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Abstract

After the discovery that fixed points of loopy belief propagation coin-
cide with stationary points of the Bethe free energy, several researchers
proposed provably convergent algorithms to directly minimize the Bethe
free energy. These algorithms were formulated only for non-zero tem-
perature (thus finding fixed points of the sum-product algorithm) and
their possible extension to zero temperature is not obvious. We present
the zero-temperature limit of the double-loop algorithm by Heskes, which
converges a max-product fixed point. The inner loop of this algorithm
is max-sum diffusion. Under certain conditions, the algorithm combines
the complementary advantages of the max-product belief propagation and
max-sum diffusion (LP relaxation): it yields good approximation of both
ground states and max-marginals.

1 Introduction

Loopy belief propagation [17] is a well-known algorithm to approximate marginals
of the Gibbs distribution defined by an undirected graphical model. For acyclic
graphs, BP always converges and yields the exact marginals. For graphs with
cycles, it is not guaranteed to converge but when it does, it often yields sur-
prisingly good approximations of the true marginals. One informal argument
for this is that at a BP fixed point, marginals are exact in every sub-tree of the
factor graph [23, 24]. Attempts to understand loopy BP has generated a large
body of literature, see e.g. the survey [25].

BP has a modification, known as the max-product BP, where summations
are replaced with maximizations. In statistical mechanics terminology, this can
be understood as the zero-temperature limit of the ordinary BP. Max-product
BP computes (or approximates) max-marginals rather than ordinary marginals.

After the discovery [34, 33] that BP fixed points coincide with stationary
points of the Bethe free energy, several researchers proposed provably convergent
algorithms to find a local minimum of the Bethe free energy [35, 28, 22, 5,
6]. These algorithms have been proposed only for the sum-product and their
possible extension to the max-product is not obvious.
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We reformulate the double-loop algorithm [5] by Heskes such that taking its
zero-temperature limit becomes straightforward, which results in an algorithm
that always converges to a max-product BP fixed point. The inner loop of the
algorithm is max-sum diffusion [13, 29, 31, 2]. We empirically observed that with
a uniform initialization, the algorithm always yielded the same approximation of
ground states that would be obtained by max-sum diffusion (or other algorithms
for MAP inference based on LP relaxation, such as TRW-S [12]). Thus, it
combines the complementary advantages of max-sum belief propagation and
LP relaxation: unlike the former, it yields good approximation of ground states
and, unlike the latter, it yields a good approximation of max-marginals.

The text is organized as follows. We first (§2) review the basics of inference
in graphical models. We thoroughly discuss the zero-temperature limit of the
Gibbs distribution and related quantities and how to obtain their approxima-
tion by variational inference. Then we review two basic cases of variational
inference, with a convex free energy (§3) and with the Bethe free energy (§4).
Then (§3.1, §4.1) we discuss their zero-temperature limits in detail. Finally
(§5) we reformulate the double-loop algorithm [5] and modify it for the zero
temperature.

2 Gibbs distribution

Let V be a set of variables, each variable v ∈ V taking states xv from a finite
domain Xv. An assignment to a variable subset a ⊆ V is xa ∈ Xa, where Xa is
the Cartesian product of domains Xv for v ∈ a. In particular, xV ∈ XV is an
assignment to all the variables. Let E ⊆ 2V , thus (V,E) is a hypergraph. Each
variable v ∈ V and hyperedge a ∈ E is assigned a potential function θv: Xv → R
and θa: Xa → R, respectively, where R = R ∪ {−∞}. All numbers θv(xv) and
θa(xa) are understood as a single vector θ ∈ RI (or mapping θ: I → R) with

I = { (v, xv) | v ∈ V, xv ∈ Xv } ∪ { (a, xa) | a ∈ E, xa ∈ Xa }.

The Gibbs probability distribution over the hypergraph (V,E) is given by

p(xV ) = exp[ 〈θ, δ(xV )〉 − Φ(θ) ] (1)

where the mapping δ: XV → {0, 1}I is such that

〈θ, δ(xV )〉 =
∑
v∈V

θv(xv) +
∑
a∈E

θa(xa). (2)

For infinite weights, we set −∞ · 0 = 0 in the scalar product 〈θ, δ(xV )〉. Since
unary terms are included in (2) explicitly, we assume that E contains no single-
tons. The distribution is normalized by the log-partition function

Φ(θ) = log
∑
xV

exp〈θ, δ(xV )〉 =
⊕
xV

〈θ, δ(xV )〉. (3)
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In (3), we used x ⊕ y = log(ex + ey) to denote the log-sum-exp operation.
It will be useful to keep in mind algebraic properties of this operation. It is
associative and commutative, and addition distributes over it. Thus, (R,⊕,+)
is a commutative semiring. This semiring is, via the logarithm map, isomorphic
to the ‘sum-product’ semiring (R+,+,×).

