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Abstract *2 *s
It is well-known that epipolar geometry relating two un- s' 1
calibrated images is determined by at least seven corre- 4 ,
spondences. If there are more than seven of them, their posi- 1 . 4 s

tions cannot be arbitrary if they are to be projections of any
world points by any two cameras. Less than seven matches
have been thought not to be constrained in any way. We
show that there is a constraint even on five matches, i.e.,
that there exist forbidden configurations of five points in two
images. The constraint is obtained by requiring orientation
consistence—points on the wrong side of rays are not al-
lowed. For allowed configurations, we show that epipoles
must lie in domains with piecewise-conic boundaries, and
how to compute them. We present a concise algorithm de-
ciding whether a configuration is allowed or forbidden.

Figure 1. An example configuration of five points in two
cameras for which no epipolar geometry exists.

1. Introduction

The' retina of a central camera is usually modelled by the  Figure 2. Two camera retinas with five corresponding
projective plane. This gives to our disposal synthetic pro-  points. Red curves delineate domains where the epipoles
jective geometry and also linear algebra because flats in the can only be located.

projective plane can be represented by subspaces of the real o )

vector 3-space. However, it has been observed several time§OMPputer vision [6], has been studied already by the 19-th
[5, 7, 13, 3] that projective geometry is an unnecessarily C€Ntury projective geometers: given two 7-tuples of points
wide model for computer vision because it factorizes out in Projective plane, find two other points such that the first
orientation of flats. Orientation clearly playsale because ~ Point joined with the first 7-tuple and the second point
light raysare oriented halflines rather than unoriented infi- joined with the second 7-tuple form a pair of line pencils
nite lines. Thus, the projective geometry can model config- 'élated by a homography (e.g., in [4]). The well-known re-
urations of flats and their camera projections that are incon-Sult is that 7 is the right number—for less points, the task is
sistent in orientation and hence cannot occur in reality. ~ @mbiguous, for more, it has no solution in general.

The oriented projective geomet@] (also called two- This paper shows that even five correspondences may
sided projective) is a more suitable model because it doeh@ve no solution for epipolar geometry if orientation is
represent orientation. In the vector space representationtaken into account. Nothing is assumed about the cam-
orientation is expressed by orientation of bases of sub-€ras except the fact that they are central and linear—no
spaces: two bases represent the same flat if they not onhyffine information, no rectangular pixels, the cameras can
span the same subspace but also have equal handedness. be different (their image coordinate systems can even have

Epipolar geometry, so useful for photogrammetry and OPPosite handedness), moreover they can be directional or
panoramié. Figure 1 illustrates an example configura-

1This paper was started in Oxford and finished in Prague. | thank
the EC Projects VIBES and IST-2001-32184 ACTIPRET, the grant Grant 2Directional image is a set of points contained in a single hemisphere of
Agency of the Czech Republic (grant 102/01/0971), and the grant MSM the spherical 2-space. Panoramic (or omnidirectional) image does not have
212300013 for support during these periods. this property [13, 12]. Conventional cameras provide directional images.




tion of five correspondences that is not consistent with any  Chirotope x|[(«1, .
epipolar geometry. Figure 2 shows an example of an al-
lowed configuration and the loci where the epipoles can different triplets of indices fromi,..., n.
only be. These regions have piecewise-conic boundariesy[y(z1, ...,

with vertices in some of the given correspondences.

..,m,)] of a list of points fromS?
is the list of signssgn[x;,x;,xx] wherei,j, k are all
Chirotope
x,)] of the pencil of lineg(x1,...,x,) is the
list of signs sguly, x;,x;] for all different index pairs, j.

The paper is organized as follows. After introducing the Chirotope is a concept from the theory of oriented matroids
notation, the oriented epipolar constraint and its decompo-[2] (alsocf. [3]). It captures exactly the orientation infor-
sition into the projective and orientation part is described in mation which is factorized out by the projective geometry.
section 3. Each of these parts imposes a constraint on simul-

taneous position of the epipoles, which combined together3, Two Constraints on Joint Epipole

are promised to yield the final constraint. Section 4 derives L
the projective part and section 5 combines the two together.

A concise explicit algorithm deciding whether a configu-

ration of five point pairs is feasible is presented in section
6. Finally, classes of 3D reconstructions from 5 points are

characterized in section 7.

