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Abstract

Well-known matching constraints for points and lines in muliple images are

necessary but not sufficient condition for the existence of real structure and

cameras, underlying the image correspondences. To obtain sufficient condi-

tions, the following additional constraints must be imposed: positive scales,

the existence of a plane at infinity not intersecting the scene, and the exis-

tence of handedness preserving cameras. We present modifications of the

well-known matching constraints and also some new constraints, taking into

account some of this additional knowledge. Not only conventional but also

central panoramic cameras are naturally described. To achieve this, we have

generalized and simplified Hartley’s ch(e)irality theory by formulating it in

the language of oriented projective geometry and Grassmann tensors.

1 Introduction

In1 multiple view geometry for 3D computer vision [2], projective space P
d�1

and pro-

jective geometry are used as a theoretical background for the theory and algorithms. It has

been shown [6, 4] that oriented projective space T
d�1

(called spherical in mathematics)

and the corresponding geometry are more natural to model the real Euclidean world than

a projective one. In T
d�1

, concepts like orientation of lines and planes, convex hull of

points, etc., are well defined. Multiple view geometry can be easily augmented to live

in oriented projective rather than projective space as follows: two homogeneous vectors,

matrices or tensors representing points, lines, planes, conics, cameras, multifocal tensors,

etc. are considered to represent the same geometrical object iff they are equal up to a

positive rather than non-zero scale. Thus, the vectors x and�x represent different points.

The contribution of this paper is to augment multiple view matching constraints [2]

with orientation. Using oriented projective geometry enables the consistent use of addi-

tional knowledge, available implicitly in almost every 3D computer vision task. Given

matched correspondences in images, this knowledge is expressed by the following con-

straints:

Orientation consistency. Overall signs of vectors, matrices or tensors representing geo-

metrical objects must not be changed and all scales must be positive. This says that

we are in an oriented projective space rather than in a projective one.

1We acknowledge support of the European Commision FP5 (Marie Curie Fellowship MCFI-2000-01685,

1999-29017 OMNIVIEWS), the Czech Ministry of Education (MSMT KONTAKT 2001/09), and the Grant

Agency of Czech Republic (102/01/0971). We also thank Bill Triggs for the discussion which has helped

clarifying many ideas present explicitly or implicitly in this paper.



Scene affinity. There exists a plane (plane at infinity) in the scene such that all scene

points are in front of it. This says that the true structure underlying the image

correspondences is affine rather than oriented projective or projective.

Cameras preserve handedness. Very often the relation of handedness of image coordi-

nate systems and the handedness of the true scene coordinate system is known (it

can be either equal or opposite). The cameras are required to preserve this relation.

Directionality of conventional cameras. For conventional cameras, there is a line (line

at infinity) in each image such that all image points are on its positive side. How-

ever, no such line exists for (central) panoramic cameras.

The paper builds on three works. The first is Stolfi’s theory of oriented projected

geometry of flats in arbitrary dimension [6]. Its usefulness for computer vision commu-

nity has been noticed by Laveau and Faugeras [4]. However, extension to multiple view

geometry is not straightforward since some concepts (e.g., of the camera) are missing.

The second is the excellent treatment of geometry of projective reconstruction and

matching constraints due to Triggs [8]. Algebra of Grassmann tensors is used as the tool

to represent the geometry of flats and projections. In fact, this algebra represents exactly

the abstract algebra Stolfi uses as the language of oriented projective geometry: flats are

represented by Grassmann tensors, and operations join and meet by antisymmetrizing

over respectively contravariant and covariant indices. The orientation is distinguished by

an overall sign of a tensor. However, geometrical insights due to considering orientation

are not discussed explicitly in the paper, even if the author is aware of them. Personal

communication with Bill Triggs [1] has helped us to clarify some important ideas.

The third is Hartley’s theory of ch(e)irality and quasi-affine reconstruction [3, 2]. To

our opinion, the existence of quasi-affine reconstruction is the most important result due

to including the above constraints. However, the reasoning is done in projective geometry

rather than, more naturally, in oriented projective one. An independent less exhaustive

work on this topic is [10].