Marginals. The marginals of the distribution are

µv(xv) =
∑
xV \v

p(xV ), µa(xa) =
∑
xV \a

p(xV ), (4)

where we abuse notation by writing V \ v instead of V \ {v}. The numbers (4)
are understood as a vector µ ∈ [0, 1]I . All realizable marginal vectors µ form
the marginal polytope conv δ(XV ), where δ(XV ) = { δ(xV ) | xV ∈ XV }. Be-
sides (an exponential number of) other constraints, µ satisfies normalization
and marginalization constraints∑

xv

µv(xv) =
∑
xa

µa(xa) = 1,
∑
xa\v

µa(xa) = µv(xv). (5)

All vectors µ ≥ 0 satisfying (5) form the local marginal polytope Λ. We have
conv δ(XV ) ⊆ Λ, with equality if and only if hypergraph (V,E) is acyclic (i.e.,
its factor graph is a tree). We also introduce a symbol for log-marginals,

νa(xa) = log µa(xa) =
⊕
xV \a

〈θ, δ(xV )〉 − Φ(θ) (6)

(and similarly for νv(xv)). For log-marginals, constraints (5) read⊕
xv

νv(xv) =
⊕
xa

νa(xa) = 0,
⊕
xa\v

νa(xa) = νv(xv). (7)

Reparameterizations. A reparameterization is an affine transformation of
vector θ that preserves (2) for all assignments xV ∈ XV . We first define the
local reparameterization on a pair (a, v) as follows: subtract an arbitrary unary
function αav: Xv → R from θv and add the same function to θa,

θv(xv)← θv(xv)− αav(xv), θa(xa)← θa(xa) + αav(xv). (8)

This preserves (2) because αav cancels out. We understand (8) as ‘passing a
message’ αav. Applying local reparameterization (8) to all pairs (a, v) with
v ∈ a ∈ E yields the general reparameterization

θαv (xv) = θv(xv)−
∑
a3v

αav(xv), θαa (xa) = θa(xa) +
∑
v∈a

αav(xv) (9)

where α = {αav(xv) | v ∈ a ∈ E, xv ∈ Xv } is the vector of all messages and
the transformed vector θ is denoted θα ∈ RI . Thus 〈θα, δ(xV )〉 = 〈θ, δ(xV )〉. In
fact, we have more generally 〈θα, µ〉 = 〈θ, µ〉 for all µ satisfying (5) and all α.
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Reparameterizations can be done either by directly modifying the vector θ
or by keeping θ unchanged and storing the messages α. While the former may
be better for theoretical analysis, the latter is preferable in algorithms. In the
sequel we freely switch between these two views.

2.1 Zero-temperature limit

In this section, we will use p(xV | θ) and µv(xv | θ), µa(xa | θ) to explicitly denote
the dependence of distribution (1) and its marginals on θ.

In statistical physics, the Gibbs distribution is usually considered in a more
general form as p(xV |βθ), where β > 0 is the inverse temperature [16]. The
limit β →∞ is then known as the zero-temperature limit .

It is elementary to show that the distribution

p∞(xV | θ) = lim
β→∞

p(xV |βθ) (10)

is zero everywhere except at ground states, which are the maximizers of p(xV | θ)
or, equivalently, 〈θ, δ(xV )〉. If there are multiple ground states then the mass is
distributed evenly among them.

The zero-temperature limit of the log-partition function is

Φ∞(θ) = lim
β→∞

Φ(βθ)
β

= max
xV

〈θ, δ(xV )〉, (11)

which follows from the limit

lim
β→∞

(βx)⊕ (βy)
β

= max{x, y}. (12)

The zero-temperature limit of log-marginals (6) yields max-marginals1

ν∞a (xa) = lim
β→∞

νa(xa |βθ)
β

= max
xV \a

〈θ, δ(xV )〉 − Φ∞(θ) (13)

(similarly for ν∞v (xv)). Observe that (13) and (11) differs from (6) and (3) only
by replacing the log-sum-exp operation ‘⊕’ with ‘max’. This corresponds, by the
limit (12), to transition from the semiring (R,⊕,+) to the max-sum semiring
(R,max,+). Similarly, max-marginals satisfy normalization and marginaliza-
tion conditions (7) in which ‘⊕’ has been replaced with ‘max’.