2. Notation and Concepts

{z,y,z} denotes a set whiléz,y, z) denotes an ordered
list. Set-theoretical difference id \ B. R is the set of
reals,x ~ y is equality of two vectors up to a non-zero
scale,x 4 y is equality up to a positive scaléx,y, z| is
det([x,y,2]). Kronecker product of two vectors or matri-
ces isx ® y, column-wise matrix vectorization isc(A).

P? denotes the projective plane, a#tlthe oriented pro-
jective 2-space (i.e., the 2-sphere). Following [9); de-
notes the antipode, x V y denotes the join of two points
forming a line, and: A b is the meet of two lines forming a
point. z V y is often abbreviated asy. The pencil of three
lines joining pointsey, x9, z3 With y is thusy(z1, z2, x3).

By z in italics we denote a point, either froR? or S2. A
homogeneous vector frol? representing: is denoted by
x in bold face. All vectord Ax| A # 0} represent the same
x € P2, while only vectors{A\x| A > 0} represent: € S?.
The antipode-x is represented by x. We will freely swap

between boldface and italics symbols, assuming automati-satisfying both constraintsigz(G™)
cally that they relate to the same object. Note, symbols in

etG" = {(x1,2)),..., (z,, x,)} be a configuration of.
point pairs in two images. A necessary condition €&t
to be projections of some world points by some pair of
cameras is that [4, 6] there are two poiatnde’ such that

@

This condition is not sufficient because it allows for scene
points on wrong sides of the rays. It can be augmented to
forbid that as follows: the points and epipoles are consid-
ered inS? rather than inP?, andthe homography must be
oriented®, e(zy,...,z,) Ay € (2],...,2)). We will not

use the last relation directly; instead, it can be shown [13]
equivalent to simultaneously requiring (1) and

e(x1,...,xn) N (2, ... xh) .

x[e(xl,...,:(:n)] —X[e/($/17,,,7xib)] . (2)

Forn < 7, the unoriented condition (1) alone does not
impose any constraint on either epipole separately. How-
ever, it is a constraint on ttjeint epipole(e, ¢’) € P? x P2
forn > 2. lLe., if e is given, the location o’ might not
arbitrary anymore, forced to obey (1). Similarly, (2) con-
strains the oriented joint epipole, ¢’) € S? x S2.

We will refer to (1) and (2) aprojective constrainand
orientation constrainbn the joint epipole, respectively, and
denote the sets of joint epipoles satisfying them for a con-
figuration G™ respectively byP(G™) and S(G™). The set
P(G™)NS(G™).

5, the

The rest of the paper will show that for

italics mean abstract geometrical entities in the synthetic ge-combined constraint restricis to lie in a subset of the
ometry sense, whereas boldface symbols are mere vectordirst image plane rather than anywhere in the image, i.e.,

Thus expressions like € y V z or x 4+ y are meaningful,
whereasr + y or x € 1 are not.

For any symbols, s denotes entity related to the first
image, whiles’ is related to the second image.

(1y...y2n) A (Y1,...,yn) Means that two point lists
from P" are related by a homograpt§HVi(y, ~ Hx;).
(z1,...,2n) At (Y1,-..,yn) Means that two point lists
from S™ are related by an oriented homography [9, 13],
JHVi(y, 4+ Hx;). In P!, the cross-ratio of four points
is <l‘1,l‘2,3’53,$4> = [Xl,Xg][Xg,X4HX1,X3]_1[X2,X4}_1.
Symbolx;zs || 324 denotes that,, xo separateses, 4.
There are 3 pOSSibi“tie%lIQ ||IL'3I’4, xr1T3 |‘x2z4, and
124 || x2x3, respectively equivalent tdzi,xo, x3,x4)
greater than 1, between 0 and 1, and negative [8].

{e|3e[(e,e') € E(G®)]} # P2, and that there are config-
urations for which®(G®) = .

4. Projective Constraint

This section characterizeB(G™) for up ton = 5. All
points are considered P?.

3The analytical form of thigriented epipolar constrairit [e/] x x; £

Fx; whereF = [e]« H is the fundamental matrix [11, 13, 12].

4For notation simplicity, we are slightly informal in the paper about
whetherP and S take and return entities frofi? or S2. Naturally, P
should take a list of point pairs froff? and return a subset & x P2, and
S should take a list of point pairs fro? and return a subset 8f x S2.
Depending on the context, we assume tAand.S work with either space.
It does make sense because we can either identify antipodes, or use the fact
that (2) is invariant to replacing, e’) with (—e, —e’).