The paper is organized as follows. First, concepts and notation are introduced and

their relation to [6, 8, 3] stated. Then, a hierarchy of possible reconstructions from image

correspondences is presented, as the result of imposing the first, second and third of the

above constraints. The hierarchy is closely related to weak and strong realization and

quasi-affine reconstruction in [3, 2] but formulation in oriented projective space makes

it simpler and the ideas are expressed in pure geometrical terms, without refering to any

special coordinate system. The main part of the paper describes imposing the orientation

consistency and partially also scene affinity and camera handedness preservation to well-

known matching constraints in terms of multiple view tensors or joint image matrix [2].

Also entirely new matching constraints, as on oriented lines in two images, are presented.

2 Notation and concepts

As the paper is very closely related to the works [6, 8, 3], being familiar with them (espe-

cially with the first two) is essential to understand the paper. We use the same concepts

and symbols as in [6, 8], without explaining them here again for the lack of space.

The geometrical entities involved in our considerations are flats of oriented projective

spaces T
2

or T
3

. The operations we need are as follows: taking antipode, join, meet, pro-

jective mapping, and generalized projective mapping. These are introduced and explained

in Stolfi’s book [6].



To represent these entities and operations, we use Grassmann algebra in terms of anti-

symmetric tensors. It is explained in [8] and we also use the same notation. This algebra

naturally represents oriented projective geometry as follows: (flat of rank r in T
d�1

, tak-

ing antipode, join, meet, projective mapping from T

d�1

to T
d�1

, generalized projective

mapping from T

d�1

to T
e�1

for e < d) are represented respectively by (d-dimensional

r-index contravariant Grassmann tensor, �, antisymmetrizing over contravariant indices,

antisymmetrizing over covariant indices of dual tensor, transforming contravariant indices

by d� d full rank matrix, transforming contravariant indices by e� d full rank matrix).

Any geometric object like a scene or image flat, camera matrix, multiple view tensor,

etc., is oriented. All tensors differing just by an overall positive scale represent the same

geometric object, while multiplying it by a negative scale yields the antipodal object.

Equality up to a non-zero and positive scale is denoted respectively by ' andl.

Scene space is E
3

Euclidean 3-space but, since just affine rather than also metric

properties of the scene are of interest in the paper, we consider it as A
3

affine 3-space.

A

3

is isomorphic to the set of points of T
3

that are in front of a certain plane (plane at

infinity) 
 [6]. This set is denoted by ordered pair (T
3

;
) = A

3

and represented by

(H

a

;


a

) = fx

a

2 H

a

j


a

x

a

> 0g, where dimH

a

= 4.

Scene is a set of points from (T

3

;
) and flats of T
3

of rank higher than 1. It is

represented by the set fxa
n

;x

ab

m

;x

ab

l

j


a

x

a

n

> 0g where the symbols xa
n

;x

ab

m

, and xab
l

denote respectively the n-th scene point, m-th scene line, and l-th scene plane. Since it

is not possible to tell relative orientation (i.e., whether it is in front of or behind) of a flat

of rank higher than 1 w.r.t. 
 (such flat always intersects 
), there is no constraint like




a

x

a

n

> 0 for xab
m

or xab
l

. Note, n;m; l are not meant as tensor indices but rather just to

distinguish different flats, in other words, there is no vector space like Hn.

By camera, we mean central linear camera, represented by a linear mapping in ho-

mogeneous coordinates. We distinguish panoramic and directional cameras and images.

The field of view of a panoramic camera is 360Æ at least in one plane containing its center

[5]. Directional camera sees only scene points in front of a certain plane � (planar retina)

through its center. It has the front range and inobservable back range [4]. There is no such

plane for a panoramic camera, its retina is topologically a sphere. Conventional (e.g. TV

or photographic) cameras are directional. Note, not every camera is central (i.e., its rays

do not intersect in a single scene point) [5] and not every central camera is linear (i.e., the

scene-to-image mapping is not linear in homogeneous coordinates) [9].

Image space is T
2

oriented projective 2-space, being in fact the set of directions in

E

3

or the surface of a sphere in E
3

. It is represented by HA of dimension 3. Multiple

image spaces are distinguished by index k and denoted as T k
2

and HA

k . Image space of

a directional camera is a restriction of T
2

to affine 2-space A
2

= (T

2

; �), represented by

the pair (HA

;�

A

) = fx

A

2 H

A

j�

A

x

A

> 0g. �
A

is the image line at infinity. It is a

projection of the planar retina �, represented by �
a

= P

A

a

�

A

.

