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Abstract
It is well-known that epipolar geometry relating two un-

calibrated images is determined by at least seven corre-
spondences. If there are more than seven of them, their posi-
tions cannot be arbitrary if they are to be projections of any
world points by any two cameras. Less than seven matches
have been thought not to be constrained in any way. We
show that there is a constraint even on five matches, i.e.,
that there exist forbidden configurations of five points in two
images. The constraint is obtained by requiring orientation
consistence—points on the wrong side of rays are not al-
lowed. For allowed configurations, we show that epipoles
must lie in domains with piecewise-conic boundaries, and
how to compute them. We present a concise algorithm de-
ciding whether a configuration is allowed or forbidden.

1. Introduction
The1 retina of a central camera is usually modelled by the
projective plane. This gives to our disposal synthetic pro-
jective geometry and also linear algebra because flats in the
projective plane can be represented by subspaces of the real
vector 3-space. However, it has been observed several times
[5, 7, 13, 3] that projective geometry is an unnecessarily
wide model for computer vision because it factorizes out
orientation of flats. Orientation clearly plays a rôle because
light raysare oriented halflines rather than unoriented infi-
nite lines. Thus, the projective geometry can model config-
urations of flats and their camera projections that are incon-
sistent in orientation and hence cannot occur in reality.

The oriented projective geometry[9] (also called two-
sided projective) is a more suitable model because it does
represent orientation. In the vector space representation,
orientation is expressed by orientation of bases of sub-
spaces: two bases represent the same flat if they not only
span the same subspace but also have equal handedness.

Epipolar geometry, so useful for photogrammetry and

1This paper was started in Oxford and finished in Prague. I thank
the EC Projects VIBES and IST-2001-32184 ACTIPRET, the grant Grant
Agency of the Czech Republic (grant 102/01/0971), and the grant MSM
212300013 for support during these periods.
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Figure 1. An example configuration of five points in two
cameras for which no epipolar geometry exists.

Figure 2. Two camera retinas with five corresponding
points. Red curves delineate domains where the epipoles
can only be located.

computer vision [6], has been studied already by the 19-th
century projective geometers: given two 7-tuples of points
in projective plane, find two other points such that the first
point joined with the first 7-tuple and the second point
joined with the second 7-tuple form a pair of line pencils
related by a homography (e.g., in [4]). The well-known re-
sult is that 7 is the right number—for less points, the task is
ambiguous, for more, it has no solution in general.

This paper shows that even five correspondences may
have no solution for epipolar geometry if orientation is
taken into account. Nothing is assumed about the cam-
eras except the fact that they are central and linear—no
affine information, no rectangular pixels, the cameras can
be different (their image coordinate systems can even have
opposite handedness), moreover they can be directional or
panoramic2. Figure 1 illustrates an example configura-

2Directional image is a set of points contained in a single hemisphere of
the spherical 2-space. Panoramic (or omnidirectional) image does not have
this property [13, 12]. Conventional cameras provide directional images.



tion of five correspondences that is not consistent with any
epipolar geometry. Figure 2 shows an example of an al-
lowed configuration and the loci where the epipoles can
only be. These regions have piecewise-conic boundaries,
with vertices in some of the given correspondences.

The paper is organized as follows. After introducing the
notation, the oriented epipolar constraint and its decompo-
sition into the projective and orientation part is described in
section 3. Each of these parts imposes a constraint on simul-
taneous position of the epipoles, which combined together
are promised to yield the final constraint. Section 4 derives
the projective part and section 5 combines the two together.
A concise explicit algorithm deciding whether a configu-
ration of five point pairs is feasible is presented in section
6. Finally, classes of 3D reconstructions from 5 points are
characterized in section 7.

2. Notation and Concepts
{x, y, z} denotes a set while(x, y, z) denotes an ordered
list. Set-theoretical difference isA \ B. R is the set of
reals,x ∼ y is equality of two vectors up to a non-zero
scale,x +∼ y is equality up to a positive scale.[x,y, z] is
det([x,y, z]). Kronecker product of two vectors or matri-
ces isx⊗ y, column-wise matrix vectorization isvec(A).

P2 denotes the projective plane, andS2 the oriented pro-
jective 2-space (i.e., the 2-sphere). Following [9],¬x de-
notes the antipodex, x ∨ y denotes the join of two points
forming a line, anda ∧ b is the meet of two lines forming a
point. x ∨ y is often abbreviated asxy. The pencil of three
lines joining pointsx1, x2, x3 with y is thusy(x1, x2, x3).