Line-preserving property. In P(G?), both epipoles are ar-
bitrary unless one of them lies on the line joining the points.
It follows from (1) that(e € z1 V 22) & (¢ € 2} V ab).
This indeed holds for all pairs of correspondence&fn

In P(G*), one epipole is free and the
Let

Four points.
other epipole is constrained by it to lie on a conic.

e be given. LetQc denote the conic determined by the
points{e, x1,...,z4} andh denote the homography send-
ing (x1,...,24) to (2,...,24). Thene' must lie on

the conic@’® = h(Q°). This follows from the Steiner
theorem [8], saying that the locus of pointisfor which
(e(x1,...,x4)) is constant is any conic passing through
T1y.e..,24.

Five points. In P(G®), one epipole is free and the other
is related with it by a&Cremona transformation of degree 5
This is a classical result [10], which however is not widely
known in computer visioh It is obtained from the fact that
the four-point constraint must hold for all five four-tuples
from the five correspondences, i.€(G?) = Ni_; P(G?)
WhereG? = {(xlvxll)v EEER) (1’5»:5{5)} \ {(1’171’;)}

Lete be given and lef)$ be the conic through the points
{e,x1,..., 25} \ {z;} andh; be the homography sending
x; toa’ forj € {1,...,5}\ {i}. Thene’ must lie simul-
taneously on all conicQ/¢ = h;(Q¢). Quite surprisingly,
all Q%, ..., Q¥ intersect in a single poififor anye. Thus,
there is a functional relationship betweemnde’ defined
everywhere except im;, which is denoted by’ = f(e).

Let us construct six coniaQy, . . . , @5 in the first image
and six conics)y, . . ., Q5 in the second image as follows.
Qo is given byz, ..., x5 andQ; = h;(Qo). The conics
Q; andQy, . .., Q5 are obtained symmetrically.

If e € Qo (i.e., e is conconic with allz;), thenQ$ = Qo
andQ’c = @’ for all 7, ande’ lies on the common intersec-
tion of Q}. We will denote this intersection hyj,. Symmet-
rically, o is the common intersection @f;. The new pair
(w0, ) is uniquely defined by7° and it is the only point
pair which would bring no information if added °. In
other wordsG§., = G° U {(z0, %)} is a degenerate con-
figuration in the sense th@(G°) = P(GY,,). The new
pair (zg, () plays the samedte as any other paitx;, ;).
In fact, the extended configuraticﬁ?\?1eg is more complete
and symmetric than the originél®. The pair(z, z{,) also

5] thank Thomas Buchanan [1] for telling me about [10].

6This is shown in [10] and follows also from analytic characterization
of P(G™). Analytically, P(G™) can be obtained from conditions on
the fundamental matrix induced by the point paixg,Tin = 0, and
one conditionFe = 0. These can be combined to the single system
Avec(F) = 0, whereA = [x1 @ x| -+ |xn ® X, | € ® I3x3] .
P(G™) is given by solvability of this system as follows. The allowed po-
sitions ofe must satisfy the conditiomank (A) < 9. Given an allowed
e, the allowed positions of’ are given by solving the system f#t and
hence fore’. In particular, forn = 5, the size ofA is 8 x 9, therefore
rank (A) = 8 and any position of is allowed; anct yields a unique (up
to scale and for non-degenerai€) solution forF and hence foe’.

—
Figure 3. Exceptional points and curves ¢f Each index
is depicted in different color. Also, lines;x; are depicted.

allows to construct); and@’; without usingh;, because);
is a conic througHzo, . .., x5} \ {z;}, and similarly forQ;.
Recall [8] that Cremona transformations are mappings
from P2 to P? that are birational, i.e., both forward and in-
verse mapping is given by polynomials in homogeneous co-
ordinates. A Cremona transformation of deg#ée contin-
uous and invertible everywhere exceptiin- 1 exceptional
pointswhere it is undefined, andl+ 1 exceptional curves
which are each sent to the corresponding exceptional point.
Everything is symmetric, there afiet 1 exceptional points
and curves in each plane.
f(e) can be evaluated by computing the intersection
of any two conicsl}¢. Since these two conics share three
points, the intersection can be expressed by polynomials in
homogeneous coordinatesThereforef is birational. We
showed thdt f(Q;) = . for eachi = 0,...,5, therefore
Q; andQ)} are its exceptional curves, ang andz; are its
corresponding exceptional points.