Image is a set of flats from T

2

. It is represented by the set fxA
n

;x

AB

m

;x

ABC

l

g where

the symbols denote respectively the n-th image point, m-th image line, and l-th image

plane. Note, in T
2

(unlike in P
2

) it is meaningful to consider also image planes because

there are two oppositely oriented image planes in an image. Directional image is the set

fx

A

n

;x

AB

m

;x

ABC

l

j�

A

x

A

> 0g. Like in scene space, there is no constraint on relative

orientation of image lines and planes w.r.t. �
A

.

Camera is a generalized projective mapping [6] from scene space to image space. It

is represented by a full-rank 3 � 4 matrix PA

a

. Directional camera is a pair (PA

a

;�

A

).



Camera center ea is the null space of the camera mapping with uniquely chosen orienta-

tion, ea = 1

3!

"

abd

P

A

b

P

B



P

C

d

"

ABC

[8]. Projection of the center ea
k

of cameraPA

k

a

by the

cameraPA

l

a

is epipole eAl
k

= P

A

l

a

e

a

k

.

We assume in the paper that the true cameras underlying the image correspondences

preserve handedness. This can be assumed without loss of generality because if some

of the true cameras reverses handedness, it suffices to mirror its image coordinate sys-

tem prior to computations. The camera’s handedness preserving property is a product

of several other properties: (i) the way the camera solves visibility (’from the center’ or

’towards the center’), (ii) whether images are direct or mirrored, and (iii) signatures of

images and scene epsilon tensors [1]. Detailed explanation is rather subtle and omitted

due to the lack of space.

Preserving handedness in fact means that the camera ’sees the positive side of 
’,

P

A

a

P

B

b

P

C






ab

l "

ABC . This in turn means that its center lies in front 
, 

a

e

a

> 0.

Note, the orientation of the null space ea of PA

a

is chosen so that for any plane xab it is

(P

A

a

P

B

b

P

C



x

ab

l "

ABC

), (x

a

e

a

> 0).

3 Hierarchy of reconstructions

Let fxAk
n

;x

A

k

B

k

m

;x

A

k

B

k

C

k

l

g be projections of N points, M lines and L planes in K

images (1� n�N; 1�m�M; 1� l � L; 1� k �K). These image correspondences

can originate from conventional or panoramic cameras, they are assumed to be correctly

oriented2, yet known only up to a positive scales. The correspondences are matched,

thus e.g. xA1

1

and xA2

1

are projections of a single scene point in image 1 and 2. It is

assumed that a true reconstruction (i.e., cameras and structure) exists, projecting to the

correspondences.

We add several more steps into the well-known [2] hierarchy projective–affine–metric

reconstruction. First, we define

Definition 1 Projective reconstruction from the set of images fxAk
n

;x

A

k

B

k

m

;x

A

k

B

k

C

k

l

g

is a set fPA

k

a

;x

a

n

;x

ab

m

;x

ab

l

g such that xAk
n

' P

A

k

a

x

a

n

, xAkBk
n

' P

A

k

a

P

B

k

b

x

ab

n

, and

x

A

k

B

k

C

k

n

' P

A

k

a

P

B

k

b

P

C

k



x

ab

n

.

Oriented projective reconstruction from fx

A

k

n

;x

A

k

B

k

m

;x

A

k

B

k

C

k

l

g is defined similarly

except that the symbols ' are replaced by l.

Although stronger than projective reconstruction, oriented projective reconstruction

says nothing about scene affinity or handedness preserving cameras. These constraints

can be imposed on it, separately or simultaneously, thus obtaining more steps in the hier-

archy of reconstructions. This is described in Section 5.

The strongest reconstruction that can be obtained knowing only that the true scene is

affine and the true cameras preserve handedness is described by

2Practically, the orientations can be measured in images as follows. For points in conventional cameras, the

orientations of all points is given by the fact that they all lie in front of the image line at infinity, �
a

x

A

n

> 0.

If �
a

= (0; 0; 1) as usual, it means that the last coordinates of xA
n

are positive. In panoramic cameras, an

image point and its antipode are clearly distinguished by their very design – e.g., for a camera consisting of a

curved mirror and a conventional camera, a point and its antipode are two different points in the image of the

mirror in the conventional camera. Orientations of lines can be obtained during the line detection algorithm

from the direction of the intensity gradient orthogonal to the line. Even if this direction can swap when lighting

conditions change severely, it can be expected highly invariant.



