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1. Introduction

In a series of papers [18, 22, 20, 23, 21, 24], Wainwright and
colleagues developed an approach to upper-bound the maxi-
mal probability (= the mode) and the partition function (and
in turn, to approximate the marginals) of undirected graphi-
cal models (Markov random fields, MRF). It is based on de-
composing the original problem into smaller subproblems with
tractable structures. The formalism used actually allows for a
wider class of probability distributions than the ones defined
by a MRF — namely the general (discrete) exponential family
of distributions. Despite this, the approach was detailed only
for distributions defined by a MRF and only for tree-structured
subproblems (though hypertrees were discussed too).

Our aim in this text is to generalize this approach to the gen-
eral exponential family of distributions (rather than only those
defining a MRF) and to general subproblems (rather than only
(hyper)trees). In particular, we formulate and discuss in detail
the upper bound minimization, its Lagrange dual, and the opti-
mality conditions; outer bound of the mean polytope resulting
from the decomposition is constructed; and a coordinate de-
scent algorithm (similar to the Generalized Iterative Scaling)
to optimize the upper bound. We do this both for non-zero
temperature (i.e., the partition function) and the zero tempera-
ture limit (i.e., the modes), paying special attention to what is
happening during the transition to zero temperature. The ob-
tained results are simple and natural and reveal the full picture
of the decomposition approach to statistical inference.

1.1. Exponential family of probability distributions

Consider the probability distribution
p(x]0) = exp[0¢(z) — F(0)] (D

over a finite set X, i.e., z € X. In (1), [ is a finite set, ¢ is
a mapping X — R! with components ¢;, and @ € R’ is a
vector with components 8; (for i € I). Here, 0 is a row vector
and ¢(x) a column vector', so that O¢p(z) = 3. ; 0i¢i(x).
The normalization term

F(0) = P 0s(x) @)
zeX

is the log-partition function, where we introduced the symbol

log(e® +e’) =a @b (3)

I Distinguishing row and column vectors emphasizes the fact that while
vectors ¢>(z) belong to the vector space RY, vectors @ belong to the dual
vector space and thus represent linear forms.



for the log-sum-exp operation. A distribution in form (1) is
known as the (discrete) exponential family. The family is de-
fined by triplet (X, I, ¢) and parameterized by 0. The basis
functions ¢; are usually referred to as potential functions or
sufficient statistics and numbers 6; as canonical parameters. It
is also known as the log-linear model because the expression
0¢(x) captures all functions that are linear in  for every .

It is often of interest to calculate the log-partition function
F(0), the maxima (modes) of p(z|0), and the mean values of
the functions ¢; over p(x | 0). These are examples of inference
tasks in the exponential family.

Clearly,  maximizes p(x|6) if and only if it maximizes
0¢(x), thus to find the mode it suffices to evaluate the function

F(6) = max 6(z) )

The value of F'(6) can be alternatively expressed as a limit of
the log-partition function because

F(0) = lim tF(6/t) (5)

Equality (5) follows from the property of the log-sum-exp
function that lim;_,o4 t @, (ar/t) = maxy ay.

In statistical mechanics, the limit ¢ — 0+ is known as the
zero-temperature limit. Distribution of type (1) was proposed
there as a statistical description of a system composed of a
large number of locally interacting parts. If —0¢(x) is the en-
ergy of the system as a function of its state x, the celebrated
result by Boltzmann says that the probability that the system
with temperature ¢ is in state  equals p(x|0/t). When the
temperature approaches zero, only the states that maximize
p(x|0) have a non-zero probability p(xz|0/t). These so called
ground states describe the ‘frozen’ system (such as crystals).

A possible instantiation of the exponential family (1) is a
discrete undirected graphical model (Markov random field).
Here, p(x|0) is a joint distribution of a multiple discrete vari-
ables © = (x1, 2, ...) and the functions ¢; are 0-1 functions
such that their mean values coincide with the marginals of
p(x|0) on a chosen set of subsets of the variables.

1.2. Upper bounds from decomposition

If the set X is combinatorially large (such as for MRFs),
evaluating functions I’ and F may be intractable. Then we
are naturally interested in approximations, upper bounds, and
tractable subclasses. One of existing approaches to obtain
these, due to Wainwright et al. [18, 22, 20, 23, 21, 24], is
based on decomposition to subproblems and its essence is as
follows. Let {0° | s € S} be a collection of parameter vec-
tors and let p° > 0 be scalars such that ) o p° = 1. Since
F is convex, applying Jensen’s inequality to it yields

F(Yo6%) <> o F(6"/p") ©)
s€S seS

i.e., the right-hand side is the upper bound in the left-hand
side. If the subproblems 6° are such that evaluating F'(6°)
is tractable for each s (typically, due to restricting the struc-
ture of the subproblems), this bound is tractable to compute.
The upper bound is minimized over the collections {6°} sub-
ject to the constraint that F'(6°) are tractable to compute and

that ) ¢ 0° defines our original distribution. This leads to
a smooth convex optimization task, provided that p* are fixed.
Including p® in the optimization leads to a non-convex task and
we do not consider it in this text.

For zero temperature, we have even a simpler inequality,

F(ZeS) <3 F(e°) %)
s€S seS
where p* canceled out because F'(8/p) = F(8)/p. Minimiz-
ing the upper bound (7) leads to a non-smooth convex mini-
mization task, in fact, to a linear programming.

After its minimization, the upper bound (6) is tight (i.e.,
holds with equality) only in trivial cases. In contrast, the least
upper bound (7) is tight for a large and highly non-trivial class
of instances, forming thus a tractable subclass of problem (4).
Precisely, (7) holds with equality if and only if there exists
x* € X such that

x* € argmax 0°¢(x) Vs e S 8)

rzeX
i.e., if the subproblems agree on a common solution, x*. This
is a generalization of (hyper)tree agreement [18, 20].

1.3. Contributions

In this text, we are primarily interested in upper bounding
the function F (i.e., the modes of p(x|@)). Upper bounding
the log-partition function F is of only secondary interest for us
—we are interested in it mainly to shed light on the transition to
zero temperature. We nevertheless derive it in full generality.

We formulate the decomposition approach for the general
form of the exponential family (1). We do this first for the
non-zero temperature case and then for the zero temperature
limit. This allows us to see similarities and differences be-
tween them. In particular, we formulate

e the minimization of the upper bound

We formulate the problem of finding the least upper bound
on the mode and log-partition function for general sub-
problems and the general exponential family.

o its Lagrange dual

We derive the dual of these tasks. This dual is very similar
to the variational expression for the log-partition function
and the mode, in which we maximize a concave function
over the mean/marginal polytope: the mean polytope is re-
placed by its outer bound (obtained as the intersection of
projections of the true mean polytope onto subproblems)
and the true entropy term is replaced with the convex com-
bination of the entropies of subproblems.

e optimality conditions

For non-zero temperature, the primal-dual pair is jointly
optimal iff the mean parameters of the overlapping sub-
problems coincide. For zero-temperature, optimality is
characterized by a non-empty intersection of the optimal
faces of the mean polytopes of the subproblems.

e a coordinate descent algorithm to decrease the upper
bound



We present a coordinate descent algorithm to decrease the
upper bound, motivated by the algorithms based on averag-
ing (max-)marginals in MRFs (such as max-sum diffusion
or TRW-S) and by the Generalized Iterative Scaling. We
analyze its stationary points for the zero temperature limit.

e a cutting plane algorithm to improve the bound incre-
mentally

We sketch a cutting plane algorithm, which allows to im-
prove the upper bound incrementally by adding more and
more complex subproblems.