"The intersection of two conics sharing three points is conveniently
computed using theeciprocal Cremona transformatiof8]. The point re-
ciprocal tox = (2!, 22, 23) T is given byx* = (2223, 2321, x122) T,
Note, (z*)* = z. Its crucial property is that it sends the limgz2 to the
conic given by{e1, ez, e3, z7, x5}, wheree; are the three basis vectors
(1,0,0)7,(0,1,0)T, (0,0,1) 7. The fourth common point of two conics
{e1,e2,e3,x1, w2} and{e1, ez, e3,y1,y2} isjust(zz Ayfys)*. By
simplifying this expression | also obtained that the degreg isf5.

8The following subtlety needs to be explained heree ¥ Q;, then
e/ = f(Q:) = z}. But this does not correspond to any configuration of
cameras and a 3D poidif; corresponding tdz;, =), because it = x/
then the camera centers aid are colinear and inevitably it is = x;, if
it happens to be consistent with (1). The statemfé@;) = = describes
thelimit case it says what is happening td if e is very nearQ);.



X1

Q3 C|J

X2

image 1 image 2
Figure 4. Two cellsCr; andC’;;, wherel = {3,4} and
J = {1,2}. Qs, Q4 correspond respectively td;, =}, and
x1, T2 correspond ta&), Q5. If there is a linel;; crossing

C1., there is the corresponding lifg crossingC’;. Func-
tion f mapsCr, to C';; andQs, Q4 to x5, 2, respectively.

Cell-preserving property. Central toG? is the conic web
in each image plane formed by the exceptional curves and  Figyre 5. Two example image pairs with computed regions
points of f (figure 3). This structure has a number of inter-  of allowed epipoles. Each row depicts one pair. The second
esting properties, most of them naturally following fromthe  example also shows the full family of six conics in grey.
correspondence induced ifyand from continuity off. The
most useful for us is the following cell-preserving property.

The exceptional curves partition the first image plane
into a system o€ells delineated by piecewise-conic bound-
aries. A cellC is uniquely characterized by the subset ! - ‘ -
of conics that participate to form its boundary, or, equiva- @i- IMPosing the oriented constraint further foree lie
lently, by the subset of points that belong to its boundary. 0" & Segment o;, rather than anywhere ap;. We call it
LetI,J c {0,...,5} be two sets of indices and I€t;; the allowed segmentThe allowed segment @; is given
denote a cell whose boundary is formed by arcs of conicsPY Omitting the index from (2), i.e., by the condition

;|7 € I} and by pointdz;|j € J}.
{QF|or eaih celgfs in tie]l‘iist irr%age there is always a (V7. % € {L,....5}\{i}) ([e,x;, xx][x}, X}, x;] < 0) (3)
cell C}, ;. in the second image such thEt= J andJ’ =
I. Therefore, there is one-to-one correspondence betweenvheree is any point on the segment. Four segments, delim-
cells in the first and the second image. The cell-preservingited by neighboring pairs of pointsry, . . ., x5} \ {z;}, are
property says that any cdll;; is sent to its corresponding considered on eadh;. It can be shown that thereas most
cell C%; by f. A typical pair of two corresponding cells is  oneallowed segment on each;.

the sign offe’, x;, x;] swaps simultaneously. Thug(G®)
consist of pairs oéllowed cells
If ¢’ = z}, the projective constraint restrictsto lie on

illustrated in figure 4. It follows from continuity of f that each allowed seg-
The properties off we will need can be summarized as ment is part of the boundary of some allowed cell and that
follows: f(ziz;) = zjz}, f(Qi) =z}, andf(Cry) = Cp. the boundary of each allowed cell consists only of allowed
segments. Two allowed cells never touch, except in point
5. Combining the Two Constraints xo; however, if an allowed segment containg it never

stops there but always passes through it becaggeabsent

) T ) : in (3). In other wordsg, is the only point where allowed
strgcted._ The _foII_owmg observaﬂgn IS cru_c:|al: if two segments can cross each other. Therefore, the set of allowed
epipoles in the firstimage plane are inside asingle€efl,  gegments uniquely determines the set of allowed cells and
they are either both allowed or both forbidden. Formally, henceE(G?). Constructing?(G®) has just been reduced to

(e1,e0 € Cry) = [(e1, f(e1)) € E < (ea, f(e2)) € E] - enumeration of allowed segments, Whi.Ch is easy using (?)).

