
sistency algorithms in CSP converge in polynomial time, so
they can be easily maintained during search.

In constraint programming, the question appeared
whether local consistency algorithms can be extended from
the ordinary CSP to soft CSPs. This turns out to be straight-
forward for soft CSPs with idempotent semiring multiplica-
tion (a� a ¼ a for all a 2 S), such as in the max-min
semiring. The resulting algorithms are polynomial and their
fixed point does not depend on the order of updates [5], [6],
[7], [54], [56]. However, for non-idempotent semiring multi-
plication (such as in the max-sum semiring), no finite net-
work algorithm has been found that would naturally
generalize classical local consistency algorithms [5], [6], [7],
[12], [56]. Motivated primarily by efficiency in branch-and-
bound search, several finite algorithms have been proposed
[13] but they provide weaker bounds than convergent
message-passing algorithms.

1.1 Contribution

In this paper, we show that max-sum diffusion can be natu-
rally generalized to the abstract commutative semiring. The
update of the resulting algorithm is remarkably simple:

Change two factors fA and fB such that the function
fA � fB is preserved and the overlapping marginals of fA
and fB become equal,

i.e., change fA and fB such that fAðxAÞ � fBðxBÞ is preserved
for all xA[B and

P
xAnB fAðxAÞ ¼

P
xBnA fBðxBÞ for all xA\B.

In many semirings, repeating this operation for different
pairs of factors converges to a fixed point. This results in the
observation that has never before been clearly formulated:

In many commutative semirings, every partially separable
function can be reparameterized by local operations to a
state when the overlapping marginals of each pair of factors
coincide.

We call this state marginal consistency and the algorithm
enforcing marginal consistency. This terminology agrees with

that in constraint programming [4], which distinguishes,
e.g., arc consistency (a property of a network) and enforcing
arc consistency (an algorithm to achieve this property). Mar-
ginal consistency can be enforced in a number of commuta-
tive semirings, including the or-and, max-min, max-sum,
and sum-product semiring. As special cases, we obtain
basic local consistency algorithms in CSP, including arc
consistency.

We further show that
Q

A2E
P

xA
fAðxAÞ is an upper

bound on the semiring partition function, with respect to
the canonical order on the semiring [26]. If the semiring satis-
fies the Cauchy-Schwarz inequality, the upper bound
monotonically decreases during the algorithm.

For the max-sum semiring, it was observed that the basic
LP relaxation of (1) [10], [40], [61], [67], [72] can be made
tighter at the expense of more computational effort [32],
[38], [40], [42], [62], [63], [65], [69], [74]. Some researchers
proposed whole hierarchies of increasingly tighter LP relax-
ations [69, Section 8.5], [63], [74]. This is similar to using
increasingly larger subproblems in dual decomposition
[39]. In [19], [74], we constructed such a hierarchy by adding
‘dummy’ zero constraints of higher arities. Zero constraints
can be added incrementally during max-sum diffusion in a
dual cutting-plane fashion. We generalize this technique to
other semirings, obtaining a hierarchy of marginal consis-
tencies of increasingly higher levels. For the or-and semir-
ing, this hierarchy contains (strong) k-consistency in CSP
[4], [21].

Even for idempotent semiring multiplication our algo-
rithm is simpler than local consistency algorithms proposed
for soft CSPs [5], [6], [7], [56].

Our framework does not cover belief propagation (or the
sum-product algorithm) [51], [69], which computes, in poly-
nomial time for acyclic networks, the exact partition func-
tion and marginals. This algorithm (and its junction-tree
version) can be generalized to any commutative semiring
[1]. This is straightforward because its update rule uses
only the operations of the sum-product semiring. In con-
trast, the max-sum diffusion update [72, Section VI.A]
uses not only the operations ‘max’ and ‘sum’ but also
‘minus’ and ’divide by 2’, which have no counterparts in
some semirings. Another difference to [1] is that our algo-
rithm does not compute marginals even on trees, e.g., no
simple way is known to extract max-marginals from a
max-sum diffusion fixed point.

2 PRELIMINARIES

In the sequel, sets are denoted by f� � �g and ordered tuples
by ð� � �Þ. Real closed, open and semiopen intervals are ½a; b�,
ða; bÞ and ½a; bÞ, respectively. Non-negative and positive
reals are Rþ ¼ ½0;1Þ and Rþþ ¼ ð0;1Þ, respectively. The
set of all subsets of a set A is denoted by 2A and the set of all

its k-element subsets by A
k

� �
. Newly defined concepts are

typed in boldface.

2.1 Commutative Semigroups and Semirings

Definition 1. A commutative semigroup is a set S endowed
with a binary operation þ that is associative and commutative.
We denote a commutative semigroup by ðS;þÞ.
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Definition 2. A commutative semiring is a set S endowed with
binary operations þ and � such that þ is associative and com-
mutative, � is associative and commutative, and � distributes
over þ. We denote it by ðS;þ;�Þ.

A commutative semiring can be seen as two commutative
semigroups, ðS;þÞ and ðS;�Þ, coupled by distributivity. A
commutative semiring may have an identity element 1,
satisfying a� 1 ¼ a for all a 2 S. If an identity element
exists, it is unique. A commutative semiring may have a
zero element 0, satisfying aþ 0 ¼ a and a� 0 ¼ 0 for all
a 2 S. If it exists, it is unique.

We will usually abbreviate a� b by ab. We define
an ¼ a� � � � � a (n-times) and na ¼ aþ � � � þ a (n-times).

2.2 Functions of Blocks of Variables

Let V be a finite set of variables. Each variable i 2 V attains
states xi 2 Xi, where Xi is a finite domain of the variable. A
joint state (configuration) of variables A � V is an element
xA of the Cartesian product XA ¼Qi2A Xi. The order of fac-

tors in this Cartesian product is given by some fixed total
order on V (e.g., for V ¼ f1; . . . ; ng we can take the natural
arithmetic order).

In the sequel, by the symbol xA we will always denote
a joint state, i.e., the ordered tuple ðxiÞi2A 2 XA. More-

over, we adopt the following ‘implicit restriction’ conven-
tion: for B � A, whenever symbols xA and xB occur in the
same expression then xB denotes the restriction of xA to
variables B. This convention is often tacitly used and in
fact self-evident: if, e.g., A ¼ f1; 2; 3g and B ¼ f1; 2g, then
xB ¼ ðx1; x2Þ is indeed the restriction of xA ¼ ðx1; x2; x3Þ to
variables f1; 2g.

For A � V , consider an S-valued function of variables A,
i.e., a function XA ! S. We call A the scope of the function
and jAj its arity (often called order). We define the following
two operations on such functions:

1) The combination of functions f: XA ! S and
c: XB ! S is the function

f� c: XA[B ! S; ðf� cÞðxA[BÞ ¼ fðxAÞ � cðxBÞ:
2) The marginalization (also known as projection) of a

function f: XA ! S onto variables B � A (or over
variables A nB) is the function

fjB: XB ! S; fjBðxBÞ ¼
X
xAnB

fðxAÞ:

Example 1. Let A ¼ f1; 2; 3g; B ¼ f3; 4g; f: XA ! S;
c: XB ! S. The combination of functions f and c is the
function ðf� cÞðx1; x2; x3; x4Þ ¼ fðx1; x2; x3Þ � cðx3; x4Þ.
The marginalization of function f onto variables
C ¼ f2; 3g is the function fjCðx2; x3Þ ¼

P
x1
fðx1; x2; x3Þ.

For two functions f;c: XA ! S, we will write f ¼ c to
denote that fðxAÞ ¼ cðxAÞ for all xA 2 XA.

The operators of combination and marginalization are
often explicitly used in constraint programming [6], [7],
[48]. The set of functions XA ! S for all A � V endowed
with combination and marginalization is an example of the
valuation algebra [35], [36], [52], [60]. We state here three of
the axioms of the valuation algebra:

1) Combination is associative and commutative.
2) For f: XA ! S and C � B � A,

ðfjBÞjC ¼ fjC: (2)

3) For f: XA ! S, c: XB ! S, and A \B � C � A [B,

ðf� cÞjC ¼ fjA\C � cjB\C: (3)

2.3 Semiring Partition Function

Let E � 2V be a hypergraph over V . Let each hyperedge
A 2 E be assigned a function fA: XA ! S. The partially sep-
arable function

Q
A2E fA: XV ! S can be seen as the combi-

nation of the functions fA and the partition function (1) is
the marginal of this function over all the variables, thus it

can be written also as
�Q

A2E fA
�j;.