As an example, we apply the theory to pairwise MRFs, giv-
ing examples of typical collection of subproblems (trees, in-
dividual nodes and edges, cycles). Despite emphasizing that
we develop the theory for the general form of the exponential
family, we did not apply it to any practical problem that is not
a graphical model — we could not find any such application.
Although this deems our contribution to be of only theoretical
importance, we believe such applications exist.

2. Notation

Sets are denoted by {-}, ordered tuples by (-), intervals by
[a, b]. The set of reals, non-negative reals and positive reals is
R, Ry and R, , respectively. The set of all k-element subsets
of set A is denoted by (‘2) For a set A, we denote f(A) =
{f(z) |z € A}. Symbol [a] equals 1 if expression « is true
and 0 if « is false. Symbol argmax,, f(x) denotes the set of
all maximizers of f.

For A C R", aff A denotes the affine hull of A, conv A the
convex hull, ri A the relative interior, and rbd A = A\ ri A the
relative boundary [3].

3. Properties of exponential family

This section surveys the properties of discrete exponential
families we will need. In that, we mostly follow [21] and we
occasionally use also [4, 1]. We give no formal proofs but most
of the statements are easy to verify by elementary algebra. We
pay special attention to overcomplete representation and repa-
rameterizations (§3.2), which are crucial in context of MRFs —
our treatment of these is more principled than in [21, 19]. We
further include a note on Generalized Iterative Scaling (§3.5).

Let

Y =¢X)={¢)|zeX} )

denote the map of X under ¢, a finite set of vectors y € R’.
Further in §3 and §4, we will adopt the following simplifica-
tion: instead of the distribution p(x:| @) over set X given by (1)
we will consider the distribution

q(y|0) = exp[@y — F'(0)]

over Y, obtained by substituting y = ¢(z). This simplifies
the exposition but does not otherwise change the situation be-
cause X and ¢ serve only to index the elements of Y. If the
mapping ¢ is one-to-one, this substitution does not change the
log-partition function,

P os(x) = P oy

reX yEY

(10)

Y

We assume it is so. If not, the theory in in §3 and §4 could be
easily restated also without this substitution. While the family
of distributions p(x| @) is defined by the triplet (X, I, ¢), the
family of distributions ¢(y |0) is defined by the pair (Y, 1)
where I is a finite set and Y is a finite set of vectors from R’.

3.1. Log-sum-exp operation

Exponential families have a number of deep and interesting
properties. Many of them follow already from properties of the
log-sum-exp operation [3]. To emphasize this fact, in (3) we
introduced a special symbol for it, @. This section summarizes
its key properties.

The operation @ is associative and commutative, thus it
makes sense to write @, ay. It is also distributive w.r.t. addi-
tion, P, (b+ ar) = b+ &P, ax. Thus, (R, @, +) is a commu-
tative semiring (in fact, a semifield). It is isomorphic with the
commutative semiring (R, +, x) via the map a — loga.

The mapping a — €D, ay, is convex. In fact, it is the convex
conjugate [3] of entropy.

Its derivative is

;aj@ak = exp <aj —@ak) =

& 21 €XP ak

exp a;

(12)

Since the numbers (12) sum up to 1, they can be seen as a prob-
ability distribution, which is often called the soft maximum.

Consider the family of functions t ), (ar/t), parameter-
ized by t # 0. For any ¢ < 1, we have

@ak > t@(ak/t) > tli%lth@(ak/t) = maxay, (13)
k k k

The limit in (13) is known as Maslov’s dequantization or trop-
icalization [14, 8]. It takes the semiring (R, ®,+) into the
max-sum (= tropical) semiring (R, max, +). Informally, we
can imagine this as mechanically replacing all occurencies of
operations @ in an expression with max. In the logarithmic
domain, it takes the sum-product semiring (R, +, X) into
the max-product semiring (R, max, x). Here, (13) states
the well-known fact that the £,, vector norm becomes the max-
norm as p — oo.

The similar limit for (12) reads
exp(a;/t) { 0
1 3 = x| —1
t—0+ >, exp(ax/t) | K|

where K* = argmax,, ax. This equality is easily verified by
computing the limit.

ifj ¢ K*
if j € K*

(14)

3.2. Overcomplete representation

If there are no affine dependencies among the vectors from
Y (in other words, aff Y = RY) then (Y, I) is a minimal rep-
resentation of the family (10). If the elements of Y are affinely
dependent, it is an overcomplete representation. Then there is
at least one vector 6 such that @y is constant for ally € Y.
If this constant is zero, we speak about a homogeneous depen-
dency. If this constant is non-zero, we speak about an inhomo-
geneous dependency — in that case, 8 can be scaled to make
this constant equal to 1. Stacking all such vectors 8 as matrix



rows yields

Ay=0, By=1 VyeY (15)

Matrix A € RP*! captures homogeneous dependencies and
B € R?*! captures inhomogeneous dependencies, where the
sets P and () index the rows of the matrices. Equations (15)
need not be linearly independent but they are assumed to cap-
ture all existing affine dependencies, which means that

af Y={pcR' |Au=0, Bu=1} (16)
If o € R” and B € R? are arbitrary row vectors and
0 =6—-aA—-p3B (17)

then 'y = @y — 31 and F(8') = F(0) — 31. It follows that
q(-16") = q(-|0), i.e., the function ¢(-|8) is preserved by the
transformations (17). This transformation is therefore called a
reparameterization of the distribution. We further distinguish
the subclass of transformations (17) given by 8’ = 8 — A
and call them homogeneous reparameterizations. The fact that
0 and @’ are homogeneous reparameterization of each other is
denoted by 6 ~ @’. While homogeneous reparameterizations
preserve Oy and F'(0), general reparameterizations preserve
only the difference? Oy — F(0), i.e., only distribution (10).

3.3. Mean parameters

The exponential family (10) naturally arises as follows:
find a distribution ¢(y) with maximum entropy and prescribed
mean values g € R’ (a column vector with components ;)
of the functions y;, ie., > cy q(y)y = p. This is why
(1) or (10) is sometimes called the maximal entropy model.
Solving this linearly constrained concave maximization task is
easy and it reveals that ¢(y) must have the form (10), where
0 appeared as Lagrange multipliers. Since entropy is strictly
concave, p determines ¢(y) uniquely. The numbers u; are
called the mean parameters (or moments). Thus, any distri-
bution from the family is uniquely given either by canonical
parameters @ or by mean parameters ft.

The mean map m: R! — R’ given by

Zer Yy €xp ey

(13)
> yey exp Oy

m(0) = > q(y|0)y =

yeY

assigns the mean parameters g = m(8) to canonical parame-
ters 0. The set of inverse elements is denoted by

m~ () = {0 R | m(0) = p}

The ambiguity in solving the equation g = m(0) is given
exactly by reparametrizations; in other words, the set of all
equivalents of 6 is equal to the set m~*(m(@)). Abusing no-
tation, by ¢(y|m~!(u)) we denote the distribution from the
family (uniquely) determined by pt.

19)

The mean values of y over all possible distributions ¢(y)

2Thus, reparameterization can be understood in two slightly different
meanings, according to whether only the distribution g(- | @) or also the un-
normalized distribution Oy is preserved. In other texts, they often have only
the first meaning, which we call here homogeneous reparameterization.

form the mean polytope

{ X oy |aw) 0.3 aty) =1} =convy  0)

YeY yeY

The equality in (20) is obvious by realizing that the scalars
q(y) play the role of the coefficients of convex combinations.
Let us emphasize that ¢(y) in (20) denotes arbitrary distribu-
tions, not necessarily from the exponential family. However,
any vector u from the mean polytope can be realized also by
a distribution from the exponential family, except the vectors
on the boundary of the mean polytope, i.e., the range of the
mapping m is the set riconvY. This follows from the fact
that any @ € riconv'Y can be realized by infinitely many dis-
tributions ¢(y) with the mean values p, and restricting ¢(y)
to have the form (10) only picks the one with the maximum
entropy. The boundary points are not covered because m(6)
approaches the boundary of the mean polytope when and only
when some components of 8 approach infinity [21],

m(0) — rbdconvY << ||0]] - x

ey

Note that vectors y and p are closely related: they both
live in the mean polytope conv Y but while g attain any value
from (the inside of) convY, y is an element of the finite set
Y.