Theorem 1 True scene, cameras and plane at infinity are in the set of all reconstructions

fP

A

k

a

;x

a

n

;x

ab

m

;x

ab

l

;


a

g satisfying: (i) fPA

k

a

;x

a

n

;x

ab

m

;x

ab

l

g is an oriented projective

reconstruction from fx

A

k

n

;x

A

k

B

k

m

;x

A

k

B

k

C

k

l

g, (ii) 

a

x

a

n

> 0, and (iii) 

a

e

a

k

> 0.

4 Imposing oriented projective reconstructibility

Well-known matching constraints in terms of multilinear relations are (up to singularities)

equivalent only to the existence of a projective reconstruction. This section shows how

the condition on the existence of an oriented projective reconstruction can be imposed on

matching constraints on flats in multiple images.

4.1 Points in two images
Let xa be a scene point and PA

1

a

;P

A

2

a

two cameras. It is easy to verify (also Table 2 in

[8]) that eA2

1

x

B

2

"

A

2

B

2

C

2

l x

C

1

F

C

1

C

2

(in familiar matrix notation [2], e0�x0
n

l Fx

n

),

where F
C

1

C

2

= "

A

1

B

1

C

1

P

A

1

a

P

B

1

b

"

abd

P

A

2



P

B

2

d

"

A

2

B

2

C

2

is the fundamental matrix and

x

A

k

= P

A

k

a

x

a. Hence (see Table 1 in the full version of [8], and also [9])

Theorem 2 The image points xAk
n

in two images (k = 1; 2) possess an oriented projec-

tive reconstruction if and only if there exists a matrix F
C

1

C

2

of rank 2 and a non-zero

vector eA2

1

such that F
C

1

C

2

e

C

2

1

= 0

C

1

and for all n it is eA2

1

x

B

2

n

"

A

2

B

2

C

2

l x

C

1

n

F

C

1

C

2

.

x

l

C
e

L X L’

l’
x’

e’
C’ C

e

l L
l’

e’

C’

Figure 1: Constraint on points (left subfigure) and lines (right subfigure) in two images.

The geometric meaning of the theorem is shown in Fig. 1 on the left. The oriented ray

denoted by L in the figure is given by x1

ab

= x

A

1

B

1

P

A

1

a

P

B

1

b

. However, L is also the join

of the camera center C and the scene point X . L;C and X are projected into the second

image as l0; e0 and x0. The condition requires that l0 is the join of e0 and x0.

4.2 Lines in two images
Let xab be a scene line and PA

1

a

;P

A

2

a

two cameras. It can be shown that x
A

1

e

A

1

2

+

x

A

2

e

A

2

1

= 0 (in matrix notation [2], le+ l

0

e

0

= 0), where x
C

k

= P

A

k

a

P

B

k

b

x

ab

"

A

k

B

k

C

k

are projections of the scene line. We have proven (the proof omitted for the limited space)

Theorem 3 The set fxn
A

1

;x

n

A

2

g of N oriented image lines in two images possesses an

oriented projective reconstruction if and only if there exist arbitrary non-zero 3-vectors

e

A

1

2

and eA2

1

such that for every n it is sgn(x

n

A

1

e

A

1

2

) + sgn(x

n

A

2

e

A

2

1

) = 0. If this is

satisfied for some eA1

2

and eA2

1

, it is also satisfied for eA1

2

and eA2

1

equal to the epipoles

of the image pair.

The geometrical interpretation of Theorem 3 is shown in the right subfigure of Fig. 1.

Relative orientation of the scene line L w.r.t. the line CC 0 is observed in each image as



relative orientation of the image line l resp. l0 w.r.t. the epipole e resp. e0. The constraint

requires consistency of these two relative orientations in images.

The theorem can be formulated also as follows. Let us allow arbitrary pair-wise

changes of image line orientations, meaning in fact changing the orientations of the un-

derlying scene lines. A set of image line pairs has consistent orientations if and only if

the line orientations can be pair-wise reversed such that there exists a point in each im-

age lying on a single side of each line. In Fig. 2, two pair-wise changes have been done,

achieving the situation when the epipole is on a single side of each line in each image.