By x in italics we denote a point, either fromP2 or S2. A
homogeneous vector fromR3 representingx is denoted by
x in bold face. All vectors{λx|λ 6= 0} represent the same
x ∈ P2, while only vectors{λx|λ > 0} representx ∈ S2.
The antipode¬x is represented by−x. We will freely swap
between boldface and italics symbols, assuming automati-
cally that they relate to the same object. Note, symbols in
italics mean abstract geometrical entities in the synthetic ge-
ometry sense, whereas boldface symbols are mere vectors.
Thus expressions likex ∈ y ∨ z or x + y are meaningful,
whereasx + y or x ∈ l are not.

For any symbols, s denotes entity related to the first
image, whiles′ is related to the second image.

(x1, . . . , xn) Z (y1, . . . , yn) means that two point lists
from Pn are related by a homography,∃H∀i(yi ∼ Hxi).
(x1, . . . , xn) Z+ (y1, . . . , yn) means that two point lists
from Sn are related by an oriented homography [9, 13],
∃H∀i(yi

+∼ Hxi). In P1, the cross-ratio of four points
is 〈x1, x2, x3, x4〉 = [x1,x2][x3,x4][x1,x3]−1[x2,x4]−1.
Symbolx1x2 ||x3x4 denotes thatx1, x2 separatesx3, x4.
There are 3 possibilities,x1x2 ||x3x4, x1x3 ||x2x4, and
x1x4 ||x2x3, respectively equivalent to〈x1, x2, x3, x4〉
greater than 1, between 0 and 1, and negative [8].

Chirotopeχ[(x1, . . . , xn)] of a list of points fromS2

is the list of signs sgn[xi,xj ,xk] where i, j, k are all
different triplets of indices from1, . . . , n. Chirotope
χ[y(x1, . . . , xn)] of the pencil of linesy(x1, . . . , xn) is the
list of signs sgn[y,xi,xj ] for all different index pairsi, j.
Chirotope is a concept from the theory of oriented matroids
[2] (also cf. [3]). It captures exactly the orientation infor-
mation which is factorized out by the projective geometry.

3. Two Constraints on Joint Epipole
Let Gn = {(x1, x

′
1), . . . , (xn, x′n)} be a configuration ofn

point pairs in two images. A necessary condition forGn

to be projections of somen world points by some pair of
cameras is that [4, 6] there are two pointse ande′ such that

e(x1, . . . , xn) Z e′(x′1, . . . , x
′
n) . (1)

This condition is not sufficient because it allows for scene
points on wrong sides of the rays. It can be augmented to
forbid that as follows: the points and epipoles are consid-
ered inS2 rather than inP2, andthe homography must be
oriented3, e(x1, . . . , xn) Z+ e′(x′1, . . . , x

′
n). We will not

use the last relation directly; instead, it can be shown [13]
equivalent to simultaneously requiring (1) and

χ[e(x1, . . . , xn)] = −χ[e′(x′1, . . . , x
′
n)] . (2)

For n ≤ 7, the unoriented condition (1) alone does not
impose any constraint on either epipole separately. How-
ever, it is a constraint on thejoint epipole(e, e′) ∈ P2 × P2

for n ≥ 2. I.e., if e is given, the location ofe′ might not
arbitrary anymore, forced to obey (1). Similarly, (2) con-
strains the oriented joint epipole(e, e′) ∈ S2 × S2.

We will refer to (1) and (2) asprojective constraintand
orientation constrainton the joint epipole, respectively, and
denote the sets of joint epipoles satisfying them for a con-
figurationGn respectively byP (Gn) andS(Gn). The set
satisfying both constraints is4 E(Gn) = P (Gn) ∩ S(Gn).

The rest of the paper will show that forn = 5, the
combined constraint restrictse to lie in a subset of the
first image plane rather than anywhere in the image, i.e.,
{e | ∃e′[(e, e′) ∈ E(G5)]} 6= P2, and that there are config-
urations for whichE(G5) = ∅.