Using rule (12), one obtains the important equality

dF(0)

a0 m(6) (22)

3.4. Entropy

One easily derives that the entropy of distribution ¢(y | 0)
is F(8) — Om(0). It follows that the function H defined by

H(p) = F(6) - 0p } -
where 0 is arbitrary such that m(0) = p
is the entropy of distribution ¢(y |m~1(u)) as a function of
p. The definition (23) is well-defined even for overcomplete
parameterization because the number F'(8) — O is the same
for all @ satisfying m(0) = . The function H is positive and
concave and its domain is riconv Y.

Figure 1 shows plots of the log-partition function F', the
mean map m, the entropy function H, and the mean polytope
conv'Y for a simple exponential family with |I| = 2 potential
functions.

The relative entropy (KL-divergence) from a distribution
q(y| ) to a (possibly different) distribution ¢(y |m=!(u)) is

DO p) = F(8) — H(p) - Op 24)
Any 6 € R and p € riconv Y satisfy
DO p) >0 (25)

where the equality holds if and only if & = m(8), i.e., if the
distributions ¢(y |0) and ¢(y |m~'(u)) are equal.

Minimizing (24) allows us to express F'(0) and H(u) of a
single distribution in terms of each other as follows:

sup [Ou—F(0)] = { —H(p) if periconvY

. 2
OcR! +o0 if ¢ convY (262)
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Figure 1. The plot of F'(6), m(0) and H(u) for exponential family
independently drawn from the normal distribution A/[0, 1].

max_ [0+ H(p)] = F(6)

peEconvyY

(26b)

In (26a), we leave out the case p € rbd Y, which needs to be
handled in a special way [21]. The convex minimization task
(264) attains its optimum at all vectors 0 satisfying & = m(8).
The concave maximization task (26b) attains its optimum at a
single vector . = m(6).

In fact, (26) shows that F'(f) and —H (u) are related by
convex conjugacy (Fenchel-Legendre transform) [3] and thus
(25) can be alternatively interpreted as Fenchel’s inequality.

For a minimal representation, similarly to (22) we have

dH () -1
™ (»)
However, this is not valid for an overcomplete representations
since H is defined on riconvY C aff Y, where aff Y is a
strict subset of R?. Thus we cannot write simply dH () /du
but the derivative must be taken relative to affine space aff Y.

27

3.5. Generalized Iterative Scaling

Suppose we are given p € riconvY and want to find
such that ¢ = m(@). This is known as moment fitting. Of
course, 0 cannot be found in closed-form — but it can be com-
puted by a simple algorithm, the Generalized Iterative Scaling
(GIS) [6, 5]. It assumes that y; > 0 and >, y; = 1 for each
y € Y, which can be always achieved by affine transforma-
tions of vectors y. Iterating the update

0; — 0; —logm;(0) + log u; (28)

converges to a state when g = m(@). The algorithm monoton-
ically increases the value of @ — F'(0), thus it can be under-
stood as solving the optimization problem (26a). Despite its
simplicity, proving convergence in argument is difficult [6, 5].

For the special case of undirected graphical models, the GIS
algorithm reduces to the Iterative Proportional Fitting (IPF)
procedure [7] and its analysis is much simpler.

3.6. Zero temperature limit

Let us look more formally at the zero temperature limit.
Primarily, this means to investigate the behavior of the dis-
tribution ¢(y | 8/t) for the temperature ¢ approaching zero. In
turn, we can speak about the zero-temperature limit of not only
q(y|0/t) but also of the log-partition function F, the entropy

convY
256, I = {1,2}, and the numbers y; were

H, and the mean map m. Though only the limit F' of F is
directly useful for the inference tasks we consider, to give a
complete picture we will discuss the limit also for p, H and
m. In the sequel, we denote the zero temperature limit of a
quantity by placing a bar over it, e.g., F and F.

The zero temperature limit of the log-partition function F'
(see §1) is given by

F(0) = li%a+ tF(0/t) (29a)

= (7] 29b

max 0y (29b)

= max_ 6u (29¢)
pEconvyY

Equality (292)=(29b) follows from the property (13) of the
log-sum-exp operation. Equality (29b)=(29c) follows from
the well-known fact that the optimum of a linear function in
a polytope is always attained in at least one vertex.

Relation (29¢) is important because it expresses ['(0) as a
linear programming over the mean polytope. Note, (29b) can
be alternatively obtained as the limit of (26b), since

Jm t0p/t + H(p)] = Op (30)
The zero temperature limit of distribution (10) trivially fol-
lows from (14):

a(y16) = lim q(y|0/1) = {l)Y*(ﬁ’)l‘1 ify € Y ()

otherwise

where Y™ (0) = argmax, v 0y is the set of points with max-
imal probability. This proves the statement that g(y | @) is non-
zero if and only if ¢(y| @) is maximal.

Note, while the log-partition function F'(8) is the normal-
izing term of distribution ¢(y | @), nothing like this is true in
the zero temperature limit: F(8) is not the normalizing term
of 4(y |6).

The entropy of G(y|€) is given by —log|[Y*(0)|. The
mean function of g(y | 0) is
- 1 _ * —1
m(0) = lim m(6/t) =[Y"(0)" > vy (D

YEY*(0)

i.e., m(@) is the barycenter of the points Y*(0) with maxi-
mum probability. The range of the function m is the finite set,
each element of which is the barycenter of the vertices of one
face (of any dimension, i.e. including vertices) of convY.



4. Decomposition to subproblems

Here we develop the approach based on decomposition to
subproblems, proposed in [23, 20]. In §4.2 we consider the
non-zero temperature case, i.e., the upper bound on the log-
partition function F'. In §4.3, we consider the zero temperature
case, i.e., the upper bound on F. For both cases, we formulate
the minimization of the upper bound, its Lagrange dual, and
optimality conditions of this dual pair. In §4.4 we summarize
these theoretical results and relate them to each other.

4.1. Notation for subfamilies of the exponential family

Further in §4, we will need to manipulate with subfamilies
of the exponential family (10) obtained by reducing the set of
its basis functions. That is, while family (10) is represented by
(Y,I)where Y C R’, we will consider families represented
by (Y', I') given by

q'(y'|0") = expl0'y’ — F(6)]
wherey’ € Y/, I’ CTand Y CR”.

It will turn out convenient to express the log-partition, mean
and entropy functions of the subfamily (Y’,I’) in terms of

those of the family (Y, I). For that, we will represent the sub-
set I’ C I by its characteristic vector § € {0, 1}/, such that

I'={iel|6=1} (33)

(32)

We further define operation §«z to be the componentwise prod-
uct of two vectors, where the result is a column resp. row vec-
tor if z is column resp. row. This can be seen as the projection
onto the dimensions given by non-zero componenets of §. For
asetZ c Rl wedenote§+Z ={d+z|zcZ}.

Now, the characteristics of subfamily (Y’,I’) can be ex-
pressed in terms of those of family (Y, I) as follows:

e The distribution is ¢(y | + 0).
e The log-partition function is F'(d « 0).

e The mean polytope is deconvY = {dey |y € convY },
up to extra zero coordinates.

e The mean map is § +m(d ), up to extra zero coordinates.
Note that §* = 0 does not imply that m;(d « 8) = 0.

e Using (23), the entropy function is defined by

AHk(H)::F(a'O)A(d'O)H (34)
where 0 is arbitrary such that de pt = e (5« 9)

where the domain of function Hy is the polyhedron
Ms={peR |§epcdeconvY} (35)
Note that Hs(p) = Hs(d » o) but Hs(p) # H(d « 9).

