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ORIENTED PROJECTIVE RECONSTRUCTION

1)

Tom�a�s Werner, Tom�a�s Pajdla, V�aclav Hlav�a�c

2)

Abstract:

We introduce the notion of oriented projective reconstruction (OPR). We show that, in con-

trary to common belief, it is possible to obtain more than a projective reconstruction (PR)

of a scene from uncalibrated real cameras, namely OPR. This is enabled by knowing that a

real camera sees only points in front of it. The de�ning property of OPR is that the plane

that is in an underlying Euclidean reconstruction at in�nity does not intersect the convex

hull of the reconstructed points in OPR. This is generally not true for PR. Thus, OPR can

be viewed as a step between a�ne reconstruction (when the plane at in�nity projects to in-

�nity) and PR (when the position of the plane at in�nity is unconstrained). The important

practical consequence is that OPR preserves the convex hull, and the reconstructed scene is

\topologically correct" and it can be e.g. rendered with hidden surfaces removed correctly.

1 Introduction

Let us consider reconstructing a scene from image points obtained by multiple cameras. If

the cameras are calibrated, Euclidean reconstruction (ER) can be done [1]. If the calibration

is unknown, only projective reconstruction (PR) can be done [4]. PR di�ers from ER in two

basic things: (i) no Euclidean metrics is available, (ii) topology is di�erent.

We introduce the notion of oriented projective reconstruction (OPR). The de�ning property

of OPR is the existence of its orientation with respect to the plane at in�nity. In more

detail, the convex hull of a PR of a scene can generally be intersected by the plane that lies

at in�nity in the corresponding ER. This can cause the order of some colinear sets of scene

points to be changed in the PR. In OPR, this plane is guaranteed to lie outside the convex

hull of the scene points and hence the order is preserved.

We show that, in contrary to common belief, it is possible to obtain more a from uncalibrated
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real cameras, namely OPR. It is enabled by the fact that the points observed by the cameras

do not yield merely equations but also inequalities describing the knowledge that real cameras

see only points in front of them. Using only equations for computing the scene structure

yields PR, including also inequalities enables OPR.

OPR can be viewed as an intermediate step in the hierarchy of reconstructions [1], located

between an a�ne reconstruction (when the the plane at in�nity maps to the plane in in�nity)

and PR (when the plane at in�nity maps to a general position). OPR has no metrics like

PR, and topology of OPR is that of a�ne (or, equivalently, Euclidean) reconstruction.

Topological correctness of OPR (i.e., topology is equal to that of the underlying Euclidean

reconstruction) has signi�cant practical consequences. For instance, it enables rendering

the OPR and removing hidden surfaces correctly, using a computer graphics algorithms for

rendering a Euclidean model. Thiscannot be done with PR because scene points on a ray

cannot be ordered by the distance from the camera center: if the plane at in�nity intersects

the scene, this order can be changed. This is not a well-known observation because e.g. Zhang

writes [5]: \Image-based rendering does have advantage over CAD-like modeling|usage of

uncalibrated images. Then, only projective model can be obtained, and it is therefore di�cult

to use conventional rendering pipeline."

In fact, when reconstructing from uncalibrated cameras we should always compute OPR

rather than only PR. Necessary additional processing is neglectable and correct topology is

obtained almost for free.

In the sequel, n-dimensional Euclidean space will be denoted by E

n

and projective space

by P

n

. Scene points will be denoted by x 2 E

3

or X 2 P

3

, image points in camera image

plane by u 2 E

2

, matrices of projective 3D-to-3D transformation by H 2 R

4�4

, and camera

projection matrices by M 2 R

3�4

. We will always assume rankH = 4 and rankM = 3.

2 De�nition of OPR

Let us have a scene S composed of I points. Points x

i

2 E

3

; i = 1; : : : ; I; are called Euclidean

reconstruction (ER) of S if they di�er from the actual scene points by an unknown Euclidean

transformation. Transforming all points x

i

by a common Euclidean transformation again

yields ER of S. We say that S is known up to a Euclidean transformation.