Note in the final image pair, the image lines rotate around each epipole, meaning that the

scene lines merely rotate around the line connecting the camera centers.

initial image pair

1

3 2

1

2’

final image pair

step 1 step 2

e’

e

e’

e e

e’

3’

1’

3’

1’

2’ 3’

1’

2’

1

3
223

Figure 2: Sequence of pair-wise changes of line orientations, finished by the situation in

which e is on a single (right-hand) side of each line in the first image, and e0 is on a single

(left-hand) side of each line in the second image.

If the epipoles are known, testing for the condition in Theorem 3 is easy. Not given

the epipoles, it might seem that the condition could be tested by linear programming.

But it is not so, we search simultaneously for epipoles and for reversions of orientations

of underlying scene lines. We have not found any polynomial algorithm yet. If it were

available, the epipoles could be approximately located from oriented lines in two images.

If the epipoles are known (up to orientations), the minimum number of line pairs not

satisfying the condition in Theorem 3 is obviously two. What is the minimal number of

lines not satisfying this condition for unknown epipoles?

4.3 Lines in three images
The well-known bilinear relation for line transfer from two images to the third one, x

A

3

=

T

A

1

A

2

A

3

x

A

1

x

A

2

, cannot yield correct orientations of the line x
A

3

for the following simple

reason. If the signs x
A

1

and x
A

2

are changed simultaneously, x
A

3

remains unchanged.

However, this is incorrect because reversing orientation of the first two image lines means

reversing the underlying scene line, so the third image line must reverse too. Clearly, the

correct line transfer formula must be a relation more complicated than a bilinear form.

The orientation consistent formula for reconstruction of a scene line from two im-

age lines can be shown to be x
ab

= (e

B

2

1

x

B

2

)

�1

x

A

1

x

A

2

P

A

1

[a

P

A

2

b℄

. Since eB2

1

x

B

2

+

e

B

1

2

x

B

1

= 0, the scalar in parentheses could be also �eB1

2

x

B

1

, the complete symme-

try cannot be achieved. Ignoring singularities, we obtain the correct transfer equation by



simply projecting the scene line x
ab

to a third image, x
A

3

= (e

B

2

1

x

B

2

)

�1

x

A

1

x

A

2

T

A

1

A

2

A

3

,

where TA

1

A

2

A

3

= P

A

1

a

P

A

2

b

P

B

3



P

C

3

d

"

abd

"

A

3

B

3

C

3

is the trifocal tensor. Hence

Theorem 4 For N corresponding lines xn
A

k

in three images it holds eB2

1

x

n

B

2

x

n

A

3

l

x

n

A

1

x

n

A

2

T

A

1

A

2

A

3

, where TA

1

A

2

A

3

is the trifocal tensor.

The situation is shown in Fig. 3 on the left. Having changed orientation of the scene

line L, all three image lines l; l0; l00 must change their orientations too.

C’’

l’’

l

C

L l’

C’

C’C’’

x’’

e,’’

e’’

e,,
x

C

e,

X

e,,’

x’

e’

Figure 3: Constraint on lines (left subfigure) and points (right subfigure) in three images.

4.4 Points in three images
The well-known constraint xA1

"

A

1

B

1

C

1

x

A

2

"

A

2

B

2

C

2

T

C

1

C

2

C

3

x

C

3

= 0

B

1

B

2

[2], allowing

point transfer via trifocal tensor, does not determine the orientation of xC3 . The orien-

tation could be determined using pairs of images and Theorem 2. However, we present

a different constraint, which is inherent to a triplet of images. Let xa be a scene point.

Then it can be shown that

x

a

e

b

1

e



2

e

d

3

"

abd

= x

A

1

e

B

1

2

e

C

1

3

"

A

1

B

1

C

1

= x

A

2

e

B

2

3

e

C

2

1

"

A

2

B

2

C

2

= x

A

3

e

B

3

1

e

C

3

2

"

A

3

B

3

C

3

or, in matrix language, [X;C1

;C

2

;C

3

℄ = [x

1

; e

1

2

; e

1

3

℄ = [x

2

; e

2

3

; e

2

1

℄ = [x

3

; e

3

1

; e

3

2

℄,

where [x;y; z℄ denotes the determinant of the matrix with columns x;y; z. Hence

Theorem 5 Let xAk
n

; k = 1; 2; 3, possess an oriented projective reconstruction. Then

there are image lines t
A

k

such that t
A

k

e

A

k

i

= 0 for k; i = 1; 2; 3; i 6= k, (i.e., the

epipoles lie on the lines) and sgn(t

A

1

x

A

1

n

) = sgn(t

A

2

x

A

2

n

) = sgn(t

A

3

x

A

3

n

) for all n.