4.2. Non-zero temperature

Let {0° € R! | s € S} be a collection of parameter vec-

tors satisfying
S
seS

(36)

Recall that ~ denotes homogeneous reparameterization. Let
scalars p® > 0 be such that ) ©__ o p° > 1. Then

FO)=F(>6°) <> pF(6°/p)

SES seS

(37)

If > .cgp® = 1, inequality (37) follows from Jensen’s in-
equality applied on the convex function F. If 3 _op° > 1,
inequality (37) follows from the property of the log-sum-exp
operation given by (13). In fact, the inequality is looser for
larger value of ) ¢ p°.

The parameter vectors 8° are chosen such that the func-
tions F'(6°) are tractable to compute, typically by setting most
components of 8° to zero. The upper bound (37) is minimized
over collections {0°} such that (36) holds and the zero com-
ponents of 6° are kept zero. Here, the free components of 6°
are given by an indicator vector §° € {0, 1}! by requiring that
0° = §° « 6°. These vectors form a collection

A={8¢c{0,1} |sc S}
which is required to cover the whole set I, i.e.,

maxd; =1 Viel

ses

(38)

Now, the least upper bound is equal to

min { 37 5 F(8° + 6°/p) \ 6 R, > 56"~ 0} (39)
SES SES

Now we form the dual to the convex minimization task (39).

Theorem 1. The convex minimization task (39) and the con-
cave maximization task

max {Ou + Zpngs(u) ’ [TRS ﬂ Mss, Ap = O} (40)
SES seS

are related by strong Lagrange duality.

Proof. Note that (36) is satisfied if and only if > 60° = 6 —

aA for some . Denoting the Lagrange multipliers by i, the
Lagrangian of task (39) reads

L({6°}, @, p) = (0—aA)u+ S [p"F(5°6° /p°)—(5°6") 1]

ses

The dual reads max,,cgr L(p), where the Lagrange dual func-
tion L(p) = infrgs) o L({0°},, ). If Ap # O then
L(p) = —oo, hence the constraint Ay = 0 is needed. Let
Ap = 0. Then

L(w) =0p -+ inf [p°F (8" +0/p%) = (5" + 0)
s€S

By (26a), we have

. s 05 (& | p*Hs(p) if p € ri M
L [ F(8-0/p0) -0y = { 711000 ke
Thus, the constraint g € (5., Ms is needed. ]

Next we formulate the conditions of joint optimality of the
dual pair (39)+(40).

Theorem 2. The following two statements are equivalent:

o {0°} is optimal to (39) and p is optimal to (40).



o {0°} and p satisfy

0 epp=06°em(0°+0°/p°) VseS (41a)
> 5°.0°~0 (41b)
% Ap=0 41¢)

Proof. The conditions are easily obtained by setting the
derivatives of L({6°}, a, u) w.r.t. 0°, o and p to zero, us-
ing (22) and some simple manipulations. |
4.3. Zero temperature

Similarly as (37), we can write the upper bound on F:

Fo)=F(Y 6%) <Y F(6)

ses ses

(42)

Since F(8/p) = F(0)/p, the scalar p in (37) cancels out.

Let us write the dual pair expressing the least upper bound
(42), analogical to (39)+(40). Taking the zero temperature
limit of the primal (39) results in F'(@) being replaced with
F(0), as shown by (29):

min { S F(8° -6 ] 0°cR, S 8 .0° ~ o} 43)
sES seS

Taking the limit of the dual (40) results in the entropy term
vanishing, as shown by (30):

In&x{@u ' ne ﬂ Ms, Ap = 0}
[ J<PAN

(44)

We give a formal proof that the tasks (43) and (44) are really
dual. Given the above arguments the proof may seem unnec-
essary — but we will refer to this proof later in Theorem 4.

Theorem 3. The tasks (43) and (44) are related by linear pro-
gramming duality.

Proof. Consider the following simple pair of linear programs:

h — min 6 Z q(y)y — max (45a)
yeY
Oy < h q(y) = 0 VyeY  (45b)
heR D aly) =1 (45¢)
yeEY

It is quite obvious that the linear programs (45) are dual to
each other and their common optimum equals /(). The con-
straints in the pair are written such that a variable and its La-
grange multiplier is on the same line.

In a similar way, the tasks (43) and (44) can be respectively
written as the following linear programs:

Zhs —min O — max (46a)

SES
D 540" +aA =0 peR! (46b)

SES
(0°0°)y <h* *(y) >0 Vs, y (46c¢)
0° cR' 6°) ¢*(y)y=6"+p Vs (46d)
yeEY

h* € R > fly)=1 Vs  (46e)

yeY

aeR? Ap=0 (46f)
It can be verified that either program can be constructed from
the other one by LP duality. [ ]

Next we give optimality conditions, analogical to (41).

Theorem 4. The following two statements are equivalent:
o {0°} is optimal to (43) and p is optimal to (44).
o {0°} and p satisfy
0% ep € 6%« argmax (6°«0°)u Vse S (47a)
pEconvyY
> 5°.0°~0
ses
€ Ap=0

(47b)
(47¢)

Proof. We shall show that (47a) are the complementary slack-
ness conditions for the LP pair (46).

First, we can eliminate the variables h® because at opti-
mum, we have h® = F(§° « 0°) = maxyey(6° + 6°)y. By
complementary slackness, the two inequalities on line (46¢)
are never simultaneously strict, i.e., for all s and y we have

[(6°+6°)y — max(6°« 0°)y]¢*(y) =0 (48)
yeY
Now, realize that the following two sets are equal:

argmax Op = { > aly)y ’

peEconvyY yey
> = - =
a(y) 20, > _aly) =1, [y — magOyla(y) = 0 }
YEY
The last constraint in the right-hand set is the same as (48), up

to projections onto subspaces §°. Taking into account (46d),
this shows that p satisfies (47a). u

4.4. Summary of the section

The theoretical results obtained so far in §4 may look com-
plex. Here we interpret them and relate them to each other.

In the sequel, we set p° = 1 for simplicity. Of course,
inequality (37) remains satisfied for this case. However, if we
are interested in upper bounds of the log-partition function F'
in the sense of [22], we need to keep in mind that inequality

(37) is tightest for ZSES p° = 1 and (very) loose for p° = 1.

4.4.1 Primal tasks

Let us first recall the convex tasks (39) and (43) of minimizing
the upper bound on F' and F:

min{ZF(&“" . 6%) ] 0°cR, S 80" ~ 0} (492)
seS

ses
min{ STF(+0%) |07 R, 3 60"~ 0} (4ob)
seS seS
4.4.2 Dual tasks

First, recall formulas (26b) and (29b), showing that the true
functions F' and F’' can be expressed as optimizations over the



mean polytope:

F0)= max_[0p+ H(p)] (50a)
peEconvyY

F(6) = 0 50b

(6) =, o, On (50b)

Now, notice that the duals (40) and (44) of (49) can be written
in a similar form:

F) < Op + H 51
()—JE%[“ %ZA s(w)] (Sla)
F(9) < (7] 51b
(0) < max Op (51b)
where the polyhedron M4 is given by
MA:{NERI\Ap,:O}ﬂﬂM(; (52)
[ YSAN
where (see (35))
Ms={pecR |§epcdeconvY} (53)

This shows the difference between the variational formu-
lation (50) for the true F' and F' and for their upper bounds
(51): the latter is obtained from the former by replacing the
exact entropy function H with the sum of entropies Hg of the
subproblems and the mean polytope conv Y with M.