We refer to each function fA as a factor and to the collec-
tion fA, A 2 E, as a network of functions or simply a net-
work. A network can be seen as a map

f : XE ! S;

ðA; xAÞ7!fAðxAÞ;

where

XE ¼ f ðA; xAÞ jA 2 E; xA 2 XA g
is the set of tuples. Note the abuse of notation: Xi for i 2 V ,

XA for A � V , and XE for E � 2V denote three different
things.

3 ENFORCING MARGINAL CONSISTENCY

Here we generalize max-sum diffusion and related concepts
to the abstract commutative semiring.

3.1 Equivalent Networks and Reparameterizations

Definition 3. Let E;E0 � 2V . Networks f : XE ! S and
f 0: XE0 ! S are equivalent if

Q
A2E fA ¼QA2E0 f 0A.

Note that the operation þ does not appear in the definition,
thus network equivalence is defined only with respect to the
semigroup ðS;�Þ. Equivalent networks have the same set of
variables V and domains Xi, i 2 V , but they can have differ-
ent hypergraphs and factors.WhenE ¼ E0, the networks dif-
fer only in the values of the factors. In this case, we say that f 0

is a reparameterization of f . Deciding whether two given
networks are reparameterizations of each other can be easy
or hard, depending on the semigroup ðS;�Þ.

Some reparameterizations are local, in the sense that they
are restricted only to a part of the network. The simplest
such reparameterization is restricted to a subnetwork con-
taining only two factors, fA and fB.

Definition 4. A reparameterization of a pair ffA; fBg is a
change of fA and fB that preserves the function fA � fB. A
reparameterization of any single pair of factors of a network is
a local reparameterization of the network.

Example 2. Let A ¼ f1; 2g and B ¼ f2; 3g. A reparameteriza-
tion of the pair ffA; fBg is any change of f12 and f23 that
preserves the value f12ðx1; x2Þ � f23ðx2; x3Þ for all
x1 2 X1, x2 2 X2, x3 2 X3.
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Local reparameterizations allow us to traverse through a
class of equivalent networks XE ! S. However, some rep-
arameterizations may not be compositions of local repara-
meterizations. This depends on the semigroup ðS;�Þ. In
Section 5.1 we shall discuss properties of reparameteriza-
tions for several concrete semigroups ðS;�Þ.

3.2 Enforcing Marginal Consistency of a Pair

Definition 5. A pair ffA; fBg is marginal consistent if
fAjA\B ¼ fBjA\B.

Example 3. For A ¼ f1; 2g and B ¼ f2; 3g, fAjA\B ¼ fBjA\B
reads

P
x1
f12ðx1; x2Þ ¼

P
x3
f23ðx2; x3Þ for all x2 2 X2.

Note that marginal consistency is defined only with respect
to the semigroup ðS;þÞ, the operation � does not appear in
Definition 5.

Definition 6. Enforcing marginal consistency of a pair
ffA; fBg is a reparameterization of this pair that makes it mar-
ginal consistent.

Enforcing marginal consistency of a pair ffA; fBg means
replacing this pair with a solution ff 0

A; f
0
Bg to the equation

system

f 0A � f 0
B ¼ fA � fB; (4a)

f 0
AjA\B ¼ f 0BjA\B: (4b)

In expanded form, this reads

f 0AðxAÞ � f 0BðxBÞ ¼ fAðxAÞ � fBðxBÞ 8xA[B 2 XA[B;X
xAnB

f 0AðxAÞ ¼
X
xBnA

f 0BðxBÞ 8xA\B 2 XA\B:

Note that the system in fact breaks into several smaller inde-
pendent systems, one for each xA\B.

As we are in the abstract commutative semiring, it is not
clear how many (if any) solutions system (4) has and how to
find them. It would be desirable to characterize semirings in
which the system is solvable and to give an algorithm to
find all its solutions in any such semiring. We have not been
able to do this.

It is easy to obtain a partial solution to (4). Using (3), mar-
ginalizing (4a) onto variables A \B yields

f 0AjA\B � f 0BjA\B ¼ fAjA\B � fBjA\B:

Substituting (4b) into this yields�
f 0
AjA\B

�2 ¼ �f 0
BjA\B

�2 ¼ fAjA\B � fBjA\B; (5)

where, for a function f, we abbreviated f2 ¼ f� f. Simi-
larly, marginalizing (4a) onto variables A yields

f 0
A � f 0

BjA\B ¼ fA � fBjA\B: (6)

Equation (5) is solvable if the semiring has a square root.
The square root may not be unique, thus (5) can have mutli-
ple solutions. Unfortunately, having f 0

BjA\B we may not be
able to solve (6) for f 0

A because the semiring may not have
division. In fact, it can happen that (5) is solvable but (4) is
not (see Example 16).

We shall see in Section 5 that in many semirings, system
(4) has a solution and this solution is often unique.

3.3 Marginal Consistency Algorithm

We now formulate a simple algorithm (Algorithm 1) that
iteratively enforces marginal consistency of different pairs
of factors in a network f : XE ! S. Let these pairs be given

by a set J � f fA;Bg jA;B 2 E g ¼ E
2

� �
, which can be seen

as an undirected graph over E. The order of updates is
given by an infinite sequence ðfAk;BkgÞ1k¼1 of hyperedge
pairs, such that each pair fA;Bg 2 J occurs in the sequence
an infinite number of times. We call this sequence the
update schedule.

Algorithm 1. (Marginal Consistency Algorithm.)

for k ¼ 1; . . . ;1 do
Enforce marginal consistency of pair ffAk

; fBk
g.

end for

It turns out that in many commutative semirings, the
algorithm converges to a fixed point when all pairs ffA; fBg
for fA;Bg 2 J are marginal consistent. It would be desirable
to characterize commutative semirings in which this fact
holds and provide a rigorous proof. This is difficult in full
generality and we have not done it.1 We discuss conver-
gence of the algorithm for a number of concrete semirings
in Section 5.

3.4 Higher Levels of Marginal Consistencies

We say that a network has marginal consistency level

J � E
2

� �
if fAjA\B ¼ fBjA\B for all fA;Bg 2 J . We now

extend this definition to levels higher than E
2

� �
.

Consider a collection of functions fA,A � V , i.e., a network

over the complete hypergraph 2V . We say that this network
is globally marginal consistent if fA ¼ fV jA for all A � V . But
then fAjA\B ¼ fBjA\B for all A; B � V . This immediately
follows from (2) because fAjA\B ¼ ðfV jAÞjA\B ¼ fV jA\B ¼
ðfV jBÞjA\B ¼ fBjA\B. By imposing the constraints

fAjA\B ¼ fBjA\B for only a subset J �ffA;BgjA; B � V g ¼�
2V

2

�
of all possible pairs fA;Bg, we obtain various levels of

marginal consistency, which are necessary (but not sufficient)
for globalmarginal consistency.

When we have a network over a hypergraph E � 2V

rather than E ¼ 2V , there is a problem that for some pairs
fA;Bg 2 J , the function fA or fB may not be in the network.
In that case, we require that these missing functions exist
outside of the network. This leads to the following
definitions.

Definition 7. A network f : XE ! S is globally marginal con-
sistent if there exists a function fV : XV ! S such that
fA ¼ fV jA for every A 2 E. Here the function fV can either be
in the network (V 2 E) or not (V =2 E).

1. In fact, we cannot speak about convergence yet because we have
not defined a metric or topology on the abstract commutative semiring.
Endowing a semiring with a topology has been considered in mathe-
matics [24], [26] but this is out of scope of our paper.
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Example 4. Let V ¼ f1; 2; 3; 4g and E ¼ ff1; 3; 4g; f1; 2g;
f2; 3gg. A network f: XE ! S is globally marginal con-
sistent if there exists a function f1234 such that
f134 ¼ f1234j134, f12 ¼ f1234j12, f23 ¼ f1234j23.