Points X

i

2 P

3

are called a projective reconstruction (PR) of S if
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where

1)

w

i

6= 0. Transforming X

i

by a projective transformation yields again a PR of S. We

say that S is known up to a projective transformation H.

De�nition 1 (Oriented Projective Reconstruction) Let us have a ER x

i

2 E

3

of a

scene S. Let us have points

b

x

i

2 E

3

, matrices H 2 R

4�4

, and numbers w

i

and

b

� so that for

all i = 1; : : : ; I it is

w

i

0

@
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i

1

1
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= H

0

@
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i

1

1

A

(2)

b

�w

i

> 0 (3)

Then points

b

x

i

are called oriented projective reconstruction (OPR) of scene S.

3 Relation between OPR and images from real cameras

3.1 Mathematical and real pinhole camera

De�nition 2 (Mathematical and real pinhole camera) Let us have a ER x

i

2 E

3

of

a scene S and a pinhole camera with a projection matrix M which projects scene points x

i

to image points u

i

2 E

2

according to the following relation

2)

:
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The camera is called mathematical resp. real if z

i

6= 0 resp. z

i

> 0 for all i = 1; : : : ; I.

This de�nition expresses the fact that a mathematical camera images points in the whole

scene space, while a real camera images only points in front of its image plane.

1)

We write points of ER as

 

x

i

1

!

without any loss of generality because we assume that S is a real scene

in which all points are �nite.

2)

Image points in the camera's image plane are denoted by

 

u

i

1

!

without any loss of generality because

we assume that u

i

are actually measured image points and therefore �nite.



3.2 PR from correspondences in mathematical cameras

Let us have K mathematical cameras. A scene S is projected by these cameras to image

points u

k

i

; i = 1; : : : ; I; k = 1; : : : ; K; where the point u

k

i

is an image of i-th scene point in

k-th camera. It is known [3, 2] that it is possible to �nd a PR of S from u

k

i

, i.e. to compute

X

i

, M

k

, and z

k

i

6= 0 such that

z

k

i

0

@

u

k

i

1

1

A

=M

k

X

i

(5)

It is also known that M

k

and X

i

are not determined uniquely|there exist di�erent cameras

M

0k

and a di�erent PR X

0

i

of S such that the images u

k

i

remain the same, i.e.

z

0k

i

0

@

u

k

i

1

1

A

=M

0k

X

0

i

(6)

Points X

i

and X

0

i

are related via a projective transformation H as

w

i

X

i

= HX

0

i

(7)

where w

i

6= 0. It means that it is possible to reconstruct S from the image points only up to

an unknown projective transformation. The following theorem relates z

k

i

; z

0k

i

;M

k

and M

0k

.

Theorem 1 Let us have images u

k

i

of points of a scene S and let us have two PR X

i

;X

0

i

of

S for which relations (5), (6) and (7) hold. Then there exist numbers �

0k

such that for all

i = 1; : : : ; I and k = 1; : : : ; K

�

0k

M

0k

= M

k

H (8)

�

0k

z

0k

i

= w

i

z

k

i

(9)

Proof. Substituting (7) to (5) yields

w

i

z

i

k

0

@

u

k

i

1

1

A

=M

k

HX

0

i

(10)

If this is to hold along with (6) for all i = 1; : : : ; I, it must be a multiple of (6). This multiple

is generally di�erent for each k, let us denote it by �

0k

. Comparing right-hand sides of (10)

and (6) yields (8), comparing left-hand sides yields (9). ut



3.3 OPR from correspondences in real cameras

Theorem 2 (Relation between OPR and images from real cameras) Let us have a

ER x

i

of a scene S and its projections u

k

i

in K real cameras. Then for any

b

x

i

;

c

M

k

;u

k

i

and

b

z

k

i

such that

b

z

k

i

0

@

u

k

i

1

1

A

=

c

M

k

0

@

b

x

i

1

1

A

(11)

b

z

k

i

> 0 (12)

points

b

x

i

are an OPR of S.