The set (52) is the intersection of polyhedra Mg and the lin-
ear space Ay = 0. The intersection (5o Ms is the largest
polyhedron that has the same projection onto each subspace
& € A as the mean polytope conv'Y (Figure 2 visualizes this
construction for |I| = 3). It follows that M is an outer bound
of the mean polytope conv'Y.

Without assuming (38), Ma can be an unbounded polyhe-
dron. However, if (38) holds, M is bounded (i.e., a polytope)
because its projections d « conv Y are bounded and each coor-
dinate is covered by at least one subproblem.

While ¢ € conv'Y can be obtained as mean parameters of
the exponential family (10) for some 6, this may not be true for
u € Ma. Since convY C Ma, avector y € Ma \ convY
does not correspond to mean parameters of family (10) for any
0. Therefore, p € Ma can be called pseudo-mean parameters
and M can be called the pseudo-mean polytope.

4.4.3 Optimality conditions

Let us now focus on conditions (41), stating when the upper
bound on F' is optimal. Condition (41a) can be formulated in
a more transparent way as the set of equations

i = m;(8° « 0%) VseS,iel, 6 =1 (54)

This shows that optimality of the pair (39)+(40) is character-
ized by the fact that the mean parameters of overlapping sub-
problems are equal.

In the zero temperature limit, the situation becomes differ-
ent. The conditions for joint optimality of the pair (43)+(44)
are given by (47). Although expression (47a) may look com-
plex, it has a clear interpretation. The set argmax,cony v O
is the optimal face of the mean polytope with respect to the
linear function Ou. Thus, the set on the right-hand side of
(47a) is the optimal face of the mean polytope of subproblem
s, up to extra zero coordinates. Multiplying both sides of (47a)

H3

" A = {(101), (011)}

Figure 2. The top subfigure shows an example of the mean polytope
convY for I = {1,2,3} (in red) and its projections onto dimen-
sions 6 = (100), (010), (001), (011), (101), (110) (in blue). The
bottom subfigures show the polyhedron (4 ea Ms (in green) for two
different collections A.

" A = {(110), (001)}

H3 M3

/ N\

m /1
Figure 3. Intersection of the optimal faces of the subproblem polyhe-
dra Ms (in blue) shown in Figure 2 for A = {(101), (011)}. In the
left subfigure, the optimal faces pulled back to the original space (in
green) do not intersect. In the right-hand subfigure, they intersect in
the 1-dimensional intersection (in red).

by ° means that yu; is arbitrary whenever 67 = 0. Hence,
(47a) requires that the optimal faces of the mean polytopes of
the subproblems (pulled back to the original space RT) have a
non-empty intersection (see Figure 3).

In fact, we can write the optimality condition for both non-
zero and zero temperature as a single formula:

0°ep € 0% argmax [(6°+60°)pu+tHgs (1)
pEconvyY

Vs e S (55)

For t = 1, the right-hand set has only a single element (be-
cause entropy is strictly concave) and thus (55) reduces to (54).
For t — 0+, the right-hand set has in general an infinite num-
ber of solutions and (55) reduces to (47a).

Note that conditions (47a) can be seen as a generalization



of the subproblem agreement (8), given by

y € argmax 6°y Vs e S (56)

yeEY

4.4.4 When overcompleteness can be ignored

Sometimes, expression ) _60° ~ 6 in (39) can be replaced
with Y~ 0° = @ without affecting the optimum. This would
be of course convenient: it would simplify many expressions
in §4, removing the symbol ~ and constraint Ay = 0. The-
orem 5 specifies when this is possible>. We shall see in §7.2
that for MRFs, the assumption of the theorem has a clear in-
terpretation.

Theorem 5. Let every p € (\sca Ms satisfy Ap = 0 (ie.,
the polyhedron (5. A Ms is contained in the linear subspace
Ap = 0). Then replacing ~ with = does not change the
optimal value of (39) and (43), and removing the constraint
A p = 0 does not change the optimal value of (40) and (44).

Proof. The constraint Ay = 0 corresponds via duality to La-
grange multiplier &«. When Ay = 0 is implied by other con-
straints, it can be removed along with its multiplier. [ ]

5. Coordinate descent

In this section, we present a (block-)coordinate descent al-
gorithm to minimize (or at least decrease) the upper bound on
F and F, i.e., to solve the optimization tasks (39) and (43).
This will be done for the general form of the distribution (10),
where (Y, I) are not constrained to define a graphical model.
Our algorithm has two sources of inspiration:

e Generalized Iterative Scaling (see §3.5), which fits canoni-
cal parameters 6 into given mean parameters .

e Max-sum diffusion [12, 28, 30, 29] and similar algorithms
[10, 9], based on averaging (max-)marginals in MRFs.

We have not been able to formulate coordinate descent for
the completely arbitrary exponential family (10). We have
achieved the following:

e For non-zero temperature (§5.1), we give an algorithm that
strictly and monotonically decreases the upper bound un-
der assumption that 0 < y; < 1. This is not a restriction
since it can be always achieved by an affine transformation
of vectors y.

For zero temperature (§5.2), we give an algorithm that
monotonically (but not strictly) decreases the upper bound
under assumption that y; € {0,1}. This algorithm is a
straightforward modification of the algorithm for non-zero
temperature.

Throughout §5, it is supposed that the assumptions of Theo-
rem 5 hold, hence ~ can be replaced with = and the constraint
A p = 0 can be discarded in (39), (40), (41), (43), (44), (47).
We believe it would not be hard to relax this assumption.

3The problem ‘~ vs. =’ has been discussed also in [10].
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5.1. Non-zero temperature

Recall (§3.5) that the equation p = m(@) can be solved
by the GIS algorithm, which is equivalent to solving the opti-
mization task (26a). In GIS, we iterate an update 6; <« 0; + &,
where ¢ is chosen such that

(a) the objective O — F'(6) improves,
(b) & = 0if and only if p1; = m;(0).

The choice £ = log p1; —log m;(0) in (28) satisfies (a) and (b).

To minimize the upper bound on the log-partition function,
we are in a similar (though more complex) situation. We need
to solve the optimization task (39), which is equivalent to solv-
ing the equation system

i = mi(8° - 6°)

> 05 =0

sES;
for {6°} and p, where we denoted by S; = {s € S| i =1}
the subset of the subproblems overlapping at ¢ € 1. While in
GIS we fit 8 into given mean parameters p, here we want to
find 0 satisfying (57b) such that the mean parameters of over-
lapping subproblems coincide. To do it, we iterate an update
in which we pick a single ¢ € I and change the block of coor-
dinates { 67 | s € S; } as

0 — 05+

(57a)
(57b)

Viel, s€S;
Viel

where the correction terms { £° | s € S; } are such that

(a’) the objective > g F'(6° » %) improves,

(b’) &° = 0if and only if the mean parameters { m,;(6° «0°) |
s € S; } are the same,

() ZS es, &s = 0, hence condition (57b) is kept satisfied.

We show how to choose such {£°}. Let
é-s — |:w1| Z ni((ss’ . 05/):| _ nl(as . 05)

s'es;
where n;(6) = logm;(0).

Quite obviously, {£°} defined by (59) satisfy conditions
(b’) and (c’) above. It is much less trivial to prove that they
satisfy also condition (a’). It is given by Theorem 6, where we
assume .S; = S without loss of generality. It is easy to verify
that {£°} satisfy the assumption (60) of the theorem.

(59)

Theorem 6. Let ] € R and 0 < y; < 1. Pick a single i € I.
Let { &% | s € S} be any numbers satisfying

Pini(6°) + €] < Pni6°)

seS seS

(60)

Then updating the parameters { 05 | s € S} as 05 — 05 + &°

strictly decreases the expression ), ¢ F(0°).