Max-marginals should not be confused2 with the marginals of p∞(xV | θ).
These are different quantities and one cannot be computed from the other.

1It would be more precise to call (13) ‘max-log-marginals’ or ‘log-max-marginals’. But, as
is usual in the literature, we call them only ‘max-marginals’.

2Unlike the limit (10), the limit (13) from (log-)marginals to max-marginals rarely appears
in the machine learning or computer vision literature. The only work we found is [8].
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Recovering ground states from max-marginals. Ground states can be
recovered from max-marginals. To show that, we first recall what is the con-
straint satisfaction problem (CSP) [15, 1]. The CSP instance is defined by a
vector c ∈ {0, 1}I , where functions cv: Xv → {0, 1} and ca: Xa → {0, 1} are
understood as relations. A solution of the CSP is an assignment xV satisfying
all the relations, i.e., cv(xv) = 1 for all v ∈ V and ca(xa) = 1 for all a ∈ E.

For a vector θ ∈ RI we define vector dθe ∈ {0, 1}I by

dθev(xv) =

1 if xv ∈ argmax
yv

θv(yv)

0 otherwise
, dθea(xa) =

1 if xa ∈ argmax
ya

θa(ya)

0 otherwise
,

i.e., a component of dθe equals 1 iff the corresponding component of θ is maximal
in its potential function. We say that such a components of θ is active. Now the
set argmaxxV

〈θ, δ(xV )〉 of ground states is the solution set of the CSP defined
by vector dν∞e of active max-marginals.

2.2 Convex conjugacy and variational inference

LetH(µ) denote the entropy of the distribution (1) as a function of its marginals.
The functions Φ(θ) and −H(µ) are convex and they are related by convex
conjugacy,

Φ(θ) = max
µ∈conv δ(XV )

[〈θ, µ〉+H(µ)], (14)

where the optimum is attained for µ equal to the marginals (4). In statistical
physics, the quantity −〈θ, µ〉 − H(µ) is known as the Gibbs free energy of the
system. By taking the limit β →∞ of the expression

Φ(βθ)
β

= max
µ∈conv δ(XV )

[
〈θ, µ〉+

H(µ)
β

]
(15)

we similarly obtain Φ∞(θ) and max-marginals ν∞.
The idea behind variational inference [25] is to replace the marginal polytope

conv δ(XV ) and the entropy H(µ) in (14) with their tractable approximations.
Then the optimal value and the optimal argument of (14) is an approximation
of the log-partition function and marginals, respectively. For β →∞,
• the optimal value of (15) is an approximation of Φ∞(θ),
• the logarithm of the optimal argument of (15) is an approximation of max-

marginals ν∞,
• the solution set of the CSP defined by active approximate max-marginals is

an approximation of the set argmaxxV
〈θ, δ(xV )〉 of ground states.

As the entropy term in (15) approaches 0 for β → ∞, one may think that it
could be simply omitted. However, as pointed out in [27], if the approximate
entropy is non-convex (such as the Bethe entropy), the problem (15) can have
multiple local minima for arbitrarily large β. Thus, if our algorithm finds only
a local minimum of (15), the entropy term is crucial.
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3 Convex free energy

Let the marginal polytope in (14) be approximated by the local marginal poly-
tope Λ and the true entropy by H(µ) ≈ −〈logµ, µ〉. This entropy approximation
is concave, thus we obtained a simple (arguably, the simplest possible) varia-
tional inference method with a convex free energy [27, 4]. The approximation
of (14) now reads

max
µ∈Λ
〈θ − logµ, µ〉. (16)

The problem (16) can be solved as described e.g. in [32]. Its dual reads as
follows: find a reparameterization of the original vector θ that minimizes the
function

U(θ) =
∑
v∈V

⊕
xv

θv(xv) +
∑
a∈E

⊕
xa

θa(xa). (17)

This is a majorant of the log-partition function, U(θ) ≥ Φ(θ) for every θ. A suf-
ficient condition for dual optimality is that⊕

xa\v

θa(xa) = θv(xv) (18)

for all v ∈ a ∈ E and xv ∈ Xv. The primal and dual optimum are related by

logµv(xv) = θv(xv)−
⊕
yv

θv(yv), logµa(xa) = θa(xa)−
⊕
ya

θa(ya). (19)

Since function (17) is convex and differentiable, its global minimum over
reparameterizations of θ can be found by coordinate descent. This leads to
a simple message passing algorithm. The iteration of this algorithm enforces
equality (18) for a single pair (a, v) by local reparameterization (8), which de-
termines αav(xv) in (8) uniquely. The iteration decreases U(θ), and this decrease
is strict unless U(θ) is already minimal. On convergence, (18) holds globally.