4. Projective Constraint
This section characterizesP (Gn) for up to n = 5. All
points are considered inP2.

3The analytical form of thisoriented epipolar constraintis [e′]×x′i
+∼

Fxi whereF = [e]×H is the fundamental matrix [11, 13, 12].
4For notation simplicity, we are slightly informal in the paper about

whetherP andS take and return entities fromP2 or S2. Naturally, P
should take a list of point pairs fromP2 and return a subset ofP2×P2, and
S should take a list of point pairs fromS2 and return a subset ofS2 × S2.
Depending on the context, we assume thatP andS work with either space.
It does make sense because we can either identify antipodes, or use the fact
that (2) is invariant to replacing(e, e′) with (¬e,¬e′).



Line-preserving property. In P (G2), both epipoles are ar-
bitrary unless one of them lies on the line joining the points.
It follows from (1) that(e ∈ x1 ∨ x2) ⇔ (e′ ∈ x′1 ∨ x′2).
This indeed holds for all pairs of correspondences inGn.

Four points. In P (G4), one epipole is free and the
other epipole is constrained by it to lie on a conic. Let
e be given. LetQe denote the conic determined by the
points{e, x1, . . . , x4} andh denote the homography send-
ing (x1, . . . , x4) to (x′1, . . . , x

′
4). Then e′ must lie on

the conicQ′e = h(Qe). This follows from the Steiner
theorem [8], saying that the locus of pointse for which
〈e(x1, . . . , x4)〉 is constant is any conic passing through
x1, . . . , x4.

Five points. In P (G5), one epipole is free and the other
is related with it by aCremona transformation of degree 5.
This is a classical result [10], which however is not widely
known in computer vision5. It is obtained from the fact that
the four-point constraint must hold for all five four-tuples
from the five correspondences, i.e.,P (G5) = ∩5

i=1P (G4
i )

whereG4
i = {(x1, x

′
1), . . . , (x5, x

′
5)} \ {(xi, x

′
i)}.

Let e be given and letQe
i be the conic through the points

{e, x1, . . . , x5} \ {xi} andhi be the homography sending
xj to x′j for j ∈ {1, . . . , 5} \ {i}. Thene′ must lie simul-
taneously on all conicsQ′e

i = hi(Qe
i ). Quite surprisingly,

all Q′e
1 , . . . , Q′e

5 intersect in a single point6 for anye. Thus,
there is a functional relationship betweene ande′ defined
everywhere except inxi, which is denoted bye′ = f(e).

Let us construct six conicsQ0, . . . , Q5 in the first image
and six conicsQ′

0, . . . , Q
′
5 in the second image as follows.

Q0 is given byx1, . . . , x5 andQ′
i = hi(Q0). The conics

Q′
0 andQ1, . . . , Q5 are obtained symmetrically.
If e ∈ Q0 (i.e.,e is conconic with allxi), thenQe

i = Q0

andQ′e
i = Q′

i for all i, ande′ lies on the common intersec-
tion of Q′

i. We will denote this intersection byx′0. Symmet-
rically, x0 is the common intersection ofQi. The new pair
(x0, x

′
0) is uniquely defined byG5 and it is the only point

pair which would bring no information if added toG5. In
other words,G6

deg = G5 ∪ {(x0, x
′
0)} is a degenerate con-

figuration in the sense thatP (G5) = P (G6
deg). The new

pair (x0, x
′
0) plays the same rôle as any other pair(xi, x

′
i).

In fact, the extended configurationG6
deg is more complete

and symmetric than the originalG5. The pair(x0, x
′
0) also

5I thank Thomas Buchanan [1] for telling me about [10].
6This is shown in [10] and follows also from analytic characterization

of P (Gn). Analytically, P (Gn) can be obtained fromn conditions on
the fundamental matrix induced by the point pairs,x′>i Fxi = 0, and
one conditionFe = 0. These can be combined to the single system
Avec(F) = 0, whereA = [x1 ⊗ x′1 | · · · |xn ⊗ x′n | e ⊗ I3×3]>.
P (Gn) is given by solvability of this system as follows. The allowed po-
sitions ofe must satisfy the conditionrank (A) < 9. Given an allowed
e, the allowed positions ofe′ are given by solving the system forF and
hence fore′. In particular, forn = 5, the size ofA is 8 × 9, therefore
rank (A) = 8 and any position ofe is allowed; ande yields a unique (up
to scale and for non-degenerateG5) solution forF and hence fore′.

Figure 3. Exceptional points and curves off . Each index
is depicted in different color. Also, linesxixj are depicted.

allows to constructQi andQ′
i without usinghi, becauseQi

is a conic through{x0, . . . , x5}\{xi}, and similarly forQ′
i.