Proof. In appendix A. [ ]

This update (58) is done sequentially, i.e., the function n
is newly calculated for each new i, such as shown in Algo-
rithm 1. The update (58) need not find the global minimum of
the upper bound over the block of coordinates { 67 | s € S, },



Algorithm 1 (coordinate descent)
repeat
for i € I do
for s€ S, do v] < n;(6°+0°) end for
vi = |Si| 7 Ve, i
for s€S; do 6 — 07 —vi +v; endfor
end for
until convergence

it only ensures a strict improvement whenever the optimality
conditions are not satisfied.

Of course, properties (a’)+(b’)+(c’) may not imply conver-
gence to the solution, they only guarantee monotonic and strict
improvement of the bound.

5.2. Zero temperature

Let us now focus on minimizing the upper bound on F, i.e.,
on solving the optimization problem (43). Coordinate descent
from §5.1 can be very naturally modified for (43): simply re-
place each occurrence of the log-sum-exp operation © with
the ordinary maximum, like in tropical algebra [14, 8]. To do
it, we first express the functions n;(8) used in (59) in a differ-
ent form, containing the operation @. Obviously, (18) can be
alternatively written as

logm(0) = n:(6) = Fi(0) — F(6) (61
where
Fi(0) = D6y +logyi] (62)
yeY
Now, let {£°} in (58) be given as
&= | SRR o) ~m@o) @

where the functions 7; are defined as n; where & is replaced

with max:
n;(0) = Fi(0) — F(0) (64a)
F;(0) = max[0y + log ;] (64b)
yYEY

Thus, Algorithm 1 can be used after replacing n; with 7n;.
Then, Theorem 6 holds which is very similar than Theo-
rem 6 but weaker in two ways. First, vectors y are required to
satisfy y; € {0, 1} rather than only 0 < y; < 1. Note that in
this case (since log 0 = —o0), expression (64b) can be more
conveniently written as
F;(0)= max 0y =0;+ max Z 0;y;

€Y |yi=1 €Y |y;=1
YEY|y; YEY|y; jeri

(65)

where the second equality is easy to verify. Second, the up-
per bound may not always strictly decrease — sometimes it de-
creases and sometimes it remains unchanged.

Theorem 7. Let 67 € R and y; € {0,1}. Pick a singlei € I.
Let {&° | s € S} be any numbers satisfying

max[;(07) +£°] < max;(6°) (66)
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Then updating the parameters { 07 | s € S} as 07 — 07 +¢&°
does not increase the expression ), g I'(0°).

Proof. In appendix A.

Theorem 7 is obviously not sufficient to guarantee a strict
improvement of the bound, it only states that the bound does
not become worse. To guarantee strict improvement, we would
need a stronger theorem. In analogy with MRFs, such a theo-
rem could look as follows. There exists a property P of collec-
tion {€°} such that if P is not satisfied then after a finite num-
ber of updates the upper bound strictly improves. In MRFs, P
is weak tree agreement [10], more widely known as arc con-
sistency [28]. We did not find such a property for general ex-
ponential families and we do not know whether it exists.

Note the following important subtlety. The fixed point of
the non-zero temperature version of Algorithm 1 is character-
ized by equality of the mean parameters of overlapping sub-
problems given by (57), i.e.

Viel3u;Vse Sy  ug=my(6°+0%) 67)

After substituting (61) we can write (67) equivalently in the
logarithmic domain as

Vieldy;VseS;: Vi = TLZ((;S . 05) (68)

The fixed point of the zero temperature version of Algorithm 1
is characterized by the condition

Vie I3y VseS;: v =ni(6°6% (69)

While for non-zero temperature we have two equivalent con-
ditions (68) and (67), for zero temperature we have only con-
dition (69) but there is no analogy of condition (67). This is
because there exists no zero-temperature version of equality
(61) (see §3.6): the zero temperature limit m of the mean map
given by (31) is not related to n in any simple way.

The fixed point (69), obtained by mechanically replacing &
with max, is different from condition (47), necessary and suf-
ficient for optimality of the upper bound under zero temper-
ature. Thes two conditions are incomparable, (69) is neither
stronger nor weaker than (47). It follows that the algorithm in
general may not find the global minimum of the upper bound.
This is not surprising as we are solving the minimization task
(43) which is convex but nonsmooth. It is well-known [2] and
rather obvious (see Figure 4) that (block-)coordinate descent
does not find the global minimum of a nonsmooth convex func-
tion in general. It finds a point that is globally minimal for
each coordinate separately but may not be for all coordinates
simultaneously. This can be seen as a ‘local minimum’, where
locality is defined with respect to the coordinate moves.

We carried out experiments in which we chose small sets
Y and I (where 0 < y; < 1 for non-zero temperature and
y; € {0,1} for zero temperature) and random 6. Subproblem
collection A was generated randomly, subject to the covering
condition (38). We observed that both the non-zero and zero
temperature version of Algorithm 1 always monotonically de-
creased the upper bound and converged to a state when the
fixed conditions were satisfied.



Figure 4. The figure shows the contours of a non-smooth convex func-
tion, f(z,y). Coordinate descent did not find the global minimum:
point (z*,y*) is globally minimal for each coordinate separately but
not for both simultaneously.

5.3. A note on interior point algorithm

The fact that the coordinate descent algorithm does may not
find the global minimum of the upper bound can be alleviated
by running the algorithm for gradually decreasing sequence
of non-zero temperatures, converging to zero. This smoothing
method to avoid local minima of a convex non-smooth func-
tion has been discussed elsewhere [30, §7.4], [25, 9, 16].

From the point of view of the dual tasks (51), these algo-
rithms are interior point algorithms because as the temperature
decreases, the current optimal solution & moves from the in-
terior of the polytope M to its boundary. Here, the function
> _sea Hs(p) in problem (40) plays the role of the barrier
function. A typical barrier functions approach infinity when
the parameter approaches the boundary of the feasible set. In
contrast, it follows from (27) and (21) that when p approaches
the boundary of conv Y, our barrier function remains finite but
the magnitude of its derivative approaches infinity.

6. Cutting plane algorithm

By including more and more complex (but tractable, such
as cycles or graphs with limited treewidth in case of MRFs)
subproblems into collection A, one obtains a hierarchy of in-
creasingly tighter upper bounds. Moreover, not all subprob-
lems need be present in A from the beginning — they can be
added incrementally. We can start with A containing some
simple subproblems (such as trees in case of MRFs) and incre-
mentally add more complex ones (such as cycles or problems
with small treewidth).

6.1. Zero temperature

Let us first consider the cutting plane strategy for zero tem-
perature, i.e., to upper-bound F'. If the least upper bound given
by a current collection A turns out to be loose, we can add a
suitable subproblem d ¢ A to A. If we initialize the canon-
ical parameters of this added subproblem to zero, the current
upper bound Y~ _ F'(§° « 8°) on the mode F' does not change —
this is because F'(6) = 0 for @ = 0. Subsequent iterations of
Algorithm 1 will either improve or preserve the upper bound.

In terms of pseudomarginals (i.e., of our dual tasks (51)),
an improvement would correspond to cutting off a part of the
pseudo-mean polytope Ma that is not in the mean polytope
conv Y. This strategy is well-known in integer programming
as the cutting plane algorithm. Indentifying a subproblem

12

whose addition would ensure a bound improvement then cor-
responds to the separation problem. The separation problem
can be easily formulated as follows: given a current optimal
vector g of pseudomarginals, find d such that & « g ¢ M.

We demonstrated this algorithm for the special case of
MREFs in [26].

6.2. Non-zero temperature

There seems to be an obstacle to using this form of the
cutting plane strategy for non-zero temerature, i.e., to upper-
bound F'. After initializing the canonical parameters of an
added subproblem to zero, the current upper bound on F' does
not change because F(0) = 0. However, the upper bound
on F increases because F'(0) = log|Y| > 0. This undesir-
able effect might be reduced by maintaining ) __ p* = 1 before
and after adding the subproblem (note that for zero tempera-
ture, p® cancel out). We do not know whether the effect can
be removed entirely by some straightforward modification or
whether it is an inherent obstacle to using the cutting plane
strategy to upper-bound the partition function.