Geometrical interpretation is shown in Fig. 3 on the right. Relative orientation of the

trifocal plane CC 0

C

00, represented by ea
1

e

b

2

e



3

"

abd

, w.r.t. the scene point X is observed

in each image as relative orientation of the line joining the two epipoles w.r.t. the image

point.

4.5 Points in joint image matrix
Recall [8] that projection of a scene point xa by K cameras can be viewed as projection

by a big 3K�N joint camera matrix P�

a

to a single 3K-dimensional image pointP�

a

x

a,

where H� is 3K-dimensional joint image space. For multiple points measured in the

images with correct orientations it is �k
N

x

A

k

n

= P

k

a

x

a

n

, i.e., in matrix form,
0

B

�

�

1

1

x

A

1

1

: : : �

1

N

x

A

1

N

... � � �

...

�

K

1

x

A

K

1

: : : �

K

N

x

A

K

N

1

C

A

=

0

B

�

P

A

1

a

...

P

A

K

a

1

C

A

�

x

a

1

: : : x

a

N

�

:



Let the joint image matrix on the left be denoted by (�k
n

x

A

k

n

). This matrix must have rank

at most 4, which is the principle of projective reconstruction by factorization [7]. Clearly,

Theorem 6 Let xAk
n

be N image points measured in K images with correct orientations.

An oriented projective reconstruction from x

A

k

n

exists if and only if there are �k
n

> 0 such

that rank (�k
n

x

A

k

n

) � 4.

5 Imposing scene affinity and preserving handedness

Imposing scene affinity and handedness preserving cameras on matching constraints is

more difficult than imposing positive scales. We present some interesting results for points

in special situations.

Scene affinity can be imposed only on points (an oriented projective reconstruction

with all points in front of
 is called quasi-affine in [3, 2]) because one cannot say whether

an infinite line or plane lies in front of 
. A meaningful constraint would be obtained

if they were considered as point sets rather than flats. However, requiring cameras to

preserve handedness is meaningful even for a reconstruction not containing any points.

5.1 Using camera directionality

Camera directionality is an additional knowledge implying the Theorems 7 and 8. These

theorems have been presented in [3, 2], we give here their more general and compact

form. They can be used to strengthen Theorems 2, 5 and 6.

Theorem 7 Let images xAk
n

of N points in K cameras have an oriented projective re-

construction and let at least one camera be directional. Then there is an affine scene

projecting to xAk
n

by some (not necessarily handedness preserving) cameras.

Proof. Knowing that �k

a

x

a

> 0, let 

a

be one of the image planes �k

a

or their convex

linear combination, which implies 

a

x

a

> 0.

It follows that if points xAk
n

in multiple images possess an oriented projective recon-

struction and one or both cameras are directional, there is an affine scene projecting to

x

A

k

n

. Thus, Theorems 2, 5 and 6 and directionality of one or more cameras imply the

existence of an affine scene projecting to xAk
n

by some (not necessarily handedness pre-

serving) cameras.

Theorem 8 Let images xAk
n

of N points in 2 cameras have an oriented projective re-

construction and let at least one camera be directional. Then there is an affine scene

projecting to xAk
n

by handedness preserving cameras.

Proof. Due to Theorem 7, there is an affine scene projecting to xAk
n

, i.e., there exist




a

such that 

a

x

a

n

> 0. The cameras must satisfy 

a

e

a

k

> 0. In fact, condition

(


a

e

a

1

)(


a

e

a

2

) > 0 is sufficient because the case

a

e

a

k

< 0 can be brought to 

a

e

a

k

> 0

by letting xa
n

7! x

a

0

n

= H

a

0

a

x

a

n

and PA

a

7! P

A

a

0

= P

A

a

(H

�1

)

a

a

0

for some Ha

0

a

with

negative determinant. If (

a

P

a

1

)(


a

P

a

2

) < 0 and at least one camera is directional,

it is always possible to move the plane 

a

so that one of the camera centers becomes

separated from the other center and the scene points, as illustrated in Fig. 4.