Recall [8] that Cremona transformations are mappings
from P2 to P2 that are birational, i.e., both forward and in-
verse mapping is given by polynomials in homogeneous co-
ordinates. A Cremona transformation of degreed is contin-
uous and invertible everywhere except ind + 1 exceptional
pointswhere it is undefined, andd + 1 exceptional curves,
which are each sent to the corresponding exceptional point.
Everything is symmetric, there ared + 1 exceptional points
and curves in each plane.

f(e) can be evaluated by computing the intersectione′

of any two conicsQ′e
i . Since these two conics share three

points, the intersection can be expressed by polynomials in
homogeneous coordinates7. Thereforef is birational. We
showed that8 f(Qi) = x′i for eachi = 0, . . . , 5, therefore
Qi andQ′

i are its exceptional curves, andxi andx′i are its
corresponding exceptional points.

7The intersection of two conics sharing three points is conveniently
computed using thereciprocal Cremona transformation[8]. The point re-
ciprocal tox = (x1, x2, x3)> is given byx∗ = (x2x3, x3x1, x1x2)>.
Note,(x∗)∗ = x. Its crucial property is that it sends the linex1x2 to the
conic given by{e1, e2, e3, x∗1, x∗2}, whereei are the three basis vectors
(1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>. The fourth common point of two conics
{e1, e2, e3, x1, x2} and{e1, e2, e3, y1, y2} is just(x∗1x∗2 ∧ y∗1y∗2)∗. By
simplifying this expression I also obtained that the degree off is 5.

8The following subtlety needs to be explained here. Ife ∈ Qi, then
e′ = f(Qi) = x′i. But this does not correspond to any configuration of
cameras and a 3D pointXi corresponding to(xi, x

′
i), because ife′ = x′i

then the camera centers andXi are colinear and inevitably it ise = xi, if
it happens to be consistent with (1). The statementf(Qi) = x′i describes
the limit case, it says what is happening toe′ if e is very nearQi.
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Cell-preserving property. Central toG5 is the conic web
in each image plane formed by the exceptional curves and
points off (figure 3). This structure has a number of inter-
esting properties, most of them naturally following from the
correspondence induced byf and from continuity off . The
most useful for us is the following cell-preserving property.

The exceptional curves partition the first image plane
into a system ofcells, delineated by piecewise-conic bound-
aries. A cellC is uniquely characterized by the subset
of conics that participate to form its boundary, or, equiva-
lently, by the subset of pointsxi that belong to its boundary.
Let I, J ⊂ {0, . . . , 5} be two sets of indices and letCIJ

denote a cell whose boundary is formed by arcs of conics
{Qi| i ∈ I} and by points{xj | j ∈ J}.

For each cellCIJ in the first image there is always a
cell C ′

I′J′ in the second image such thatI ′ = J andJ ′ =
I. Therefore, there is one-to-one correspondence between
cells in the first and the second image. The cell-preserving
property says that any cellCIJ is sent to its corresponding
cell C ′

JI by f . A typical pair of two corresponding cells is
illustrated in figure 4.

The properties off we will need can be summarized as
follows: f(xixj) = x′ix

′
j , f(Qi) = x′i, andf(CIJ) = C ′

JI .

5. Combining the Two Constraints
In this section, the setE(G5) = P (G5) ∩ S(G5) is con-
structed. The following observation is crucial: if two
epipoles in the first image plane are inside a single cellCIJ ,
they are either both allowed or both forbidden. Formally,

(e1, e2 ∈ CIJ) ⇒ [(e1, f(e1)) ∈ E ⇔ (e2, f(e2)) ∈ E] .

In other words, the property of ‘being an allowed epipole’
is constant inside any cell. This is rather surprising—one
would expect that this property changes if the epipolee
crosses any linexixj , because the sign of[e,xi,xj ] in (2)
swaps. However, due to the line preserving property off ,

Figure 5. Two example image pairs with computed regions
of allowed epipoles. Each row depicts one pair. The second
example also shows the full family of six conics in grey.

the sign of[e′,x′i,x
′
j ] swaps simultaneously. Thus,E(G5)

consist of pairs ofallowed cells.
If e′ = x′i, the projective constraint restrictse to lie on

Qi. Imposing the oriented constraint further forcese to lie
on a segment ofQi, rather than anywhere onQi. We call it
the allowed segment. The allowed segment ofQi is given
by omitting the indexi from (2), i.e., by the condition

(∀j, k ∈ {1, . . . , 5}\{i}) ([e,xj ,xk][x′i,x
′
j ,x

′
k] < 0) (3)

wheree is any point on the segment. Four segments, delim-
ited by neighboring pairs of points{x1, . . . , x5} \ {xi}, are
considered on eachQi. It can be shown that there isat most
oneallowed segment on eachQi.