Examples of regions of allowed epipoles for three dif-
In other words, the property of ‘being an allowed epipole’ ferent configurations are in figures 2 and 5. An exam-
is constant inside any cell. This is rather surprising—one ple of a forbidden configuration is in figure 1, in which
would expect that this property changes if the epipole x,...,x5 are respectively0,0,1)",(0,1,1) 7, (1,0,1)T,
crosses any line;z;, because the sign ¢, x;, x;] in (2) (3,517, (3,2,1)7, and zf,...,2} are respectively
swaps. However, due to the line preserving property,of equal toxy, x5, x3, 2, 21.

In this section, the seb(G®) = P(G®) N S(G®) is con-



6. Explicit Constraint on Five Points

Here, we'll give the algorithm deciding whether a given
configurationG® is forbidden or allowed, i.e., whether
E(G®) is empty or non-empty. It already follows from sec-
tion 5, but we will simplify it, providing additional insights.

How to sort five points on a conic.We will show how to
compute the order of five points on the conic given by them.
We will need it later in this section.

The set of possible orderings afpoints inP! is equal
to the set of their permutations factorized by cyclic permu-
tations and reversion. This factorized set h&g2n) ele-
ments, which we calprojective ordersE.g., there is a sin-
gle projective order of 3 point$(123)}, 3 projective orders
of 4 points,{(1234), (1243), (1423)}, and 12 projective or-
ders of 5 points,

{(12345), (12354), (12534), (15234),
(12435), (12453), (12543), (15243),
(14235), (14253), (14523), (15423)}.

A d-degree curve itP? is, up to ad-dimensional projec-
tivity, isomorphic toP' via the mapping: : P' — P? given

by (u,v) " — (u?,ud v, ..., uvd=1 v9)T. Examples are
a conic inP? or a (twisted) cubic ifP3. Therefore, the pro-
jective order of pointg(z;),...,c(x,) € P? on the curve

is the same as the projective ordengf . .., z, € PL.
The projective order ol + 3 points on ad-degree
curve inP? can be computed without explicitly using

because it is closely related to separations of pencils of
E.g., there exist 12 ‘qualita-

quadruples of hyperplanes.
tively different’ configurations of 5 points 2, given by
whetherz;(z;, z) || zi (21, z.m) for all different 5-tuples
(i,7,k,l,m). They correspond to the 12 projective orders
of the points on the conic given by them.

In P2, itis easy to verify that given four points , ..., z4
on a conia, the following three statements are equivalent:

1. The projective order of, ..., x4 ONQ is (1234).
2. Any pointe # z; onQ satisfiese(z1, x3) || e(z2, 24).
3. The pointz;z3 A x2x4 belongs to the interior aof).

The equivalencé < 2 yields the projective order of points
z1,...,x4 ON the conic given by, ...,z5. The projec-

end

function i = po4(x)

r=det(x(;,[1 2 5:end]))*det(x(;,[3 4 5:end)))/...
det(x(;,[1 3 5:end]))/det(x(:,[2 4 5:end)));

if >1 i=1; elseif r<0 i=2; else i=3; end

In S?, five points define apherical conicrather than a
projective one. A non-degenerate spherical capicon-
sists of two disconnected antipodal components (see figure
6a). The equivalence < 3 allows to find outwhich point
is on which componertp to swapping the components) as
follows. Theinscribed rectangle theoresays that the line
I = (z122 A z324) (2124 A T223) IS the polar of the point
y = x1x3 N\ 224 With respect to any conic passing through
x1,...,x4. If the projective order ofcy,..., 24 ONQ is
(1234), which can be done by renaming indicess inside
@ and hencé is outside. Thug] separates the two compo-
nents ofQ in S? (figure 6b). The points on the right d&re

(@)

(b)
Figure 6. Conic inS? consists of two disconnected compo-

nents (a). If the projective order of points(i5234), point
13 A 24 is inside@ and line(12 A 34)(14 A 23) outside (b).

Simplifying the algorithm. Recall from section 5 that find-
ing whetherQ; contains an allowed segment requires com-
puting an arbitrary poing on each of the four segments of
Q; and testing it for (3). We can get rid of computing these
arbitrary points as follows.