If reparameterizations are represented by messages rather than by directly
modifying θ, the dual of (16) reads minα U(θα) and the coordinate descent be-
comes Algorithm 1. To correctly handle infinite weights, the algorithm expects
that [θv(xv) > −∞]⇔ [maxxa\v

θa(xa) > −∞] for all v ∈ a ∈ E and xv ∈ Xv.

Algorithm 1 The ‘diffusion’ algorithm.
repeat

for v ∈ a ∈ E and xv ∈ Xv such that θv(xv) > −∞ do

αav(xv)← αav(xv) +
1
2

[
θαv (xv)−

⊕
xa\v

θαa (xa)
]

end for
until convergence
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3.1 Zero-temperature limit: max-sum diffusion

The zero-temperature limit of the optimization problem above is obtained by
replacing θ with βθ and taking the limit β → ∞. This results in replacing ‘⊕’
with ‘max’ in (17)–(19) and Algorithm 1. We assume that this has been done.

This yields the LP relaxation approach to maximizing the Gibbs distribution
first proposed by Schlesinger et al. [19, 13], see also [29, 32, 31, 2]. In these works,
the zero-temperature limit of Algorithm 1 is called max-sum diffusion.

Let function (17) after replacing ‘⊕’ with ‘max’ be denoted by

U∞(θ) = lim
β→∞

U(βθ)
β

=
∑
v∈V

max
xv

θv(xv) +
∑
a∈E

max
xa

θa(xa).

We have U∞(θ) ≥ Φ∞(θ) for every θ. Algorithm 1 tries to minimize U∞(θ)
by reparameterizing θ. However, the function U∞ is non-differentiable now –
therefore Algorithm 1 may converge only to a local (with respect to coordinate
moves) minimum of U∞(θ). While it is easy to prove convergence of the algo-
rithm in value, convergence in argument is only a conjecture to date [29, 31]
and only a weaker property has been proved recently [18].

According to §2.2, when θ is optimal then U∞(θ) is an approximation of
Φ∞(θ) and (19) is an approximation of the max-marginals ν∞. Note that the
approximate max-marginals (19) are, up to normalization, directly equal to θ.
Since vector dθe is not affected by normalization of θ, the solution set of the
CSP dθe is an approximation of the ground states.

But this is in agreement with [19, 29], where it is shown that the inequality
U∞(θ) ≥ Φ∞(θ) (and hence the LP relaxation) is tight if and only if the CSP
defined by dθe has a solution. Then, 〈θ, δ(xV )〉 = Φ∞(θ) for every solution
xV of CSP dθe. There are two important problem subclasses for which the LP
relaxation is tight: if hypergraph (V,E) is acyclic or if the functions θa are (per-
muted) supermodular [29, 31, 11]. Besides, it is tight for many other instances
met in applications. This makes this method very suitable for approximating
ground states, which has been also observed empirically3 [21].

However, even when the LP relaxation is tight, (19) are a very poor approx-
imation of max-marginals. They are inexact even for acyclic hypergraphs.

4 Bethe free energy and belief propagation

Let the true entropy in (14) be approximated by the Bethe entropy

H(µ) ≈ −〈logµ, µ〉+
∑
v∈V

nv〈logµv, µv〉, (20)

where nv is the number of hyperedges containing variable v. For acyclic hyper-
graphs the Bethe entropy is equal to H(µ), otherwise it can be non-concave and

3The TRW-S algorithm [12] studied in [21] solves the same LP relaxation as max-sum
diffusion. The same holds for zero-temperature versions of other recently proposed convergent
algorithms to minimize convex free energies [9, 3, 27, 4].
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even negative on Λ. Then (14) reads

max
µ∈Λ

[
〈θ − logµ, µ〉+

∑
v∈V

nv〈logµv, µv〉
]
. (21)