It follows from continuity of f that each allowed seg-
ment is part of the boundary of some allowed cell and that
the boundary of each allowed cell consists only of allowed
segments. Two allowed cells never touch, except in point
x0; however, if an allowed segment containsx0 it never
stops there but always passes through it becausex0 is absent
in (3). In other words,x0 is the only point where allowed
segments can cross each other. Therefore, the set of allowed
segments uniquely determines the set of allowed cells and
henceE(G5). ConstructingE(G5) has just been reduced to
enumeration of allowed segments, which is easy using (3).

Examples of regions of allowed epipoles for three dif-
ferent configurations are in figures 2 and 5. An exam-
ple of a forbidden configuration is in figure 1, in which
x1, . . . ,x5 are respectively(0, 0, 1)>, (0, 1, 1)>, (1, 0, 1)>,
( 1
2 , 1

4 , 1)>, ( 1
2 , 3

4 , 1)>, and x′1, . . . , x
′
5 are respectively

equal tox4, x5, x3, x2, x1.



6. Explicit Constraint on Five Points
Here, we’ll give the algorithm deciding whether a given
configurationG5 is forbidden or allowed, i.e., whether
E(G5) is empty or non-empty. It already follows from sec-
tion 5, but we will simplify it, providing additional insights.

How to sort five points on a conic.We will show how to
compute the order of five points on the conic given by them.
We will need it later in this section.

The set of possible orderings ofn points inP1 is equal
to the set of their permutations factorized by cyclic permu-
tations and reversion. This factorized set hasn!/(2n) ele-
ments, which we callprojective orders. E.g., there is a sin-
gle projective order of 3 points,{(123)}, 3 projective orders
of 4 points,{(1234), (1243), (1423)}, and 12 projective or-
ders of 5 points,

{(12345), (12354), (12534), (15234),
(12435), (12453), (12543), (15243),
(14235), (14253), (14523), (15423)}.

A d-degree curve inPd is, up to ad-dimensional projec-
tivity, isomorphic toP1 via the mappingc : P1 → Pd given
by (u, v)> 7→ (ud, ud−1v, . . . , uvd−1, vd)>. Examples are
a conic inP2 or a (twisted) cubic inP3. Therefore, the pro-
jective order of pointsc(x1), . . . , c(xn) ∈ Pd on the curve
is the same as the projective order ofx1, . . . , xn ∈ P1.

The projective order ofd + 3 points on ad-degree
curve in Pd can be computed without explicitly usingc
because it is closely related to separations of pencils of
quadruples of hyperplanes. E.g., there exist 12 ‘qualita-
tively different’ configurations of 5 points inP2, given by
whetherxi(xj , xk) ||xi(xl, xm) for all different 5-tuples
(i, j, k, l, m). They correspond to the 12 projective orders
of the points on the conic given by them.

In P2, it is easy to verify that given four pointsx1, . . . , x4

on a conicQ, the following three statements are equivalent:

1. The projective order ofx1, . . . , x4 onQ is (1234).
2. Any pointe 6= xi onQ satisfiese(x1, x3) || e(x2, x4).
3. The pointx1x3 ∧ x2x4 belongs to the interior ofQ.

The equivalence1 ⇔ 2 yields the projective order of points
x1, . . . , x4 on the conic given byx1, . . . , x5. The projec-
tive order of all points can be found by testing separations
for several permutations of the points. It’s a bit tricky, the
following MATLAB function does it for arbitraryd:

function o = porderd(x)
o = 1:3;
for j = 4:size(x,2)

while 1
i = po4(x(:,[o(1:3) j o(4:end) j+1:end]));
if i < 3, break, end
o = o([2:end 1]);

end
o = [o(1:i) j o(i+1:end)];

end

function i = po4(x)
r=det(x(:,[1 2 5:end]))*det(x(:,[3 4 5:end]))/...

det(x(:,[1 3 5:end]))/det(x(:,[2 4 5:end]));
if r>1 i=1; elseif r<0 i=2; else i=3; end