Definition 8. A network f : XE ! S hasmarginal consistency

level J � �2V2 � if there exist functions fA: XA ! S, A � V ,

A =2 E, such that fAjA\B ¼ fBjA\B for all fA;Bg 2 J .

Example 5. Let us have a network with V ¼ f1; 2; 3; 4g and
E ¼ ff1; 2g, f1; 3g, f1; 4g, f3:4g, f2; 3gg. Let J ¼ fff1; 2g;
f1; 3gg, ff1; 2g; f2; 3gg, ff1; 3g; f2; 3gg, ff1; 3; 4g; f1; 3gg,
ff1; 3; 4g; f1; 4gg g. The network has marginal consis-
tency of level J if f12j1 ¼ f13j1, f12j2 ¼ f23j2, f13j3 ¼ f23j3
and there exists a function f134 such that f134j13 ¼ f13,
f134j14 ¼ f14.

Some levels of marginal consistency are implied by lower
levels. E.g., every level is implied by some level
J � ffA;Bg jB � A � V g because fBjA\B ¼ fBjA\B is
implied by fAjA\B ¼ fBjA\B and fBjA\B ¼ fA\B.

All possible subsets J � �2V2 � form a partially ordered
hierarchy of marginal consistencies. The least element of the

hierarchy has level ;, the top element has level
�
2V

2

�
. Global

marginal consistency has level f fV;Ag jA 2 E g but, by (2),

this already implies the top level
�
2V

2

�
. There are two natural

intermediate levels:

1) hyperedge-to-variable coupling

J ¼ ffA; figg j i 2 A 2 E g; (7)

2) hyperedge-to-hyperegde coupling J ¼ E
2

� �
.

Algorithm 1 can in general enforce marginal consis-
tency levels not greater than E

2

� �
. We now describe a sim-

ple technique (proposed for max-sum diffusion in [19],
[74]) how to enforce higher levels. Suppose our semiring
has the identity element 1. We call fA an identity factor if
fAðxAÞ ¼ 1 for every xA 2 XA (in short, fA ¼ 1). Suppose
we extend E by some A =2 E and set fA ¼ 1. Since
1� a ¼ a for all a 2 S, this yields an equivalent network.
We call this operation adding an identity factor to the
network. By Definition 8, adding one or more identity fac-
tors (of possibly higher arities) and running Algorithm 1
allows us to enforce an arbitrary level of marginal consis-
tency, at the expense of enlarging the network. We shall
see in Section 5.2.1 that in some semirings this is possible
even without enlarging the network.

Remark 1. It might seem that adding an identity factor fA
requires to store jXAj numbers in memory, which may be
prohibitive. But this can be alleviated by performing rep-
arameterizations by ‘messages’ during Algorithm 1,
rather than modifying factors ‘in place’. This is common
in the max-sum semiring [19], [37], [72], [74] but it is pos-
sible also in other semirings [73].

Remark 2. Recall that marginal consistency is defined on the
semigroup ðS;þÞ, so it can be studied independently on
the operation �. In the semigroup ðRþ;þÞ where þ is the
ordinary addition, the set of globally marginal consistent
networks is (up to normalization conditions fAj; ¼ 1,
A 2 E) known as the marginal polytope and the set of

networks with marginal consistency level (7) as the local
marginal polytope [69]. If E is acyclic, these polytopes are
equal [69, Proposition 4.1]. This suggests a question: does
this fact extend to other semigroups? Precisely, is it true
that for acyclic networks, marginal consistency level (7)
implies global marginal consistency? Though for some
semigroups the answer is known, in general the question
is open.

4 UPPER BOUND ON PARTITION FUNCTION

Max-sum diffusion monotonically decreases an upper
bound on the true max-sum partition function. Unlike the
partition function, this bound is tractable to compute. At a
fixed point of max-sum diffusion, it often happens that the
bound is tight (i.e., equal to (1)). In this section, we general-
ize these concepts to other semirings.

4.1 Canonical Order on a Commutative Semiring

To formulate the upper bound, we first need to define a suit-
able partial order on the commutative semiring. The stan-
dard way of doing this is as follows [26].

Definition 9. The canonical preorder on a commutative semi-
group ðS;þÞ is the relation 	 on S defined by

a 	 b () ða ¼ bÞ or ð9c 2 SÞðaþ c ¼ bÞ: (8)

Note that the condition a ¼ b is redundant if the semi-
group ðS;þÞ has a neutral element 0. The relation 	 is
reflexive and transitive, hence a preorder. It naturally
extends to the semiring ðS;þ;�Þ as follows.

Theorem 1. The semiring operations are monotone with respect
to 	, i.e., for all a; b; c 2 S we have

a 	 b ¼) aþ c 	 bþ c; ac 	 bc: (9)

Proof. Suppose a 	 b ¼ aþ d. Then bþ c ¼ aþ dþ c 
 aþ c
and bc ¼ ðaþ dÞc ¼ acþ dc 
 ac. tu
In general, the relation 	 is not antisymmetric, therefore

it may not be a partial order. Theorem 2 gives some simple
conditions sufficient for 	 to be an order or not.

A binary operation þ is idempotent if aþ a ¼ a for all
a 2 S. It is selective [26] (also known as conservative [11]) if
aþ b 2 fa; bg for all a; b 2 S. Clearly, any selective operation
is idempotent. A commutative semigroup ðS;þÞ is cancella-
tive if aþ c ¼ bþ c implies a ¼ b for all a; b; c 2 S. Cancella-
tion and idempotency exclude each other (by cancellation,
aþ a ¼ a implies a ¼ 0).

Theorem 2. Let 	 be the canonical preorder on ðS;þÞ.
1) If ðS;þÞ is a group, then 	 is an equivalence, therefore it

is not a partial order.
2) If þ is idempotent (i.e., ðS;þÞ is a semilattice), then 	 is

a partial order and we have

a 	 b () aþ b ¼ b: (10)

Moreover, þ is the least upper bound with respect to 	.
3) If þ is selective, then 	 is a total order. Moreover, þ is

the maximum with respect to 	.
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Proof.
1) Suppose a 	 b ¼ aþ c. Since ðS;þÞ is a group, c has

an inverse, therefore bþ ð�cÞ ¼ a 
 b. This shows that 	
is symmetric.

2) Suppose a 	 b ¼ aþ c. Then aþ b ¼ aþ aþ c ¼ aþ
c ¼ b, which proves (10). Antisymmetry holds by (10).
Proving that aþ b is the least upper bound of a; b means
proving that a 	 c and b 	 c implies aþ b 	 c. By (10),
this means that aþ c ¼ c and bþ c ¼ c implies
aþ bþ c ¼ c. This is true because aþ bþ c ¼ ðaþ cÞþ
ðbþ cÞ ¼ cþ c ¼ c.

3) For any a; b, we have either aþ b ¼ a or aþ b ¼ b.
By (10), this means either b 	 a or a 	 b. tu
If the canonical preorder is antisymmetric, we call it the

canonical order. We shall see in Section 5 that this is so in
many concrete instances.

4.2 The Bound

Now we can introduce a tractable upper bound on the
semiring partition function (1).

Theorem 3.We haveX
xV

Y
A2E

fAðxAÞ 	
Y
A2E

X
xA

fAðxAÞ ¼
Y
A2E

fAj;: (11)

Proof. Using distributivity, multiply the factors on the right-
hand side. This yields all the terms on the left-hand side
plus some additional terms. The inequality follows from
(8), where c are the additional terms. tu

4.3 The Effect of Enforcing Marginal Consistency

Suppose that enforcing marginal consistency of a pair
ffA; fBg is possible, i.e., there exist ff 0

A; f
0
Bg satisfying (4). In

this section, we show that, under a certain assumption on
the semiring, enforcing marginal consistency of the pair
never increases the upper bound (11).