The negative objective of (21) is the Bethe free energy .
Next we formulate loopy belief propagation. Unlike in the ‘traditional’ for-

mulation [17, 14, 33, 25], we identify messages with reparameterizations, which
agrees with [12, eq. (2)] and [30]. Let the marginals (4) be approximated as

logµv(xv) = θ̂v(xv)−
⊕
yv

θ̂v(yv), logµa(xa) = θ̂a(xa)−
⊕
ya

θ̂a(ya) (22)

where
θ̂v = θv, θ̂a = θa +

∑
v∈a

θv. (23)

Note that µv and µa is the Gibbs distribution for the simple graphical model
with hypergraph ({v}, ∅) and (a, {a}), respectively. This corresponds to decom-
posing (V,E) into small sub-hypergraphs. In general, µ fails to satisfy the local
marginalization conditions of (5). Plugging (22) into these conditions yields⊕

xa\v

[
θa(xa) +

∑
u∈a

θu(xu)
]

= θv(xv) + constav, (24)

which by cancelling θv(xv) simplifies to⊕
xa\v

[
θa(xa) +

∑
u∈a\v

θu(xu)
]

= constav. (25)

Here, constav is a constant independent on xv. We define a belief propagation
fixed point to be a vector θ satisfying (25) for all v ∈ a ∈ E and xv ∈ Xv. The
BP algorithm then tries to reparameterize θ to make it satisfy (25).

As discovered by Yedidia et al. [33], BP fixed points (25) correspond to
stationary points of problem (21) via the map (22). Heskes [5] showed that
every stable BP fixed point is a local maximum (rather than minimum or saddle
point) of (21), but not necessarily vice versa.

4.1 Zero-temperature limit: max-sum belief propagation

In the zero-temperature limit, ‘⊕’ in (22)–(25) is replaced with ‘max’. We
assume in §4.1 that this has been done. Then, (25) defines a fixed point of
max-sum belief propagation4.

4The traditional names ‘sum-product’ and ‘max-product’ are misnomers in our paper be-
cause we stated BP in the logsumexp-sum semiring (R,⊕,+) rather than (as is usual) in
the (isomorphic) sum-product semiring (R+,+,×). For zero temperature, we are then in the
max-sum semiring (R,max,+) rather than in the max-product semiring (R+,max,×).
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According to §2.2, numbers (22) are approximations of max-marginals ν∞

and the solution set of the CSP defined by active approximate max-marginals
is an approximation of the set argmaxxV

〈θ, δ(xV )〉 of ground states5. Since ap-
proximate max-marginals (22) are, up to normalization, equal to numbers (23),
this CSP is defined by dθ̂e. This formulation is consistent because (as is easy to
verify) the value 〈θ, δ(xV )〉 is the same for all solutions xV of the CSP dθ̂e.

It is well-known that the approximation of ground states obtained by max-
sum belief propagation is often poor (letting alone that the algorithm may not
converge). In our formalism, the value 〈θ, δ(xV )〉 for the solutions xV of CSP
dθ̂e are often far6 from Φ∞(θ). It may of course also happen that the CSP dθ̂e
has no solution. The situation is especially intriguing if the functions θa are
supermodular7. Then maximizing 〈θ, δ(xV )〉 is tractable but the approximation
obtained from max-sum BP can be inexact [25].

On the other hand, if the approximation of ground states from max-sum BP
is good, then usually also the approximation (22) of max-marginals is good. This
is intuitively justified by the fact that at a BP fixed point, the (max-)marginals
are exact in every subtree of the factor graph [23, 24].

5 Direct minimization of the Bethe free energy

Heskes [5, 6] proposed a class of convergent algorithms to find a local minimum
of Bethe and Kikuchi free energies, based on the minorize-maximize approach
[7, 20]. We now describe a simple representant of this class, which finds a local
maximum of the non-concave maximization problem (21).

Let F (µ) denote the objective of (21). A family of minorants of F is con-
structed as

F̃ (µ, µ̃) = 〈θ − logµ, µ〉+
∑
v∈V

nv〈log µ̃v, µv〉, (26)

where µ̃ is a collections of variable distributions µ̃v, non-negative and normal-
ized. For any µ and µ̃ we have F̃ (µ, µ̃) ≤ F (µ), with equality if and only if
µ̃v = µv for all v ∈ V . This follows from the well-known fact that any non-
negative and normalized vectors µv and µ̃v satisfy 〈log µ̃v, µv〉 ≤ 〈logµv, µv〉,
which holds with equality only if µ̃v = µv.