In S2, five points define aspherical conicrather than a
projective one. A non-degenerate spherical conicQ con-
sists of two disconnected antipodal components (see figure
6a). The equivalence1 ⇔ 3 allows to find outwhich point
is on which component(up to swapping the components) as
follows. Theinscribed rectangle theoremsays that the line
l = (x1x2 ∧ x3x4)(x1x4 ∧ x2x3) is the polar of the point
y = x1x3 ∧ x2x4 with respect to any conic passing through
x1, . . . , x4. If the projective order ofx1, . . . , x4 on Q is
(1234), which can be done by renaming indices,y is inside
Q and hencel is outside. Thus,l separates the two compo-
nents ofQ in S2 (figure 6b). The points on the right ofl are
on one component, the points on the left on the other.

1

2

Q

y

3

4

l

(a) (b)

Figure 6. Conic inS2 consists of two disconnected compo-
nents (a). If the projective order of points is(1234), point
13∧24 is insideQ and line(12∧34)(14∧23) outside (b).

Simplifying the algorithm. Recall from section 5 that find-
ing whetherQi contains an allowed segment requires com-
puting an arbitrary pointe on each of the four segments of
Qi and testing it for (3). We can get rid of computing these
arbitrary points as follows.

Rename indices of the pairs(x1, x
′
1), . . . , (x5, x

′
5) so

that the projective order ofx′1, . . . , x
′
5 on Q′

0 is (12345).
SinceQi = h−1

i (Q′
0) and projectivities preserve projective

order, this ensures that the projective order ofx2, x3, x4, x5

onQ1 is (2345), of x1, x3, x4, x5 onQ2 is (1345), etc.
SinceE(Gn) is invariant to replacing any pair(xi, x

′
i)

with (¬xi,¬x′i), we can do this replacement for appropriate
pairs so that{x1, . . . , x5} \ {xi} all lie on a single compo-
nent of the spherical conicQi, using the pivot line as de-
scribed above. Now, the list of signs of[e,xj ,xk], wheree
is on any fixed segment andj, k ∈ {1, . . . , 5} \ {i}, is in-
dependent on the positions ofx1, . . . , x5 and hence known
in advance. Testing whetherQi contains an allowed seg-
ment merely requires comparing these signs with signs of
the appropriate determinants[x′i,x

′
j ,x

′
k] according to (3).



E.g., after renaming indices and replacing appropriate
pairs with antipodes, the conicQ5 with pointsx1, . . . , x4

on it looks always as shown in figure 6b. It is obvious from
the figure what are the signs of[e,xj ,xk] for each segment.

To summarize, the following function returns whether a
configuration of five point pairs in two images is allowed:

function OK = test_epi_5points(x1,x2)
o = porderd(x2); x1 = x1(:,o); x2 = x2(:,o);
for i = 1:5

OK = testQ5(x1,x2);
if OK, break, end
p = [2:5 1]; x1 = x1(:,p); x2 = x2(:,p);

end

function OK = testQ5(x1,x2)
l1 = cross(x1(:,[1 3 1 3]),x1(:,[2 4 4 2]));
l1 = cross(l1(:,[1 3]),l1(:,[2 4]));
l1 = cross(l1(:,1),l1(:,2))’;
x2 = x2 .* ([1;1;1]*(l1*x1));
s1 = [-1 -1 -1 +1 +1 +1

+1 -1 -1 -1 -1 +1
+1 +1 -1 +1 -1 -1
+1 +1 +1 +1 +1 +1]’;

s2 = sign([det(x2(:,[5 1 2]))
det(x2(:,[5 1 3]))
det(x2(:,[5 1 4]))
det(x2(:,[5 2 3]))
det(x2(:,[5 2 4]))
det(x2(:,[5 3 4]))]) * [1 1 1 1];

OK = any( all(s1==+s2) | all(s1==-s2) );

Note, given all but one points fromG5, e.g.,{x1, . . . , x5,
x′1, . . . , x

′
4}, the locus of the last point,x′5, for which

E(G5) 6= ∅ is anon-convex spherical polygon. Its vertices
are a subset of the5+15 = 20 intersections of the

(
5
2

)
lines

x′ix
′
j (not onlyx′i) and its sides are segments of these lines.