One might conjecture that the effect would dissapear if the
upper bound on F' (given by (37)) was minimized not only
over {0°} but also over {p*}. The evidence (not proof) why
this could be so is as follows: if we add the subproblem §" = 1
(i.e., the original problem) and minimize (37) over {6°} and
{p*®}, the least upper bound will obviously be equal to F'(0),
attained at {p°} given by p” = 1 and p* = 0 for s # 7.
Unfortunately, minimizing over { p°} is a non-convex problem.

We did not further follow this interesting research direction.

7. Discrete Markov random fields

As an example of approximative inference in distribution
(1), here we assume that (1) is a pairwise MRF.

7.1. MRF as an exponential family

Let the MRF structure be defined by a (finite) set V' of vari-
ables, where variable v € V attains states from a finite domain
X,,andaset & C (‘2/) (thus, (V, E') is an undirected graph).

We show how (X, I, ¢) in (1) need to be chosen to repre-
sent this MRF. Let X = X ¢y X, be the Cartesian product
of the variable domains. A state of variable v is denoted by
xz, € X,. For MRFs, we denote elements of X by boldface
letter x = (x, | v € V'), rather than by « as for a general
exponential family. The set I is given by

I={(v,z) |vev, z e X, }
U {{(v,2), (v, 2")} [ {v, 0"} € B, w € Xy, 2’ € Xy }(70)
In subscripts, the elements of I are denoted by ,, ,, and 7 547,

adopting that ., 4,/ is the same as ,/, ;. The functions
¢;: X — {0,1} are indicator functions

Pu,y(x) = [y = Y] (71a)
¢UU’7yy’ (X) = ¢v,y (X) ¢v’,y’ (X) (71b)

With this choice of I and ¢, we have that
0¢(X) = Z ev,wv —+ Z e’uv’,wvxv/ (72)

veV {v,v'}eE
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label pair {(v, z), (v, 2’)} with weight 0y g0 = Ovrvare

label (v, 2)
with weight 6, , ——®= 2’
. label (v, z)
variable v’ — y 'L with weight 6,
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Figure 5. Visualization of pairwise MRF for |[V| = 12 variables,

graph (V, E) being the 3 x 4 grid graph, and |X| = 3 labels. The
grey boxes depict the variables (elements of ') and the circles inside
them variable states (elements of X,). Set [ is formed by all the cir-
cles and edges in the figure. The active elements of I corresponding
to an assignment x is given by ¢(x), thus ¢(X) contains the indi-
cator vectors specifying all valid labelings. An example labeling is
depicted in green. The value of 8¢ (x) equals the sum of weights 0;
sitting on the green nodes and edges.

Distribution (1) becomes a pairwise Gibbs distribution, i.e.,
a distribution defined by a MRF with cliques of size 2 [13].
It can be seen as a special exponential family, characterized
by the fact that the mean parameters m;(@) coincide with
the marginals of p(x|@) associated with all variables in V'
and variable pairs in E. The mean polytope conv ¢»(X ) con-
tains all realizable marginal vectors p and hence is called the
marginal polytope. Unlike for general exponential families,
the set ¢(X) has certain special properties: each elements of
¢(X) is a vertex of conv ¢(X) (i.e., ¢(X) is convexly inde-
pendent) and ¢(X) = {0,1} N aff p(X).

The matrices A and B, containing the coefficients of affine
dependencies (§3.2), are given implicitly in terms of expres-
sions (16) and (17) as follows. The row index sets of A and B
are P = {(v,v,z) | {v,v'} € E, z€ X, }andQ =VUE,
respectively. The expressions Ay = 0 and Bp = 1 are the
marginalization and the normalization constraints

ZMU,U,7M/ = s V{v,v'} € E, z € X,, (73a)

1"
§ ,Um,.'r
xT

Therefore, we have

aﬁ¢(X) = {N € RI ‘ Zﬂvv’tmx’ = Mv,z, Zﬂv,az = 1}

= Z,vav’,xz’ =1 WYwe ‘/7 {,U’,Ul} S (73b)

x,x’
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The reparameterization (17) reads*

/
011756 = 01},96 - E Qyy! x - ﬂv (75a)
v’ €N,
/
vz’ T gvv’,xz’ + Qo' z + Qyly,x’ — 6vv’ (75b)
~——
—aA -8B

where N, = {v' | {v,v'} € E} denotes the neighbors of
variable v. In subscripts, triplets (v,v’,x) € P are denoted
by v and pairs {v,v'} € E by ,,. The meaning of ho-
mogeneous reparameterization 8 = 6 — aA is as follows
(see Figure 6 and [28, 10]): for each (v,v’,x) € P, subtract
number v, , from parameter 6, , and add the same number
to parameters { 0y, zo | ' € X, }. This corresponds to ‘a
message’ in belief propagation literature. Reparameterizations
0 = 0 — 3B correspond to subtracting a constant from each
variable v and variable pair {v, v'}.

/ v zar + Qo

x
x
% Ov,z — Quur

U/ v

Figure 6. Homogeneous reparameterization.

Next we apply the results from §4 to upper-bound problem
(4). In that, we assume that collection A is such that all labels
of any variable or variable pair either all belong or all do not
belong to a subproblem. l.e., we assume there exist VV° C V
and £° C FE such that

Oy o =[veV?]
515)1;’,:1::6’ = [[{UVU/} € Esﬂ
for all s € S. Subproblem s is thus given by a pair (V*, E®).

To cover the whole problem, we require that | J, V* = V and
U, £° = E. Note that (V*, E*) need not be a graph in the
strict sense because we do not require that £* C (V;) E.g.
we can have V* = () and E* # (), in which case the ‘graph’
(V'#, E®) has an edge but no nodes.

(76a)
(76b)

7.2. Arc covering collections

Theorem 5 states on what conditions symbol ~ can be re-
placed with = in (36). Recall that this would lead to simplified
formulations of the optimization problems and optimality con-
ditions and allow to use Algorithm 1 as it is. The assumption
of Theorem 5 has a natural interpretation for MRFs, given by
Theorem 8. We define an arc of graph (V, F) to be an ordered
pair (v,v') € V x V such that {v,v'} € E. We will apply this
definition even on a ‘graph’ (V*, E%) with E* ¢ (‘/2)

Theorem 8. Let for each arc (v,v') of the graph (V, E) there
exists a subproblem s € S such that (v,v") is an arc of
(V*,E®). Then any p € (5o Ms satisfies Ap = 0.

Proof. Ap = 0 means that each arc (v, v’) of (V, E) satisfies
the condition ), ftyy’ 2zt = oz If pp € Nscp Ms, the
condition is satisfied for each arc of each subproblem (V*, E?)

“4In [27, 28], numbers Oty 5 are denoted by ¢,/ , and have the opposite
signs compared to (75).
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Figure 7. Three types of the collection of subproblems A.

separately. If each arc of graph (V| E) is covered by at least
one subproblem, the condition holds for all arcs of (V, E). ®

The assumption of Theorem 8 means that collection A cov-
ers not only all nodes and edges of graph (V, E) but also all its
arcs. In particular, this is true if each (V'*, E¥) is a graph, i.e.,
if £% C (\/2) for s € S. Here are examples of a covered and
an uncovered arc (v, v’), respectively:

E v v g v na

7.3. Examples of subproblem collections

In this section, we discuss typical examples of the subprob-
lem collection A, namely individual nodes and edges, trees,
and short cycles. They are depicted in Figure 7.