The problem (21) is now split into two nested problems

max
µ̃

max
µ∈Λ

F̃ (µ, µ̃). (27)

5Decoding an assignment from a fixed point of the loopy max-sum/max-product BP has
been addressed in the BP literature (see e.g. [26, 25]) but never has been formulated as a CSP.
But we believe this is a very natural formulation.

6Note that this never happens for max-sum diffusion, where solutions of the CSP dθe are
inevitably ground states.

7For supermodular θa, CSP dθ̂e always has a solution. This is easy to prove: since function

θa are supermodular, functions θ̂a are supermodular as well, and then the proof proceeds like
the proof [31] that max-sum diffusion exactly solves (permuted) supermodular problems.
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The inner problem is a concave maximization, which can be solved optimally
– in fact, it has the form (16). The objective maxµ∈Λ F̃ (µ, µ̃) of the outer
problem is a non-concave function of µ̃ and thus we can only hope to find its
local maximum. The algorithm has two nested loops, corresponding to the inner
and outer problem. The outer iteration has two steps:
1. Keeping µ̃ fixed, find µ ∈ Λ that maximizes F̃ (µ, µ̃).
2. For all v ∈ V , set µ̃v ← µv.

Each of these two steps increases F̃ (µ, µ̃). For Step 1, this is true by definition.
For Step 2, it follows from the minorization property of F̃ . The algorithm
converges to a state when µ is the maximum of F̃ (µ, µ̃) and µ̃v = µv, therefore
µ is a local maximum of (21).

In Step 1, F̃ (µ, µ̃) needs to be maximized over µ ∈ Λ. This can be cast in
the form (16). First we substitute log µ̃ = θ̃. Note that after this substitution,
the normalization condition

∑
xv
µ̃v(xv) = 1 reads

⊕
xv
θ̃v(xv) = 0. Then

F̃ (µ, µ̃) = 〈θ − logµ, µ〉+
∑
v∈V

nv〈θ̃v, µv〉 = 〈θ̂ − logµ, µ〉 (28)

where, using that
∑
v nv θ̃v =

∑
a

∑
v∈a θ̃v, the vector θ̂ is given by8

θ̂v = θv, θ̂a = θa +
∑
v∈a

θ̃v. (29)

The inner problem is dualized, which changes (27) to a saddle-point prob-
lem. As described in §3, the dual is solved by reparameterizing θ̂ such that θ̂
satisfies (18) (which minimizes U(θ̂)) and then computing µ from θ̂ using (19).
Since θ̂αa = θαa +

∑
v∈a θ̃v, we can reparameterize θ instead of θ̂. The outer

iteration now reads as follows:
1. Reparameterize θ such that⊕

xa\v

[
θa(xa) +

∑
u∈a

θ̃u(xu)
]

= θv(xv). (30)

2. For all v ∈ V , set θ̃v ← θv −
⊕
xv

θv(xv).

The number

U(θ̂) =
∑
v∈V

⊕
xv

θv(xv) +
∑
a∈E

⊕
xa

[
θa(xa) +

∑
v∈a

θ̃v(xv)
]

is decreased by Step 1 and it is increased by Steps 1+2 combined. The algorithm
converges to a state when θ̃v = θv −

⊕
xv
θv(xv). Then, θ is a BP fixed point.

This is indeed very obvious: since θ̃v and θv are equal up to an additive constant,

8We could alternatively choose θ̂ as θ̂v = θv + nv θ̃v , θ̂a = θa. But since (29) directly
compares to (23), the choice (29) more clearly shows the connection with BP fixed points.
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(30) becomes the same as (24), therefore (25) holds. If reparameterizations are
represented by messages, we obtain Algorithm 2.

Let us remark that the normalization in Step 2 is not necessary, we could
just set θ̃v ← θv. This would not affect convergence to a BP fixed point but
U(θ̂) would lose its meaning and θ̃v might grow unbounded.

Algorithm 2 Double-loop algorithm to find a BP fixed point.