Since enforcing marginal consistency of ffA; fBg affects
only the two factors in the bound corresponding to A and
B, we want to show that

f 0Aj; � f 0
Bj; 	 fAj; � fBj;: (12)

From (4b) and using (2) we have

f 0Aj; ¼
�
f 0AjA\B

�j; ¼ �f 0
BjA\B

�j; ¼ f 0
Bj;: (13)

Recall that if system (4) has a solution, the functions
f 0
AjA\B ¼ f 0

BjA\B satisfy (5). Suppose the semiring has a

square root. It need not be unique, we only require that some

unary operation
ffiffi�p
exists on S satisfying ð ffiffiffi

a
p Þ2 ¼ a (but not

necessarily
ffiffiffiffiffi
a2

p
¼ a) for all a 2 S. Then (5) has a solution

f 0
AjA\B ¼ f 0

BjA\B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAjA\B � fBjA\B

p
; (14)

where
ffiffiffi
f

p
denotes component-wise application of

ffiffi�p
to a

function f. Using (13) and (14), inequality (12) reads

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAjA\B � fBjA\B

p
j;

� �2
	 fAj; � fBj;:

Denoting xA\B ¼ i, jXA\Bj ¼ n, fAjA\BðxA\BÞ ¼ ai, fBjA\B
ðxA\BÞ ¼ bi, this can be written as

Xn
i¼1

ffiffiffiffiffiffiffiffi
aibi

p !2

	
Xn
i¼1

ai

 ! Xn
i¼1

bi

 !
: (15)

To summarize, we have the following result.

Theorem 4. Let
ffiffi�p
be a unary operation on S that satisfies

ð ffiffiffi
a

p Þ2 ¼ a for all a 2 S and (15) for all ai; bi 2 S, i ¼ 1; . . . ; n.
Then enforcing marginal consistency of any pair of factors (if it
is possible) does not increase the upper bound (11).

Inequality (15) is a form of the Cauchy-Schwarz inequality
on the semiring. When the square root is unique, we have

ð ffiffiffi
a

p Þ2 ¼ a ¼
ffiffiffiffiffi
a2

p
for all a 2 S and therefore (15) can be writ-

ten in the more familiar form

ha; bi2 	 ha; aihb; bi (16)

for all a; b 2 Sn, where ha; bi ¼ a1b1 þ � � � þ anbn is the ’inner
product’ on the semiring. Moreover, it can be verified that
(16) is implied by the inequality

2ab 	 a2 þ b2 (17)

for all a; b 2 S (however, (16) does not imply (17) in some

semirings). Let us emphasize that when
ffiffiffiffiffi
a2

p
¼ a for all

a 2 S does not hold, (17) may not imply (15).
Theorem 4 says that, under a reasonable assumption on

the semiring, every iteration of Algorithm 1 either decreases
the upper bound or keeps it unchanged. Given this result,
one might think that the algorithm is nothing more than a
(block-)coordinate descent to minimize the upper bound by
local reparameterizations. However, this does not fully
explain Algorithm 1 because a coordinate descent is
expected to strictly decrease its objective in every iteration,
whereas an iteration of Algorithm 1 can keep the bound
unchanged. Yet we cannot omit such iterations because
they may modify the network in such a way that some later
iterations decrease the bound strictly. This is very obvious
in the or-and semiring but it is true also in other semirings.

Of course, monotonic decrease of the bound during
Algorithm 1 is neither sufficient nor necessary for its con-
vergence to a fixed point. Although in many semirings these
two properties occur together, there can be exceptions (see
Section 5.5).

4.4 The Effect of Adding Identity Factors

In Section 3.4 we showed how higher levels of marginal
consistency can be achieved by adding identity factors.
What effect does this have on the upper bound?

When the operation þ is idempotent, adding an identity
factor fA ¼ 1 to a network preserves the upper bound
because fAj; ¼

P
xA
1 ¼ 1. Suppose Algorithm 1 is at its

fixed point. If we now add one or more identity factors to
the network, extend the set J , and run the algorithm again,
the upper bound may further decrease. Indeed, this is
because the added factors extended the space of reparame-
terizations that Algorithm 1 can reach by local reparameteri-
zations. Identity factors can be added incrementally during
Algorithm 1 in a cutting-plane fashion, similarly as in [19],
[74]. This incremental scheme ensures monotonic improve-
ment of the bound.

1460 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 7, JULY 2015



When þ is not idempotent, adding an identity factor may
increase the upper bound because

P
xA
1 
 1. Therefore,

adding identity factors has no obvious advantage in, e.g.,
the sum-product semiring.

Remark 3. There is another, very obvious technique how to
tighten the upper bound arbitrarily at the expense of
more computational effort: by merging several factors
into one. In the max-sum semiring, this corresponds to
using larger subproblems in dual decomposition [32],
[39]. E.g., if f1; 2g; f2; 3g; f1; 3g 2 E, we can merge binary
factors f12; f23; f13 into the ternary factor f12 � f23 � f13.
This decreases jEj by two, keeps the network equivalent,
and may decrease the upper bound. Future enforcing of
marginal consistency may improve the bound even fur-
ther. This technique is not limited to semirings with
idempotent addition. However, it is less compatible with
the concept of local consistencies (e.g., in the or-and
semiring it does not lead to k-consistencies, Section 5.2.2).

4.5 When Is the Bound Tight?

In this section, we discuss two natural conditions on a net-
work under which inequality (11) is tight (i.e., holds with
equality). One condition will be given by Definition 10
and the other condition is global marginal consistency
(Definition 7).

In the max-sum semiring, inequality (11) is tight if all
constraints in the network agree on some common global
configuration xV . In [69, Section 8.4], this condition has been
called strong tree agreement. We say a tuple ðA; xAÞ 2 XE is
active if fAðxAÞ ¼ fAj;. It is known [12], [61], [72], [74] that
deciding the condition leads to the CSP formed by the active
tuples. The condition can be formulated for any commuta-
tive semiring as follows.

Definition 10. A network f : XE ! S satisfies active tuple
agreement if there exists a configuration xV 2 XV such that
the tuple ðA; xAÞ is active for every A 2 E.

Note the implicit restriction (Section 2.2) in Definition 10:
xA is a restriction of xV to variables A.

Example 6. Let V ¼ f1; 2; 3; 4g and E ¼ ff1; 3; 4g; f1; 2g;
f2; 3gg. A network f : XE ! S satisfies active tuple agree-
ment if there exist x1 2 X1, x2 2 X2, x3 2 X3, x4 2 X4

such that f134ðx1; x3; x4Þ ¼ f134j;, f12ðx1; x2Þ ¼ f12j;,
f23ðx2; x3Þ ¼ f23j;. Here, e.g., f12j; ¼

P
x1;x2

f12ðx1; x2Þ.
Theorem 5. Active tuple agreement is sufficient for inequality

(11) to be tight.

Proof. The claim follows from the chain

Y
A2E

fAðxAÞ 	
ðaÞX

yV

Y
A2E

fAðyAÞ 	
ðbÞ Y

A2E
fAj; ¼ðcÞ

Y
A2E

fAðxAÞ;

where inequality (a) follows from (8), inequality (b) is
(11), and equality (c) holds by the assumption. tu

Theorem 6. If the operation þ is selective and the semigroup
ðS;�Þ is cancellative, active tuple agreement is necessary for
inequality (11) to be tight.

Proof. First observe that by (9) and by cancellation, a < b
and a0 	 b implies aa0 < bb0 for every a; b; a0; b0 2 S.

Suppose that for every xV 2 XV there exists some A 2 E
such that fAðxAÞ < fAj;. Using (11), this impliesQ

A2E fAðxAÞ <
Q

A2E fAj;. Since þ is selective, this

implies that inequality (11) is strict. tu
Let us turn to the second condition, global marginal con-

sistency (Definition 7).

Theorem 7. If the operation þ is selective or the operation � is
idempotent, global marginal consistency is sufficient for
inequality (11) to be tight.

