next Logarithms of Negative and Imaginary Numbers
previous Logarithms
up Logarithms   Contents   Global Contents
global_index Global Index   Index   Search


Changing the Base

By definition, $ x = b^{\log_b(x)}$. Taking the log base $ a$ of both sides gives

$\displaystyle \log_a(x) = \log_b(x) \log_a(b)
$

which tells how to convert the base from $ b$ to $ a$, that is, how to convert the log base $ b$ of $ x$ to the log base $ a$ of $ x$. (Just multiply by the log base $ a$ of $ b$.)


next Logarithms of Negative and Imaginary Numbers
previous Logarithms
up Logarithms   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)