Proof. We want to prove that assumptions (11) and (12) of the theorem imply (2) and (3).

In section 3.2 we stated that points

b

x

i

, for which (11) and

b

z

k

i

6= 0 holds, are a PR of S.

Therefore they di�er from ER of S by a projective transformation, and (11) implies (2).

According to De�nition 2, there exist cameras M

k

and numbers z

k

i

> 0 for x

i

and u

k

i

so that

z

k

i

0

@
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1

1
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@
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i

1
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A

(13)

According to (2), points x

i

and

b

x

i

are related via a projective transformation

c

H. Applying

theorem 1 to relations (11), (13) and (2) yields that there are numbers

b

�

k

such that

b

�

k

b

z

k

i

= w

i

z

k

i

(14)

Since z

k

i

> 0 and

b

z

k

i

> 0, it is

b

�

k

w

i

> 0. It means that the sign of

b

�

k

is independent on k

and therefore there exist

b

� such that (3) holds. ut

4 Construction of OPR

We will show how to construct an OPR from an existing PR. The following theorem is crucial

for that.

Theorem 3 (Relation between OPR and PR) Let us have a PR X

i

of a scene S, cam-

erasM

k

, image points u

k

i

, and numbers z

k

i

6= 0 satisfying (5). Let us assume that a projective

transformation

c

H and numbers �

k

exist and satisfy the following condition:

�

k

z

k

i

(n

>

1

c

HX

i

) > 0 (15)



where n

1

= (0; 0; 0; 1)

>

is a vector representing the plane at in�nity �

1

. The points

b

x

i

given

by the relation

b

w

i

0

@

b

x

i

1

1

A

=

c

HX

i

(16)

where

b

w

i

> 0, are an OPR of S.

Proof. We are to prove that the assumptions of the theorem imply (2) and (3).

It is apparent from (16) that

0

@

b

x

i

1

1

A

2 P

3

is a PR of S, hence (2) holds.

Scene pointsX

i

are projected to image points u

k

i

according to (5). Let points

b

x

i

be projected

to the same image points by (11). It su�ces to prove that

b

z

k

i

> 0, because then points

b

x

i

are an OPR of S according to Theorem 2.

Multiplying (16) by n

>

1

from the left yields

b

w

i

2

4

n

>

1

0

@

b

x

i

1

1

A

3

5

= n

>

1

c

HX

i

. In this expression, it

holds n

>

1

0

@

b

x

i

1

1

A

> 0. Since (15) holds at the same time, it follows that

�

k

z

k

i

b

w

i

> 0 (17)

Applying theorem 1 to relations (11), (5) and (16) yields

�

k

z

k

i

=

b

w

i

b

z

k

i

(18)

By comparing (17) and (18) we obtain

b

z

k

i

> 0. ut

The algorithm for constructing OPR from an existing PR, making use of this theorem, looks

as follows:

1. Measure image points u

k

i

2 E

2

by real cameras, for i = 1; : : : ; I and k = 1; : : : ; K.

2. Compute a PR X

i

from u

k

i

, using existing algorithms [4].

3. Find a regular matrix

c

H and numbers �

k

6= 0 satisfying the system of inequalities (15).

4. Compute OPR

b

x

i

by transforming PR X

i

according to (16). Matrices

c

M

k

can be also

computed using (8), if required.

Let us focus on how to solve step 3 in more detail. In (15), we know X

i

and z

k

i

from the PR.