Proof. Suppose a network f is globally marginal consistent,
i.e., there is a function fV such that fA ¼ fV jA for every
A 2 E. Then inequality (11) readsX

xV

Y
A2E

fV jAðxAÞ 	
Y
A2E

X
xA

fV jAðxAÞ: (18)

We have

Y
A2E

X
xA

fV jAðxAÞ ¼
Y
A2E

X
xV

fV ðxV Þ ¼
hX

xV

fV ðxV Þ
ijEj

:

By (8), we have fV ðxV Þ 	 fV jAðxAÞ for every xV 2 XV and
A � V . This simply says that a function cannot be greater
than its marginal. Therefore,

X
xV

Y
A2E

fV jAðxAÞ 

X
xV

Y
A2E

fV ðxV Þ ¼
X
xV

h
fV ðxV ÞjEj

i
:

If the operation � is idempotent, then for any n 2 N

and a 2 S we have an ¼ a. If the operation þ is selective,
it is easy to show that for any n 2 N and any

a1; . . . ; an 2 S we have
�P

i ai
�n ¼PiðaiÞn. In both cases,

we have
P

xV

�
fV ðxV ÞjEj� ¼ �PxV

fV ðxV Þ
�jEj

. Combining

this with (18) yields that inequality (18) is tight. tu
We now compare the strength of active tuple agreement

and global marginal consistency.

Theorem 8. If the operation þ is selective, global marginal con-
sistency implies active tuple agreement.

Proof. By global marginal consistency, there is fV such that
fA ¼ fV jA for all A 2 E. Take any xV such that
fV ðxV Þ ¼ fV j;. Such xV exists because þ is selective. We
have fAðxAÞ ¼ fV jAðxAÞ ¼ fV j; (note the implicit restric-
tion: xA is the restriction of xV ). By (2),
fAj; ¼ ðfV jAÞj; ¼ fV j;. We conclude that fAðxAÞ ¼ fAj;. tu
When þ is selective, for every a1; . . . ; an 2 S there is some

j such that aj ¼
Pn

i¼1 ai. However, such j may not exist
when þ is not selective. In that case, active tuple agreement
is not likely to hold because there may be some A 2 E such
that no tuple ðA; xAÞ is active.

On the other hand, it can happen that active tuple
agreement does not hold but inequality (11) is tight. For
a simple example, take a network with a single unary
factor, i.e., jV j ¼ 1 and E ¼ fV g. Trivially, any such net-
work is globally marginal consistent. Let þ not be selec-
tive and � be idempotent (as in Example 11). Then
constraint agreement may not hold but, by Theorem 7,
inequality (11) is tight.
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5 INSTANCES OF THE FRAMEWORK

Let us now discuss concrete instances of our framework.
Since the properties of reparameterizations do not depend
on the operation þ, we find it useful to first discuss repara-
meterizations in concrete commutative semigroups ðS;�Þ.
Then we turn to enforcing marginal consistency in concrete
commutative semirings.

Further in Section 5, symbols þ;�; 0; 1;
ffiffi�p
will have their

ordinary (non-semiring) meaning. We will distinguish
semigroups and semirings only up to isomorphism; e.g., the
max-sum semiring ðR;max;þÞ and the max-product semir-
ing ðRþþ;max;�Þ are isomorphic (via logarithm).

5.1 Reparameterizations in Concrete Semigroups

Here we discuss reparameterizations in concrete commuta-
tive semigroups. We focus on two questions: (i) How hard
is to decide whether two given networks are reparameteri-
zations of each other? (ii) Which reparameterizations are
compositions of local reparameterizations? We do not try to
answer these questions for any commutative semigroup
(which we believe would be difficult) but only for selected
semigroups of our interest.

5.1.1 Semilattice ðS;^Þ
A commutative semigroup ðS;^Þ in which the semigroup
operation ^ is idempotent is a semilattice [14]. Equivalently,
^ is the greatest lower bound with respect to some partial
order on S. Examples of semilattices are ðf0; 1g;minÞ,
ð½0; 1�;minÞ, and ð2U;\Þ where U is a set and \ is the set
intersection.

Theorem 9. In every non-trivial (jSj > 1) semilattice, deciding
whether two networks are reparameterizations of each other is
NP-hard.

Proof. The claim holds for semilattice ðf0; 1g;minÞ because
deciding whether a given network is a reparameteriza-
tion of the zero network f ¼ 0 (i.e., fAðxAÞ ¼ 0 for all
ðA; xAÞ 2 XE) is equivalent to the CSP, hence NP-com-
plete. The general case holds because every non-trivial
semilattice has a subsemilattice isomorphic to
ðf0; 1g;minÞ, namely ðfa; a ^ bg;^Þ for any a; b 2 S. tu
In a semilattice, not every reparameterization is as a com-

position of local reparameterizations. This is shown by the
following example.

Example 7. Let ðS;^Þ ¼ ðf0; 1g;minÞ. Let V ¼ f1; 2; 3g,
E¼ff1; 2g; f2; 3g; f1; 3gg, X1¼X2 ¼ X3¼f1; 2g, f12ð1; 1Þ¼
f12ð2; 2Þ ¼ f23ð1; 1Þ ¼ f23ð2; 2Þ ¼ f13ð1; 2Þ ¼ f13 ð2; 1Þ ¼ 1,
f12ð1; 2Þ ¼ f12ð2; 1Þ ¼ f23ð1; 2Þ ¼ f23ð2; 1Þ ¼ f13ð1; 1Þ ¼
f13ð2; 2Þ ¼ 0. This network (the ’inconsistent cycle’) forms
an unsatisfiable CSP, i.e., it is a reparameterization of the
zero network. But one easily checks that no local repara-
meterization is possible.

5.1.2 Group

Consider semigroup ðR;þÞ. It is a group, i.e., every element
has an inverse. Here, every reparameterization ff 0

A; f
0
Bg of a

pair ffA; fBg can be written explicitly as

f 0
A ¼ fA þ ’AB (19a)

f 0
B ¼ fB � ’AB (19b)

for some function ’AB: XA\B ! R (a ’message’). It is known
[37, Lemma 6.3], [72, Theorem 3] that in ðR;þÞ, every repar-
ameterization is a composition of a finite number of local
reparameterizations and that these local reparameteriza-
tions (and whether they exist) can be found in polynomial
time. Given (19), this shows that every reparameterization
is an affine transformation.

Though this result has been proved for networks with
unary and binary constraints fA, it is natural to conjecture
(cf. [74, Section 3.2]) that it extends to any network. More-
over, it is easy to verify that the proofs in [37], [72] apply not
only to ðR;þÞ but to any group.

5.1.3 Semigroup ðR [ f�1g;þÞ
This semigroup has the sub-semigroup ðf�1; 0g;þÞ which
is a semilattice, thus some reparameterizations are not com-
positions of local reparameterizations. It has also the sub-
semigroup ðR;þÞ, thus some reparameterizations are com-
positions of a finite number of local reparameterizations,
given by (19) for ’AB: XA\B ! R. However, a new phenom-
enon appears [75], [76]: there exist networks f and f 0 that
are reparameterizations of each other and there is an infinite
(but no finite) sequence of local reparameterizations of f
that converges to f 0.

Example 8. Let V ¼ f1; 2; 3g, E ¼ ff1; 2g; f2; 3g; f1; 3gg,
X1 ¼ X2 ¼ X3 ¼ f1; 2g, f12ð1; 1Þ ¼ f12ð2; 2Þ ¼ f23ð1; 1Þ ¼
f23ð2; 2Þ ¼ f13ð1; 1Þ ¼ f13ð2; 2Þ ¼ f13ð1; 2Þ ¼ 0, f12ð1; 2Þ ¼
f12ð2; 1Þ ¼ f23ð1; 2Þ ¼ f23ð2; 1Þ ¼ f13ð2; 1Þ ¼ �1. Con-
sider the sequence of three local reparameterizations (19)
where the functions ’12;13, ’23;12, ’13;23 are given by

’12;13ð1Þ ¼ ’23;12ð1Þ ¼ ’13;23ð1Þ ¼ 1, ’12;13ð2Þ ¼ ’23;12ð2Þ ¼
’13;23ð2Þ ¼ 0. This sequence decreases the value f13ð1; 2Þ
by 1 and keeps all other values unchanged. Repeating
the sequence therefore converges to f13ð1; 2Þ ¼ �1.
However, no finite sequence of local reparameterizations
can set f13ð1; 2Þ to �1.