Rename indices of the paifs1,z)),..., (z5,25) SO
that the projective order of/,...,zf on Qf is (12345).
SinceQ; = h; L(Qh) and projectivities preserve projective
order, this ensures that the projective ordetffrs, x4, x5

tive order of all points can be found by testing separations 0N Q) is (2345), of x1, x3, 24, 5 0N Q2 is (1345), etc.

for several permutations of the points. It’s a bit tricky, the
following MATLAB function does it for arbitraryi:

function o = porderd(x)
o = 1:3;
for j = 4:size(x,2)
while 1
i = pod(x(:,[o(1:3) j o(4:end) j+l:end)));
if i < 3, break, end
o = o([2:end 1]);
end
o = [o(L:i) j o(i+1:end)];

Since E(G™) is invariant to replacing any pait;, «})
with (—z;, —z}), we can do this replacement for appropriate
pairs sothaf{zy,...,z5} \ {z;} all lie on a single compo-
nent of the spherical coni®;, using the pivot line as de-
scribed above. Now, the list of signs [ef x;, x|, wheree
is on any fixed segment anjdk € {1,...,5}\ {¢}, isin-
dependent on the positions ©f, . . . , x5 and hence known
in advance. Testing whethé}; contains an allowed seg-
ment merely requires comparing these signs with signs of

the appropriate determinarits;, x’;, x; ] according to (3).



E.g., after renaming indices and replacing appropriate
pairs with antipodes, the coni@; with pointsxy, ..., x4
on it looks always as shown in figure 6b. It is obvious from
the figure what are the signs fef x;, x;] for each segment.
To summarize, the following function returns whether a
configuration of five point pairs in two images is allowed:
function OK = test_epi_5points(x1,x2)
o = porderd(x2); x1 = x1(;,0); X2 = x2(:,0);
for i = 1.5
OK = testQ5(x1,x2);
if OK, break, end
p = [2:5 1]; x1 = x1(;,p); x2 = x2(.,p);
end

function OK = testQ5(x1,x2)

11 = cross(x1(:;,[1 3 1 3]),x1(;,[2 4 4 2]));
11 = cross(11(:,[1 3]),I11(:,[2 4]));
11 = cross(I1(;,1),11(:,2))’;

X2 = x2 .* ([1;1;1]*(11*x1));
sl =[1-1-1+1 +1 +1
+1-1-1-1-1+1
+1 +1 -1 +1 -1 -1
+1 +1 +1 +1 +1 +1J;
s2 = sign([det(x2(;,[5 1 2]))
det(x2(:,[5 1 3]))
det(x2(:,[5 1 4]))
det(x2(:,[5 2 3]))
det(x2(:,[5 2 4]))
det(x2(:,[5 3 4])) * [1 1 1 1];
OK = any( all(sl==+s2) | all(s1==-s2) );

Note, given all but one points frof®, e.g.,{z1, ..., s,
xh,...,xz,}, the locus of the last pointyf, for which
E(G®) # 0 is anon-convex spherical polygoits vertices
are a subset of the+ 15 = 20 intersections of th¢}) lines
zix’; (not onlyz}) and its sides are segments of these lines.

7. Chirotope of 3D Reconstruction

If (e,e’) € E(G?), there exist amriented projective recon-

struction fromG?®, i.e., there are two camer® P’ and 3D

points X; such thatx; £ PX; andx, £ P'X; [5, 6, 13].

Let P" denote theriented camera centgbeing the wedge

product of the three rows @. In this section, we will in-

vestigate the 3D reconstructioR”, P"", X, ..., X5).
Consider the extended degenerate configuration of six

points G5, = G° U {(z0,2)}, which was described in

section 4. Let all 12 points;, 2/, be fromS? and let(e, ¢’)

satisfy (1) and (2). Unlike in section 5, also the gais, «(,)

is assigned orientation and is present in (2). We can com-

pute, up to a 3D oriented homography, camdPaand P’

and pointsXy, . .., X5 such thak; < PX; andx, £ P'X;

fori =0,...,5. | noticed that ife crosses the ling;z ;, two

following determinants change sigi®”, P, X;, X,;] and

X, Xy, Xc, Xg] Wwhere{a, b,c,d} = {0,...,5}\ {i,7}.
Thus, the lines joining the pointsy, ..., x5 partition

the allowed cell(s) intaegions corresponding to different

chirotopesof the 3D reconstructioP”, P, X1, ..., X5)

from G°.

Theses classes of 3D reconstructions can be tested for
cheiral inequalitie$, because the solvability of cheiral in-
equalities clearly depends only on the chirotope of the
reconstruction. This provides another constraint@h
which, however, can be violated only for panoramic images
[13], because it has been shown that the cheiral inequalities
are always satisfied for two directional images [5, 13].

8. Conclusion

The new constraint on five points in two images has been
presented, based on existing epipolar constraint and orienta-
tion consistence, in contrary to the common belief that any
configuration of five point pairs corresponds to some (in-
finitely many) epipolar geometries. We have not discussed
the form of the constraint for degenerate configuratiGhs
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