There remains unknowns

c

H and �

k

. Only the signs of �

k

matter, their absolute value plays



no role. We will show that once the sign of �

k

is determined for a single k, the remaining

ones are uniquely determined by the signs of z

k

i

. Let the sign of �

1

be known. It is clear

from (15) that

�

1

z

1

i

(n

>

1

c

HX

i

) > 0 (19)

Therefore, �nding

c

H and �

k

satisfying (15) can be divided into two steps: (i) �nd some �

1

and

c

H satisfying (19), (ii) �nd �

2

; : : : ; �

k

such that (15) holds for the found �

1

and

c

H.

In the fact, condition (19) is concerned only with the fourth row

b

h

>

4

of matrix

c

H because

n

>

1

c

HX

i

=

b

h

>

4

X

i

. The remaining rows can be chosen arbitrarily. Step (i) requires to �nd

an intersection of halfspaces in the space of components of

b

h

4

. The boundaries of these

halfspaces are given by equations

b

h

>

4

X

i

= 0 and the orientations of these halfspaces are

given by the signs of �

1

z

k

i

. The sign of �

1

can be chosen so that a solution for

b

h

4

exists.

The halfspaces have dimension four (the number of components of

b

h

4

). However, if no point

X

i

is in the form (0; 0; 0; �)

>

(which is true almost always or it can be forced by e.g. an

appropriate transformation of X

i

), we can choose

b

h

44

= 1 without any loss of generality

and thus to reduce the dimension of the search space to three. The choice

b

h

44

= �1 (i.e.

multiplying

c

H by �1) need not be taken into account because condition (19) remains satis�ed

after simultaneous changing the signs of

c

H and �

1

, and therefore the choice

b

h

44

= 1 is entirely

general.

Thus, �nding all solutions �

k

and

c

H of condition (15) requires searching for an intersection

of halfspaces of dimension three. However, some solution can be found in a simpler way, e.g.

by a Monte Carlo method.

5 Properties of OPR

Let us denote

C(x

i

) =

(

x 2 E

3

j x =

I

X

i=1

�

i

x

i

; 0 � �

i

� 1;

I

X

i=1

�

i

= 1

)

(20)

the convex hull of points x

1

; : : : ;x

I

. Let us denote the transformation, that assigns x to

b

x

by solving (2) for x, as

h : x = h(

b

x) =

2

4

h

>

4

0

@

b

x

1

1

A

3

5

�1

0

B

B

B

@

h

>

1

h

>

2

h

>

3

1

C

C

C

A

0

@

b

x

1

1

A

(21)



where h

>

i

are rows of H. The transformation h can be called oriented projective transforma-

tion with respect to points x

i

. The OPR of S is characterized by the fact that it di�ers from

ER of S by an oriented projective transformation.

The fundamental property of OPR is described in terms of the following property of h.

Theorem 4 (OPR preserves convex hull of ER) Let us have ER x

i

and OPR

b

x

i

of a

scene S, related via the transformation h according to (21). Then it holds

C [h(

b

x

i

)] = h [C(

b

x

i

)] (22)

Proof. Equation (22) can be rewritten as

h

 

I

X

i=1

b

�

i

b

x

i

!

= x =

I

X

i=1

�

i

h(

b

x

i

) (23)

We are to prove that the following two implications (corresponding to the equivalence (22))

hold for all I-tuples

b

x

1

; : : : ;

b

x

I

:

1. For all I-tuple

b

�

1

; : : : ;

b

�

I

such that

P

I

i=1

b

�

i

= 1; 0 �

b

�

i

� 1 there exist an I-tuple

�

1

; : : : ; �

I

such that the conditions

P

I

i=1

�

i

= 1; 0 � �

i

� 1 and (23) hold.

2. For all I-tuple �

1

; : : : ; �

I

such that

P

I

i=1

�

i

= 1; 0 � �

i

� 1 there exist an I-tuple

b

�

1

; : : : ;

b

�

I

such that the conditions

P

I

i=1

b

�

i

= 1; 0 �

b

�

i

� 1 and (23) hold.