5.2 Distributive Lattice ðS;_;^Þ
A commutative semiring ðS;_;^Þ in which both operations
are idempotent and satisfy the absorption law

a _ ða ^ bÞ ¼ a ¼ a ^ ða _ bÞ (20)

is a distributive lattice [14]. Then _ is the least upper bound
and ^ is the greatest lower bound with respect to the canon-
ical order 	. Equivalence (10) extends to

a ^ b ¼ a () a 	 b () a _ b ¼ b: (21)

Example 9. The or-and semiring ðf0; 1g;max;minÞ is a dis-
tributive lattice.

Example 10. The max-min semiring ð½0; 1�;max;minÞ is a
distributive lattice.

Example 11. In the or-and and max-min semirings, both
operations are selective hence the canonical order is total.
In some inference tasks, our preferences may be given by
a partial order that is not total. An example is the distrib-
utive lattice ð2U;[;\Þ for some set U (or a sublattice of

this lattice), where 	 is the inclusion relation � on 2U . In
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this case, the value (1) is not exactly what we would like
to obtain as the result of inference. We would rather like
to find maximal elements of the partially ordered set	V

A2E fAðxAÞ


xV 2 XV

� � S, while (1) is the least

upper bound of this set. Discussion on how to find maxi-
mal elements of this set is out of scope of our paper. Nev-
ertheless, enforcing marginal consistency may decrease
the values of some tuples, i.e., simplify the problem.

As ðS;^Þ is a semilattice, reparameterizations are
described by Section 5.1.1. System (4) has the unique
solution

f 0
A ¼ fA ^ fBjA\B; (22a)

f 0
B ¼ fB ^ fAjA\B: (22b)

Let us prove (22a). From (6) and (4b) we obtain
f 0
A ^ f 0

AjA\B ¼ fA ^ fBjA\B. But the absorption law (20)

implies f 0
A ^ f 0

AjA\B ¼ f 0A. By symmetry we get (22b).

The update (22) never increases the value of any tuple
because, by (8) and (20), we have a ^ b 	 a for all a; b 2 S.
It follows that the upper bound (11) never increases. This
agrees with the fact that the distributive lattice has a
unique square root (the solution to b ^ b ¼ a is b ¼ a)
which satisfies (17).

The behavior of Algorithm 1 is similar to local consis-
tency algorithms for the crisp CSP and soft CSPs with idem-
potent semiring multiplication: it converges in finite time
and its fixed point is unique. To formulate this statement
more precisely, we extend the canonical order	 from tuples
to networks: for f; f 0: XE ! S we define f 	 f 0 if
fAðxAÞ 	 f 0

AðxAÞ for all ðA; xAÞ 2 XE .

Theorem 10. Algorithm 1 reaches in a finite number of iterations
a fixed point. This fixed point is the greatest one among all
fixed points that are not greater than the initial network, there-
fore it is independent of the update schedule.

Our proof uses the technique proposed in [2]. It is similar
to the proof of the well-known Knapster-Tarski fixed point
theorem [14].

Proof. Enforcing marginal consistency of a single pair
ffA; fBg is a function that maps a network to a network.
We denote this function by pAB. It has the following
properties:

pABðpABðfÞÞ ¼ pABðfÞ ðidempotencyÞ
pABðfÞ 	 f ðintensivityÞ
f 	 f 0 ¼) pABðfÞ 	 pABðf 0Þ ðmonotonicityÞ

Note, these are the axioms of a closure operator [14].
Algorithm 1 produces a sequence of networks ðfkÞ1k¼0

defined recurrently by fk ¼ pAkBk
ðfk�1Þ, where f0 is the

initial network and fAk;Bkg is the kth element of the
update schedule.

Any value that any tuple can ever attain during the
algorithm belongs to the closure of the set of initial val-
ues f f0

AðxAÞ j ðA; xAÞ 2 XE g � S by the operations _ and
^. Due to the lattice structure, this closure has finite size.

Therefore, by intensivity, the sequence fk converges in a
finite number of iterations.

Suppose a network f satisfies f 	 f0 and pABðfÞ ¼ f

for all A;B 2 E. We will prove by induction that f 	 fk

for any k. Suppose f 	 fk�1. By monotonicity,

f ¼ pAkBk
ðfÞ 	 pAkBk

ðfk�1Þ ¼ fk:

We conclude that the convergence point of the
sequence fk is the greatest common fixed point of all the
functions pAB, fA;Bg 2 J , among all networks not

greater than f0. tu

5.2.1 Adding Identity Factors

In Sections 3.4 and 4.4 we discussed how any level of mar-
ginal consistency can be achieved by adding identity factors
to the network. Assume that our lattice has an identity
element, 1. Distributive lattices have the following advan-
tage, not shared by other semirings.

Theorem 11. Let E;F � 2V . Let f : XE[F ! S be a network
such that fA ¼ 1 for every A 2 F . Let f 0: XE[F ! S be the
fixed point of Algorithm 1 applied to f . Then

^
A2E[F

f 0
A ¼

^
A2E

f 0
A: (23)

Proof. The claim is proved by the following chain:

^
A2E

f 0
A 	

ðaÞ ^
A2E

fA ¼ðbÞ
^

A2E[F
fA ¼ðcÞ

^
A2E[F

f 0A 	
ðdÞ ^

A2E
f 0
A:

In (a) and (d), 	 denotes the componentwise partial
order. Inequality (a) holds because the update (22) cannot
increase the value of any tuple, (b) holds because fA ¼ 1
for every A 2 F , (c) holds because enforcing marginal
consistency is a reparameterization, and (d) holds
because a ^ b 	 a for every a; b 2 S. tu
The theorem says that if we add one or more identity fac-

tors to a network and run Algorithm 1, we can then remove
the updated identity factors from the network because this
yields a reparameterization of the initial network. In other
words, identity factors can be added only temporarily and
thus the level of marginal consistency can be increased
without enlarging the network.

This can be understood also as follows. Adding identity
factors extends the space of reparameterizations reachable
by local reparameterizations. In a distributive lattice, some
reparameterizations cannot be composed of local reparame-
terizations. Adding identity factors, enforcing marginal con-
sistency, and then removing the updated identity factors
means performing a reparameterization of the initial net-
work that may not be reachable by local reparameterizations.

In fact, if we couldminimize the upper bound (11) over all
reparameterizations, the boundwould become tight. Indeed,
we can add the identity factor fV ¼ 1 to the network and run
Algorithm 1 with J ¼ ffV;Ag jA 2 E g. By Theorem 7, this
makes inequality (11) tight. Nowwe remove the factor fV .

5.2.2 Marginal Consistency in CSP

In the or-and semiring ðf0; 1g;max;minÞ, inequality (11)
evaluated at the fixed point of Algorithm 1 says the well-
known fact that passing a local consistency test is necessary
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for CSP satisfiability. Here, some levels of marginal consis-
tency coincide with some basic local consistencies in CSP
[4]. For a network with unary and binary constraints, local
marginal consistency is arc consistency [46], [4, Section 4].
For any network, marginal consistency of level (7) is general-
ized arc consistency [4, Section 4]. For any network, local mar-
ginal consistency is pairwise consistency [31], [4, Section 5.4].
Adding appropriate identity constraints of arity less than or
equal to k and enforcing pairwise consistency yields
(strong) k-consistency [21], [4, Section 5.2].

5.3 Semirings of Max-Sum Type

5.3.1 Semiring ðR;max;þÞ
In this semiring, reparameterizations are affine transfor-
mation of f (see Section 5.1.2) and the upper bound (11)
is a piecewise-linear convex function of f . Therefore, min-
imizing the upper bound over all reparameterizations can
be formulated as a linear program. This linear program is
the natural LP relaxation of problem (1), considered
(sometimes in dual form) by many researchers [10], [37],
[40], [61], [67], [69].

System (4) has the unique solution

f 0
A ¼ fA þ �fBjA\B � fAjA\B

�
=2; (24a)

f 0
B ¼ fB þ �fAjA\B � fBjA\B

�
=2; (24b)

which immediately follows from (5) and (6). The semiring
has a unique square root (the solution to bþ b ¼ a is
b ¼ a=2), which satisfies conditions (17). Algorithm 1 is
known as max-sum diffusion [41], [72], [74]. It is firmly
believed that max-sum diffusion converges to a fixed point
in an infinite number of iterations but this was never proved
(a slightly weaker form of convergence has been proved in
[57]).