Initialization: Choose any θ̃ with
⊕

xv
θ̃v(xv) = 0. Choose any α.

repeat . outer loop
repeat . inner loop

for v ∈ a ∈ E and xv ∈ Xv such that θv(xv) > −∞ do

αav(xv)← αav(xv) +
1
2

[
θαv (xv)−

⊕
xa\v

[
θαa (xa) +

∑
u∈a

θ̃u(xu)
]]

end for
until convergence
For all v ∈ V , set θ̃v ← θαv −

⊕
xv

θαv (xv).

until convergence

The outer loop is guaranteed to converge only if the inner loop reaches full
convergence. There is no theoretical guarantee ensuring convergence with a
finite number of inner iterations – this unpleasant feature is common to double-
loop algorithms applied to saddle-point problems. However, this does not seem
to be an issue in practice.

5.1 Zero-temperature limit

Replacing θ with βθ in all the formulas and taking the limit β → ∞ again
results in replacing ‘⊕’ with ‘max’. Then, Algorithm 2 converges to a max-sum
belief propagation fixed point.

Though we never observed the algorithm fail to converge, its convergence
(with the inner loop run to full convergence) is only a conjecture. The argument
is that if it converges for any β < ∞ then it is reasonable to assume that it
will converge also in the limit. But we suspect that finding a formal proof for
β →∞may be difficult, especially when convergence of the inner loop (max-sum
diffusion) itself is a conjecture to date. Note that, unlike for β < ∞, the proof
cannot be based on the fact that the value of U∞(θ̂) monotonically decreases
because it often remains constant after the first several outer iterations.

Uniform initialization. Depending on the initial θ̃v, the algorithm can con-
verge to different fixed points (as we indeed observed). Particularly interesting is
the case when the initial θ̃v are all uniform – due to the normalization condition
maxxv

θ̃v(xv) = 0, this means θ̃ = 0. Next we focus only on this case.
Figure 1 shows how the algorithm converged for different types of pairwise

interactions and different types of graph. Occasionally (e.g., for repulsive inter-
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Figure 1: Convergence of zero-temperature version of Algorithm 2 with initial θ̃v = 0.
The horizontal axis is the number of outer iterations, the vertical axis is log10 of average
residuals to the max-sum BP fixed point condition (24). The title is in the form ‘type
of pairwise interactions, number of labels, graph type’. The grid graph had 20 × 20
and the complete graph 40 vertices. The unary potentials were generated randomly.

actions and two labels) the residuals approached zero non-monotonically. The
inner iteration was run to almost full convergence, however the results were not
qualitatively affected by this.

We made the following key observation:

If the algorithm is initialized with θ̃ = 0 then after the first outer itera-
tion dθ̂e and U∞(θ̂) remain unchanged.

This observation is only empirical, currently we have neither a formal proof nor
a counterexample. It has an important consequence. If initially θ̃ = 0, then the
first outer iteration is just Algorithm 1 applied to θ̂ = θ. If all subsequent outer
iterations do not change dθ̂e, then CSP dθ̂e after convergence of Algorithm 2 is
the same as CSP dθe that would be obtained by running Algorithm 1 on θ.

Thus, the approximate ground states obtained by Algorithm 2 are the same
as those obtained by Algorithm 1. However, since Algorithm 2 converges to a

12



max-sum BP fixed point, approximate max-marginals obtained by Algorithm 2
are expected to be much more accurate than those obtained by Algorithm 1.

6 Conclusion

We showed in §3.1 and §4.1 that the properties of max-sum diffusion (and all
MAP inference algorithms based on LP relaxation) and max-sum belief prop-
agation are complementary: the former yields good approximation of ground
states but poor approximation of max-marginals, the latter vice versa. The
double-loop algorithm initialized with θ̃ = 0 combines advantages of both: it
yields approximate ground states that are exact for supermodular problems and
approximate max-marginals that are exact in every sub-tree of the factor graph.

Our paper is primarily theoretical, more experiments are needed to compare
approximate max-marginals from the double loop algorithm with ground truth.

We have not pursued another potentially interesting application of the double-
loop algorithm with non-uniform initialization θ̃ 6= 0. It is known that max-sum
BP occasionally yields better approximate ground states than LP relaxation.
This has been observed e.g. for some problems on highly connected graphs [10].
However, the max-sum BP algorithm does not always converge, thus the con-
vergent double loop algorithm might be useful here.

The double-loop algorithm could be speeded up by using an inner loop with
tree updates as in e.g. TRW-S [12] rather than edge updates as in max-sum
diffusion. We believe this is possible.
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[29] Tomáš Werner. A linear programming approach to max-sum problem: A review.
IEEE Trans. Pattern Analysis and Machine Intelligence, 29(7):1165–1179, July
2007.
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