7. Chirotope of 3D Reconstruction
If (e, e′) ∈ E(G5), there exist anoriented projective recon-
struction fromG5, i.e., there are two camerasP,P′ and 3D
pointsXi such thatxi

+∼ PXi andx′i
+∼ P′Xi [5, 6, 13].

LetP∧ denote theoriented camera center, being the wedge
product of the three rows ofP. In this section, we will in-
vestigate the 3D reconstruction(P∧,P′∧,X1, . . . ,X5).

Consider the extended degenerate configuration of six
pointsG6

deg = G5 ∪ {(x0, x
′
0)}, which was described in

section 4. Let all 12 pointsxi, x
′
i be fromS2 and let(e, e′)

satisfy (1) and (2). Unlike in section 5, also the pair(x0, x
′
0)

is assigned orientation and is present in (2). We can com-
pute, up to a 3D oriented homography, camerasP andP′

and pointsX0, . . . , X5 such thatxi
+∼ PXi andx′i

+∼ P′Xi

for i = 0, . . . , 5. I noticed that ife crosses the linexixj , two
following determinants change sign:[P∧,P′∧,Xi,Xj ] and
[Xa,Xb,Xc,Xd] where{a, b, c, d} = {0, . . . , 5} \ {i, j}.

Thus, the lines joining the pointsx0, . . . , x5 partition
the allowed cell(s) intoregions corresponding to different
chirotopesof the 3D reconstruction(P∧,P′∧,X1, . . . ,X5)
from G5.

Theses classes of 3D reconstructions can be tested for
cheiral inequalities9, because the solvability of cheiral in-
equalities clearly depends only on the chirotope of the
reconstruction. This provides another constraint onG5,
which, however, can be violated only for panoramic images
[13], because it has been shown that the cheiral inequalities
are always satisfied for two directional images [5, 13].

8. Conclusion
The new constraint on five points in two images has been
presented, based on existing epipolar constraint and orienta-
tion consistence, in contrary to the common belief that any
configuration of five point pairs corresponds to some (in-
finitely many) epipolar geometries. We have not discussed
the form of the constraint for degenerate configurationsG5.
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[2] A. Bj örner, M. Las Vergnas, B. Sturmfels, N. White, and

G. M. Ziegler. Oriented Matroids, Encyclopaedia of Math-
ematics 46. Cambridge University Press, 1993.

[3] S. Carlsson. Combinatorial geometry for shape representa-
tion and indexing. InObject Representation in Computer
Vision, pages 53–78, 1996.

[4] O. Faugeras. Three-Dimensional Computer Vision. MIT
Press, Cambridge, Massachusetts, 1993.

[5] R. I. Hartley. Chirality. Int. Jour. Computer Vision IJCV,
26(1):41–61, 1998.

[6] R. I. Hartley and A. Zisserman.Multiple View Geometry
in Computer Vision. Cambridge University Press, ISBN:
0521623049, 2000.

[7] S. Laveau and O. Faugeras. Oriented projective geometry
for computer vision. InECCV96, pages I:147–156, 1996.

[8] J. G. Semple and G. T. Kneebone.Algebraic Projective Ge-
ometry. Oxford University Press, 1979.

[9] J. Stolfi. Oriented Projective Geometry: A Framework for
Geometric Computations. Academic Press, Inc., 1250 Sixth
Avenue, San Diego, CA 92101, 1991.

[10] R. Sturm. Die Lehre von den geometrischen Verwand-
schaften, volume 1 of B. G. Teubners Sammlung von
Lehrb̈uchern auf dem Gebiete der mathematischen Wis-
senschaften. Druck und Verlag von B. G. Teubner, Leipzig
und Berlin, 1908.

[11] B. Triggs. Matching constraints and the joint image. In
ICCV95, pages 338–343, 1995. Also the full paper on www.

[12] T. Werner and T. Pajdla. Cheirality in epipolar geometry. In
Proc. Intl. Conf. Computer Vision. IEEE Computer Society
Press, July 2001.

[13] T. Werner and T. Pajdla. Oriented matching constraints.
In T. Cootes and C. Taylor, editors,British Machine Vision
Conference 2001, pages 441–450, London, UK, September
2001. British Machine Vision Association.

9Cheiral inequalities [5, 6, 13] are another constraint onGn. It requires
that either{P∧,P′∧,X1, . . . ,Xn} or {−P∧,−P′∧,X1, . . . ,Xn}
fits to a single 3-hemisphere ofS3.