For different update schedules, the algorithm can con-
verge to different fixed points with different values of the
bound. Therefore, in general it does not find the minimum
upper bound over all reparameterization [37], [72]. Pre-
cisely, for some networks the bound cannot be decreased by
any single local reparameterization but only by multiple
local reparameterizations simultaneously. This is a manifes-
tation of the fact that block-coordinate descent may not find
the global minimum of a convex non-smooth function [3].
Note the difference to the distributive lattice, where some
reparameterizations cannot be composed of local reparame-
terizations at all.

5.3.2 Semiring ðR [ f�1g;max;þÞ
This semiring, known as the tropical semiring [22], is
obtained by adding the zero semiring element �1 to
ðR;max;þÞ. Minimizing the upper bound over local repara-
meterizations (19) again leads to a linear program. How-
ever, by Section 5.1.3, some reparameterizations are not
compositions of local reparameterizations and so this does
not yield the minimum upper bound over all reparameteri-
zations. This is not surprising since the semiring has a sub-
semiring ðf�1; 0g;max;þÞ isomorphic to ðf0; 1g;max;minÞ,
so this would solve the CSP.

The solution to (4) is unique, given by (24) where the
operation ‘�’ (minus) is extended from R to R [ f�1g by

defining a� ð�1Þ ¼ �1 for all a 2 R [ f�1g. The semir-
ing has a unique square root which satisfies (17).

Two stages can be discerned in Algorithm 1. After a finite
number of iterations, the set of tuples with values �1 stops
changing, which resolves the ‘crisp’ part of the problem.
Then the algorithm changes only finite tuples, similarly as
in the semiring ðR;max;þÞ.

5.3.3 Max-Sum Semiring with Truncated Addition

This is the semiring ð½�1; 0�;max;�Þwhere

a� b ¼ maxf�1; aþ bg: (25)

This semiring is isomorphic to semiring ð½0; 1�;max;�0Þ
where a�0 b ¼ maxfa þ b � 1; 0g is the Łukasziewicz
t-norm [34]. The resulting problem (1) is closely related to
the k-weighted CSP [48, Section 9.2.2].

The semiring has a square root but it is not unique:
b� b ¼ a has always a solution but, e.g., for a ¼ �1 the solu-

tions are all b 2 ½�1;� 1
2�. However, there exists a square

root, b ¼ a=2, satisfying (15). With this square root, system
(4) has a solution2

f 0A ¼ maxf�1; fA þ ðfBjA\B � fAjA\BÞ=2 g; (26a)

f 0
B ¼ maxf�1; fB þ ðfAjA\B � fBjA\BÞ=2 g: (26b)

In experiments on random networks, we observed that
Algorithm 1 always converged to a fixed point.

5.3.4 Max-Sum Semiring with Lexicographic Maximum

This is the semiring ðR2;�;�Þwhere

ða1; a2Þ � ðb1; b2Þ ¼
ðb1; b2Þ if a1 < b1;

ða1;maxfa2; b2gÞ if a1 ¼ b1;

ða1; a2Þ if a1 > b1;

8><
>:

ða1; a2Þ � ðb1; b2Þ ¼ ða1 þ b1; a2 þ b2Þ:
The operation � is the maximum with respect to the lexico-

graphic order on R2, which is also the canonical order. The
solution to (4) is unique, given by (24) where ðmax;þÞ is
replaced by ð�;�Þ.

The framework can be easily extended from R2 to Rn.

5.3.5 Adding Identity Factors

As in Section 5.2.1, suppose we add identity factors to a net-
work and then apply Algorithm 1 to the resulting network.
Unfortunately, nothing like Theorem 11 holds in max-sum
semirings, so we now cannot remove the updated identity
factors because this might yield a network that is not equiv-
alent to the initial network. Thus, in general, higher levels of
marginal consistency can be achieved only at the expense of
increasing the number of factors in the network.

This can be alternatively understood as follows. In
semiring ðR;max;þÞ, every reparameterization can be
composed of local reparameterizations. Thus, the only
way how to extend the space of reparameterizations
reachable by local reparameterizations is to add new

2. Note that we cannot write f 0A ¼ fA � ðfBjA\B � fAjA\BÞ=2 in (26a),
because ðfBjA\B � fAjA\BÞ=2may not be in ½�1; 0�.
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identity factors. This is in contrast with the distributive
lattice (Section 5.2.1), where it suffices to add identity
factors only temporarily.

5.4 Semirings of Sum-Product Type

5.4.1 Semiring ðRþþ;þ;�Þ
In this semiring, system (4) has the unique solution

f 0
A ¼ fA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fBjA\B =fAjA\B

p
; (27a)

f 0
B ¼ fB �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAjA\B =fBjA\B

p
: (27b)

The semiring has a unique square root (the only solution
to b2 ¼ a is b ¼ ffiffiffi

a
p

) which satisfies conditions (17).
The semiring is isomorphic (via logarithm) to semiring

ðR;�;þÞwhere

a� b ¼ logðea þ ebÞ (28)

is the log-sum-exp operation. In this semiring, reparameteriza-
tions are affine transformations of f and the upper bound (11)
is a smooth convex function of f . Algorithm 1 is a block-
coordinate descent method to minimize this function over
reparameterizations and therefore it converges to its global
minimum [3]. It can be shown [76] that the fixed point of the
algorithm is unique.

This algorithm is not widely known, it was proposed in
[76, Section 6] and also [47] noticed that max-sum diffusion
can be formulated in the sum-product semiring. The mini-
mum upper bound is usually very loose, therefore not use-
ful to approximate (1). Even for acyclic E, the bound is not
exact and no finite algorithm is known to compute the fixed
point. The algorithm can be seen as a very simple represent-
ant of convergent message passing algorithms to minimize
convex free energies [29], [30], [71], [69, Section 7], which
can provide better bounds.

5.4.2 Semiring ðRþ;þ;�Þ
This semiring is obtained by adding the zero semiring ele-
ment 0 to ðRþþ;þ;�Þ. Since the semigroup ðRþ;�Þ is iso-
morphic to ðR [ f�1g;þÞ, reparameterizations are
described by Section 5.1.3. System (4) has a unique solution,
given by (27) where we define a=0 ¼ 0 for all a 2 Rþ.

5.4.3 Relation to the Max-Sum Semiring

Define the operation �t by

a�t b ¼ ðtaÞ � ðtbÞ
t

¼ logðeta þ etbÞ
t

: (29)

For every finite t, ðR;�t;þÞ is a semiring isomorphic to
ðR;�;þÞ. In the limit t ! 1, the operation �t becomesmax.
The semiring ðR;max;þÞ is no longer isomorphic to
ðR;�;þÞ. This process is known as tropicalization [22],
dequantization [44] or the zero temperature limit [49].

We said in Section 5.3.1 that in semiring ðR;max;þÞ,
Algorithm 1 in general does not find the minimum upper
bound over all reparameterizations. However, the sequence
of fixed points of the algorithm in semirings ðR;�t;þÞ for
increasing t converges to the optimal upper bound [76]. This
is the core of proximal projection methods with entropy

distances for exactly solving the LP relaxation mentioned in
Section 5.3.1 [53].

5.4.4 Application to CSP

Although in the sum-product semiring the minimum upper
bound is usually very loose, in [75] we described an interest-
ing situation when this bound is useful. We now revisit this
result in the semiring context.

Let f : XE ! f0; 1g. In semiring ðf0; 1g;max;minÞ, expres-
sion (1) equals 1 if the CSP represented by f is satisfiable
and 0 if not. In semiring ðRþ;þ;�Þ, expression (1) counts
the number of solutions to the CSP represented by f . This
problem is known as the counting CSP (#CSP) [9]. Note that
ðf0; 1g;þ;�Þ is not a semiring because the set f0; 1g is not
closed under addition.