Let us prove only implication 1, implication 2 can be proved in a similar way. The conditions

(23) and

P

I

i=1

�

i

= 1 form a system of four linear equations for given

b

x

1

; : : : ;

b

x

I

and

b

�

1

; : : : ;

b

�

I

which has I unknowns �

1

; : : : ; �

I

. We will show that this system has always a solution

�

1

; : : : ; �

I

such that 0 � �

i

.

Using the conditions

P

I

i=1

�

i

= 1;

P

I

i=1

b

�

i

= 1, relation (23) can be rewritten to

w

I

X

i=1

�

i

0

@

x

i

1

1

A

= w

0

@

x

1

1

A

=

I

X

i=1

b

�

i

w

i

0

@

x

i

1

1

A

(24)

Obviously, �

i

=

b

�

i

w

i

=w is a solution to this system. It is also a solution to the condition

P

I

i=1

�

i

= 1 because the last row of the matrix equation (24) is w =

P

I

i=1

b

�

i

w

i

. Since all w

i

and w have equal signs (see (3)) and 0 �

b

�

i

, it must be also 0 � �

i

. Relations

P

I

i=1

�

i

= 1

and 0 � �

i

imply �

i

� 1. ut

This property of OPR shows that OPR is more than a mere PR. Table 1 shows a place

of oriented projective transformation in the hierarchy of known transformations. Fig. 1



transformation invariants

Euclidean distance

a�ne ratio of distances

oriented projective cross ratio of distances, convex hull

projective cross ratio of distances

Table 1: Hierarchy of transformations.

illustrates the hierarchy of reconstructions of a simple object. The situation is simpli�ed by

one dimension in this �gure|the reconstructions are shown in 2-D space rather than in 3-D

space.

It can be shown that the invariance of the convex hull implies preserving the order of points

at an arbitrary line segment inside the convex hull. This property is important in practice,

namely for rendering a model of a real scene, reconstructed from images captured by multiple

cameras.

6 Using OPR: rendering an oriented projective model

If a model of a real scene is reconstructed from images captured by multiple calibrated

cameras, a Euclidean model can be found. There are well-known algorithms for rendering a

point A does not lie in
convex hull of points 1,...,8

7
6

5

4

3
2

1

8

1 2 3

4

5
6

7

8

Euclidean
reconstruction

affine
reconstruction

oriented
projective
reconstruction

projective reconstruction

this plane corresponds to plane at infinity
in projective reconstruction

4 3
2

1

8

7
6

5

A

4

321

8

7 6 5

AA
A

convex hull of points 1,...,8

plane at infinity

Figure 1: Hierarchy of reconstructions of a simple object. Projective reconstruction does not

preserve convex hull of points 1; : : : ; 8.



Euclidean model in computer graphics. There are graphics algorithms able to solve visibility

e.g. by z-bu�ering, to warp texture, etc. Visibility is solved in the following way: the scene

points at each camera ray are ordered according to the distance to the camera center, and

only the closest point on each ray is rendered.

If the cameras are uncalibrated, ER (nor a�ne reconstruction) cannot be found without

further knowledge about the cameras. It has been thought that at most a PR can be found

[3, 2]. However, if a projective model is rendered by a rendering algorithm for a Euclidean

model, a nonsense image will generally be obtained for the two following reasons:

1. The image is be geometrically distorted. This is caused by the unknown projective

transformation between ER and PR.

2. Visibility is solved incorrectly, since the order of points at a ray in PR is generally not

the same as in ER. Therefore, wrong scene points will be determined as the closest to

the camera center.

The methods are known for computing the observer's projection matrix so that the geomet-

rical distortion of the image is eliminated or limited to an acceptable level.

It has been thought [5] that a projective model cannot be rendered by a Euclidean rendering

algorithm. OPR allows it. Since the order of points at rays is guaranteed to be the same as

in the ER, visibility will be solved correctly.
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