7.3.1 Individual nodes and edges
Let A be the nodes and edges of (V, E), i.e.,

S=VUE
Vool V=0
EY =10, E" = {v,v"}

The task (43) simplifies to
[ Z max 6, , + Z max 0;1),,9”./] (77)

veV {v,v'}eE

min

6'~6
which can be recognized as minimizing Schlesinger’s upper
bound [17, 27] over homogeneous reparamerizations of 6. The
pair (43)+(44) can be written in a compact way as the follow-
ing pair of dual linear programs:

Bl — min Op — max (78a)

a e RP Ap=0 (78b)
BeRVWE Bu=1 (78¢)
aA+3B >0 u >0 (78d)

Clearly, the left-hand program is identical to (77), and the fea-
sible domain of the right-hand program is (80). The polytopes
M3 are just simplices. At optimum, we have 3, = max, 0, »
and ﬁvv’ = MmaXg g/ va’@x’-

The arcs of (V, E) are not covered by A (see Figure 7a) and
thus we cannot directly use Algorithm 1. A closely related al-
gorithm that does not require A to be arc-covering is max-sum
diffusion [12, 27]. Its single iteration does the reparameteriza-
tion of a triplet (v, v’, ) such that equality

(79)

IHE/iX H’UU/,II' = ev,w
T
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becomes satisfied. Repeating this iteration for all triplets con-
verges to a state when (79) is satisfied for all the triplets.

7.3.2 Trees

One possible choice of the collection A is a collection of trees,
covering the whole graph (V| E). Here, we restate in exponen-
tial family terminology two well-known theorems concerning
tree collections.

Theorem 9 ([13, 21]). Consider a pairwise MRF such that
(V, E) is a tree. Then

conv ¢(X) = [0,1]' Naff p(X)

Theorem 10 ([21, 20]). For a pairwise arbitrary MREF, let col-
lection A contain trees that cover the graph (V, E). Then

Ma = [0,1]" N aff ¢(X) (80)

Theorem 10 implies that M does not depend on A if A
contains trees covering the whole graph, as argued in [10].

The polytope [0, 1]7 N aff ¢(X) looks more familiar after
substituting for aff ¢(X) from (74). It is called the local poly-
tope in [21, 20, 10].

One choice of A is the columns and rows of a grid graph
(Figure 7b). Another choice is that each tree is an inci-
dent triplet node-edge-node. Both these collections are arc-
covering.

7.3.3 4-cycles

Choosing the subproblems A as short cycles (as shown in Fig-
ure 7c) yields significantly tighter relaxation than with tree
subproblems. We have shown this experimentally in [26]. We
presented there also a cutting plane strategy for MRFs.

8. Conclusion

We have re-derived the decomposition approach by Wain-
wright et al. to upper-bounding the modes and partition func-
tion of discrete probability distributions of form (1) from gen-
eral exponential families (i.e., not only from MRF-defined dis-
tributions). It has turned out that the task of minimizing the
upper bounds, their Lagrange duals, and optimality conditions
have simple and natural interpretations (summarized in §4.4),
both for non-zero and zero temperature. Moreover, we have
given an algorithm to minimize the upper bound, which works
for general exponential families (although for zero tempera-
ture, the basis functions ¢; of the family are restricted to be
indicator functions).

What is the advantage of deriving the decomposition ap-
proach for general exponential families rather than only for
the special case of MRF-defined distributions? From theoret-
ical point of view, this gives a more complete picture on the
theory and helps identify which aspects of the decomposition
approach are present already on the general level of exponen-
tial families and which are specific to MRFs. For instance, it
seems so far that arc consistency (= weak tree agreement) has
no counterpart in general exponential families. Moreover, the
LP pair (78) looks extremely elegant and natural (given only



in terms of the matrices A and B defining the affine hull of
¢(X)) - but it as well seems to have no counterpart in general
exponential families.

From the practical point of view, it is a question to which
extent the generalization from MRF-defined distributions to
general ones can be useful. If the set X is tractably small,
inference can be calculated exactly. Thus, to apply our the-
ory we need X to be intractably large. One example of this is
a MRF, where X is a Cartesian product of variable domains.
Is there another practically interesting example of distribution
(1) with X being combinatorially large but which is not re-
ducible to a MRF? One option is that X is the set of permu-
tations — thus we could do statistical inference in distributions
over a set of permutations. Although we have not detailed
this case here, we believe it could be an interesting general-
ization of the the decomposition approach to MRF inference.
On the other hand, it seems quite challenging to find an ap-
plications in which distributions over permutations would be
useful and which would not at the same time be reducible to
an MRF - example problems (their optimization forms) can
be various kinds of weighted matching or the weighted Linear
Ordering Problem (e.g. [15]). Another choice for a combinato-
rially large X can be a set of graphs defined by some property,
the set of parsing trees of a grammar, etc.

The decomposition approach for zero temperature is
closely related to the dual decomposition approach known in
optimization. In this approach, the bound for large-scale prob-
lems is optimized by subgradient search as in [2, 11], or by a
coordinate descent as in [26] and this text. However, if we are
interested not only in the modes but also in the partition func-
tion and marginals of (1) where X is e.g. a set of permutations,
optimization is of no help here and our theory is novel.

A. Proof of Theorems 6 and 7

We will not use the substituion y = ¢(x) here, i.e., we will
use index x € X ratherthany € Y.

First, we prove Theorem 6. Before the update (58), we have
F(6°) = @, 0°¢(x). After the update, it is easy to verify that

F(6°) = DI0° p(x) + £ ()]
xT
where £° satisfy (60). We need to show that ) F'(6°) after
the update is strictly less than before the update.

Denote A*(z) = 6°@(x). The rest of the proof is
Lemma 1. For clarity, the lemma is formulated in the semir-
ing (R4 4,4+, x) rather than in (R, ®,+) and some symbols
are abbreviated. Thus, the symbols ¢;(z), F(0°), F;(6°),
A¥(x), n;(0°), £ in Theorem 6 correspond respectively to
g(x), log F*, log G*, log A*(x), log p®, log €% in Lemma 1.

Theorem 7 is proved similarly by translation to Lemma 2.

Lemma 1. Let A*(z) > 0and 0 < g(z) < 1. Denote

F=Y N, @ =Y N @), w0 =5

7 6D

Let £ > 0 be such that

e <> o

(82)
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Then
(83)

HZ)\S(:L,)(fs)g(x) < HFs

Proof. The proof proceeds by bounding the left-hand side of
(83) twice, which translates the inequality (83) into (82).

Any ¢ > 0andany 0 < g < 1satisfy’ €9 < 1+ (¢ —1)g
because the right-hand side is the tangent line of the concave
function & — &9 at & = 1. Applying this inequality on the
factors on the left-hand side of (83) yields

Do X@)(E)TW <Y N (@)1 + (60— Dg(a)]
=P+ (6 - 1)6°
Therefore, it suffices to prove that

[T+ @€ - <[] F?

S

which after dividing each factor by F'® reads

[T+ - <1

S

(84)

By the arithmetic-geometric average inequality, the inequality
(84) is implied by

Do+ (E -] <|S]

S

which is easily simplified to (82). [ ]

Lemma 2. Let g(x) € {0,1} and let Y, be replaced with max
in (81), (82) and (83). Then Lemma 2 remains true, with the
exception that inequality (83) may not be strict.

Proof. Suppose that Y has been replaced with max. Denoting
a={z]|g(x) =1}, wecan write G®* = max e, A*(x) and

(60" maX @)}

Clearly, max,¢, A*(x) < F**. Moreover, £°G® < F'*, which
follows from (82) and from the obvious fact that ° < 1. Thus,
the expression (85), and hence each factor on the left-hand side
of (83), is not greater than F'°. |

max A°(x) (fs)g(“’) = max

(85)
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