In other words, oriented projective reconstructibility and directionality of one or both

cameras are necessary and sufficient for the existence of a real scene and real cameras

underlying xAk
n

[9].
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Figure 4: Having two cameras, at least one of them directional, the directional camera

center can always be separated from the scene points and the second camera center by

plane.

5.2 Imposing affinity on points in joint image matrix

Recall Section 4.5. If all cameras are panoramic, Theorem 6 does not guarantee the

existence of an affine scene projecting to xAk
n

. We present a constraint sufficient for the

existence of an affine scene (but not necessarily handedness preserving cameras).

The existence of an affine scene requires the existence of a plane at infinity 

a

such

that 

a

x

a

> 0. Let 

�

be a hyperplane in the joint image space H� satisfying 

�

x

�

>

0. Then its preimage in the scene, 

a

= 


�

P

�

a

, will satisfy 

a

x

a

> 0. Hence

Theorem 9 Let xAk
n

(or equivalently x�
n

) possess an oriented projective reconstruction.

An affine scene projecting to xAk
n

exists if and only if there is 

�

such that 

�

x

�

> 0.

This is an interesting result saying that the joint camera is directional, its image plane

being the plane at infinity 

a

.

6 Conclusion

Well-known matching constraints for points and lines are only necessary conditions for

the existence of any real geometry projecting to the given image points or lines. Besides

singularities, the reason is that they are projective rather than affine, even if the under-

lying geometry is indeed affine. Based on oriented projective geometry represented by

Grassman tensors and the ch(e)irality theory, we have modified the old constraints and

presented some entirely new constraints. The modified constraints are stronger than the

original ones. Some are even necessary and sufficient for the existence of a real scene and

cameras.

Of course, there is a general way how to test any set of corresponding image points

for the existence of an underlying real geometry: compute a projective reconstruction and

solve ch(e)iral inequalities [3, 2] by e.g. linear programming. However, our task was to

obtain these constraints in terms of image entities, like image points, image lines, epipoles

and multiview tensors. This has allowed achieving new geometrical insights in multiple

view geometry. Moreover, some constraints are entirely new.

To be able to achieve results for matching constraints, we formulated the ch(e)irality

theory [3, 2] in oriented projective geometry, generalized it for panoramic cameras and

flats of arbitrary rank, and represented in Grassmann tensor algebra. We believe that this

synthesis is a step towards a rigorous theory of oriented multiple view geometry. Such

theory will become more necessary when panoramic cameras are used frequently [1],

since some concepts and problems that are trivial for conventional cameras need formal-

ization for more general cameras. Moreover, the theory applies quite straightforwardly



for different dimensions of the scene and image spaces, e.g. for cameras represented by

2� 4 projection matrix, which have a line as its ’projection center’ and another line as a

’retina’, and, in fact, for an arbitrary dimensions of scene and image spaces.

Using this new framework, we have not only derived new results (Theorems 3, 4, 5,

6, and 9) but also simplified and/or generalized some existing results (Definition 1 and

Theorems 1, 7 and 8 from [3, 9], and Theorem 2 from [8, 9]).

The paper is not easy to read. Besides the fact that the topic itself is difficult, the

reason is that the limited space of this paper allowed only for very compact text. To

explain the topic in a more reader-friendly way would require much longer paper with

many figures. We refer to [6] instead. However, the definitions and theorems should be

independent on the (possibly too brief and unclear) rest of the text, as long as the reader

is familiar with the notation from [8].

There is a number of open questions. Polynomial algorithm and minimal counter-

example for lines in two images with unknown epipoles. Perhaps, Theorem 3 is a tau-

tology: using a Monte Carlo search, we did not succeed in finding any configuration of

image lines violating Theorem 3. Constraints on points and lines in more images can

be combined. Is there a closed form of matching constraints involving panoramic cam-

eras with scene affinity and camera handedness imposed? Even if the paper is meant

as theoretical, quantifying the usefulness of the constraints for practical tasks would be

interesting. Among these tasks are constraining search space in matching, discarding so-

lutions for multiview tensors not corresponding to any real geometry (e.g., in estimating

F or TA

1

A

2

A

3

from minimal number of correspondences), restricting the set of solutions

for structure and cameras, and oriented flat transfer.
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