Let Uor;and 2 f0; 1g be the upper bound (11) at the fixed
point of Algorithm 1 applied to the network f in semiring
ðf0; 1g;max;minÞ. Let Uþ;� 2 Rþ be the upper bound at the
fixed point of Algorithm 1 applied to f in semiring

ðRþ;þ;�Þ. Clearly, Uor;and ¼ 1 is necessary for the CSP rep-
resented by f to be satisfiable (see Section 5.2.2). But
Uþ;� 
 1 is also necessary for this CSP to be satisfiable,
requiring that the CSP has at least one solution.

The update rules in the semirings ðf0; 1g;max;minÞ and
ðRþ; þ; �Þ treat zero tuples in the same way: if the former
sets some tuple to zero, so does the latter.3 It follows that

Uor;and ¼ 0 implies Uþ;� ¼ 0. Equivalently, Uþ;� > 0 implies

Uor;and ¼ 1. However, the opposite implication does not

hold: there are CSP instances for which Uor;and ¼ 1 and
Uþ;� ¼ 0 [75]. Therefore, Algorithm 1 in semiring ðRþ;þ;�Þ
yields a strictly stronger condition necessary for CSP satisfi-
ability than in semiring ðf0; 1g;max;minÞ.

The algorithm has the drawback that when reparameteri-
zations are represented by messages, some messages can
grow unbounded [75]. This is a manifestation of the phe-
nomenon described in Example 8.

5.5 Expectation Semiring

Expectation semirings, introduced in [18], [43], are dissimi-
lar to any semiring we discussed above. An example is the
commutative semiring ðRþþ �R;�;�Þwhere

ða1; a2Þ � ðb1; b2Þ ¼ ða1 þ b1; a2 þ b2Þ;
ða1; a2Þ � ðb1; b2Þ ¼ ða1b1; a1b2 þ b1a2Þ:

As noted in [25, Example 7.3], this semiring can be seen as the

semiring of matrices
a1 a2
0 a1

� 

with the usual matrix addi-

tion and product. These matrices are positive definite, hence

the semiring has multiplicative inverse and unique square

root. Therefore, the solution to (4) can be written as (27)

where�; =;
ffiffi�p
arematrix operations.

The canonical preorder (8) is not antisymmetric: e.g., we
have both ð0;�1Þ 	 ð0; 1Þ and ð0; 1Þ 	 ð0;�1Þ. Therefore the
concepts of upper bound and its decrease are meaningless.
Despite this, we observed in experiments on random net-
works that Algorithm 1 always converged to a fixed point.

3. A similar observation was made for loopy belief propagation [16],
showing that it treats zero tuples the same way as the arc consistency
algorithm.
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5.6 Semirings That Do Not Admit Enforcing
Marginal Consistency

Not every commutative semiring allows enforcing marginal
consistency. For that, system (4) has to be solvable. Further-
more, it is reasonable to require that the canonical preorder
	 is antisymmetric and the semiring satisfies the conditions
of Theorem 4. Here we give examples of semirings that vio-
late some of these requirements.

Example 12. In semiring ðR;þ;�Þ, the semigroup ðR;þÞ is a
group, therefore by Theorem 2 the relation 	 is an equiv-
alence rather than a partial order.

Example 13. In semiring ðN;max;þÞ, system (4) is not
always solvable. Indeed, this semiring does not have a
square root because aþ a ¼ b has no solution for odd b.

Example 14. Semiring ð2U;[;�Þ where 2U is the set of all
subsets of a vector space U , [ is the set union and
a� b ¼ fxþ y jx 2 a; y 2 b g is the Minkowski set sum.
This semiring does not have a square root: e.g., for
U ¼ R, there is no a � R satisfying a� a ¼ f1; 2g.

Example 15. Semiring ðS;�;�Þ where S is the set of all con-
vex subsets of a vector space U , a� b ¼ convða [ bÞ, and
a� b ¼ fxþ y jx 2 a; y 2 b g. This semiring has a unique
square root: the solution to b� b ¼ a is b ¼ fx=2 jx 2 a g.
Thus equation (5) always has a unique solution. How-
ever, system (4) may not have a solution. This can hap-
pen already in the simple case U ¼ R, i.e., the elements
of S are intervals. E.g., take A¼f1; 2g, B¼f1g, X1 ¼ f1g,
X2 ¼ f1; 2g, f1ð1Þ ¼ f0g, f12ð1; 1Þ ¼ f�2g, f12ð1; 2Þ ¼ f2g.
The solution to (5) is f 01ð1Þ ¼ convf�1; 1g. But (4a)
requires that f 012ð1; 1Þ � f 0

1ð1Þ ¼ f12ð1; 1Þ� f1ð1Þ ¼ f�2g�
f0g ¼ f�2g. Clearly, there is no such f 012ð1; 1Þ.

Example 16. [5, Section 2.4.5] Semiring ðR2;�;�Þwhere

ða1; a2Þ � ðb1; b2Þ ¼
ðb1; b2Þ if a1 < b1;

ða1;maxfa2; b2gÞ if a1 ¼ b1;

ða1; a2Þ if a1 > b1;

8><
>:

ða1; a2Þ � ðb1; b2Þ ¼
ða1; a2Þ if a1 < b1;

ða1; a2 þ b2Þ if a1 ¼ b1;

ðb1; b2Þ if a1 > b1:

8><
>:

The operation � is the same as in Section 5.3.4. The solu-
tion to the equation ðb1; b2Þ � ðb1; b2Þ ¼ ða1; a2Þ is
ðb1; b2Þ ¼ ða1; a2=2Þ, thus the semiring has a unique
square root. Therefore equation (5) always has a unique
solution. However, system (4) may not have a solution.
This happens, e.g., for A ¼ f1; 2g, B ¼ f1g, X1 ¼ f1g,
X2 ¼ f1; 2g, f1ð1Þ ¼ ð0; 3Þ, f12ð1; 1Þ ¼ ð0; 2Þ, f12ð1; 2Þ ¼
ð2; 0Þ.
For semirings that do not allow enforcing marginal con-

sistency it is an interesting open question whether enforcing
marginal consistency only approximately can yield useful
upper bounds.

6 SUMMARY

Our goal in this paper has been to theoretically investigate
the simple algorithm defined in Section 3, first for the

abstract commutative semiring and then for several con-
crete semirings. Let us review the algorithm once again. We
are given a commutative semiring ðS;þ;�Þ, a hypergraph

E � 2V , and a collection of functions fA: XA ! S, A 2 E.
The algorithm visits different pairs ffA; fBg and changes
every pair such that fAjA\B ¼ fBjA\B while preserving the
function fA � fB. In many semirings, repeating this opera-
tion converges to a fixed point when fAjA\B ¼ fBjA\B holds
for each pair ffA; fBg. Every iteration either decreases or pre-
serves the upper bound

Q
A2E fAj; on the semiring partition

function
�Q

A2E fA
�j;.

We have extended this basic algorithm to achieve
higher levels of consistency. This is done by adding iden-
tity factors fA ¼ 1 (typically of higher arities) to the net-
work, which preserves the function

Q
A2E fA but extends

the set of reachable reparameterizations and thus may
enable further improvement of the bound. This yields a
hierarchy of consistencies of increasingly higher levels,
necessary for global marginal consistency. For a wide
class of semirings, global marginal consistency suffices
for the upper bound to be tight.

We have discussed the properties of the algorithm in
a number of concrete semirings. In a distributive lattice,
the algorithm converges in finite time and its fixed point
is unique. An example of a distributive lattice is the or-
and semiring, for which various levels of marginal con-
sistency correspond to several classical local consisten-
cies in CSP. In semirings of max-sum type, the algorithm
converges in an infinite time and its fixed point depends
on the update schedule. It is known as max-sum diffu-
sion. In semirings of sum-product type, the algorithm
converges in infinite time and its fixed point is unique.
In the log-domain, the algorithm minimizes a smooth
convex function by block-coordinate descent. It is a sim-
ple example of message passing algorithms with convex
free energies.

Finally, let us remark that our paper is relevant to two
disciplines, pattern recognition and constraint program-
ming, which use different terminology and communicate
little with each other. We hope that our paper will narrow
this undesirable interdisciplinary gap.
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