About this document ...
Bibliography
MATHEMATICS OF THE DISCRETE FOURIER TRANSFORM (DFT)
Contents
Global Contents
Global Index
  Search
- 20 dB boost
: 11.2.1
- 3 dB boost
: 11.2.1
- absolutely integrable
: 14.2.1
- alias operator
: 8.2.11
- aliased sinc function
: 7.7
- aliasing
: 8.2.11
| 16.2
- aliasing operator
: 8.2.11
- aliasing theorem
- continuous time : 16.2.1
- amplitude of a sinusoid
: 5.1
- amplitude response
: 9.3.2
- anti-aliasing lowpass filter
: 8.2.11
- anti-Hermitian
: 8.4.2
- antilogarithm, antilog
: 11.1
- antisymmetric functions
: 8.3
- Argand diagram
: 3.6
- average power
: 6.5
| 12.3
- Banach spaces
: 6.5.3
- bandlimited
: 4.8
- bandlimited interpolation
: 8.4.13
- of spectra : 8.2.7
- time or frequency domain : 8.2.7
- bandlimited signals cannot be time limited
: 15.3
- base (of a logarithm)
: 11.1
- bel
: 11.2
- bin number (DFT)
: 7.7
- bits (binary digits)
: 12.1.2
- Blackman window
: 9.1.4
- carrier wave
: 5.3.8.1
- Cartesian coordinates
: 3.6
- causal
: 8.2.6
- characteristic of a logarithm
: 11.1
- circular convolution
: 8.2.3
- circular cross-correlation
: 9.4.1
- CODEC
: 12.2.3
- coefficient of projection
: 7.6
- coherence function
: 9.6
- column vector
: 13
- comb filter
: 5.1.5
- common logarithm
: 11.1
- commutativity of convolution
: 8.2.3.1
- companding
: 11.2.3
| 12.2.3
- complex amplitude
: 5.3.8.1
- complex conjugate
: 3.7
- complex matrix
: 13
- complex matrix transpose
: 13
- complex multiplication
: 3.5
- complex numbers
: 3
| 3.3
| 3.5
| 3.7
- complex numbers in matlab
: 18.1
- complex plane
: 3.6
- complex roots of a polynomial
: 3.3
- complexity of FFT
: 17.2.1
- conjugation and reversal symmetries (DFT)
: 8.4.2
- constant modulus
: 5.3
- continuous-time aliasing
: 16.2.1
- convolution
: 8.2.3
| 8.2.3
- filter representation : 9.3
- frequency domain : 8.4.6
- graphical : 8.2.3.2
- convolution commutativity
: 8.2.3.1
- convolution theorem
: 8.4.5
- convolution theorem dual
: 8.4.6
- correlation
: 8.2.4
- correlation analysis
: 9.4
- correlation operator
: 8.2.4
- correlation theorem
: 8.4.7
- cross-correlation, circular
: 9.4.1
- cross-covariance
: 9.4.4
- cross-spectral density
: 9.4.1
- cross-talk
: 7.7
- cubic spline
: 10.5
- cyclic convolution
: 8.2.3
- dB for display
: 11.2.2.4
- dB per decade
: 11.2.1
- dB per octave
: 11.2.1
- dB properties
: 11.2.1
- dB scale
: 11.2
- dB SPL
: 11.2.2.3
- dBm scale
: 11.2.2.1
- dBV scale
: 11.2.2.2
- de Moivre's theorem
: 3.10
- decibel
: 11.2
- decimal numbers
: 12.1.2
- decimation in frequency
: 17.1
- decimation in time
: 17.1
| 17.1
- decimation theorem
: 8.4.11
- delta function
: 14.2.2
- DFT
- applications : 9
- as a digital filter : 7.7
- bin amplitude response : 18.4.2
- definition : 2.1
- math outline : 2.4
- normalized : 7.8
- DFT matrix
: 7.10
| 7.10
- DFT matrix in matlab
: 18.4.3
- DFT sinusoids
: 7.2.2
| 18.4.1
- differentiability of audio signals
: 10.6
- differentiation theorem
: 15.1
- digit
: 12.1.2
- digital filter
: 9.3
- discrete time Fourier transform (DTFT)
: 14.1
- discrete cosine transform (DCT)
: 17.3.1
- Discrete Fourier Transform (DFT)
: 2.1
| 7
| 8.1
- downsampling operator
: 8.2.10
- downsampling theorem (aliasing theorem)
: 8.4.11
- DTFT
: 14.1
- duality (Fourier)
: 8.4.6
- dynamic range
: 11.2.3
- dynamic range of magnetic tape
: 11.2.3
- energy
: 11.2
- energy of a signal
: 6.5
- energy theorem
: 8.4.9
| 8.4.9
- essential singularity
: 10.5
- Euler's Identity
: 3.9
| 3.9
| 4
| 11.1.2
- even functions
: 8.3
- exp(j theta)
: 4.12
- expected value
: 12.3
- exponent
: 11.1
- exponents
- properties of : 4.3
- rational : 4.6
- factored form of a polynomial
: 3.1
- factoring a polynomial
: 3.1
- fast convolution
: 8.4.5
- Fast Fourier Transform (FFT)
: 17
- FFT
: 17
- FFT notation
: 8.1.1
- FFT software
: 17.4
- FFT window
: 7.7
| 9.1.4
- flip operator
: 8.2.1
| 8.2.1
- folding frequency
: 8.4.13
- formants
: 9.2.1
- Fourier duality
: 8.4.6
- Fourier series and the DFT
: 14.3
- Fourier series coefficient
: 14.3
- Fourier symmetries
: 8.4.3
- Fourier theorems
: 8
| 8.4
- Fourier theorems (continuous time)
: 15
- continuous time aliasing : 16.2.1
- differentiation : 15.1
- scaling or similarity : 15.2
- uncertainty principle : 15.3
- Fourier theorems (DFT)
: 8
| 8.4
- convolution theorem : 8.4.5
- convolution theorem dual : 8.4.6
- correlation theorem : 8.4.7
- downsampling (aliasing) theorem : 8.4.11
- energy theorem (Rayleigh) : 8.4.9
- Parseval's theorem : 8.4.8
- periodic interpolation (in time) : 8.4.13
- power theorem : 8.4.8
- shift theorem : 8.4.4
- stretch (repeat) theorem : 8.4.10
- zero-padding (spectral interpolation) theorem : 8.4.12
- Fourier transform
: 14.2
- Fourier transform existence
: 14.2.1
- Fourier transforms for continuous/discrete time/frequency
: 14
- frequency bin
: 7.7
- frequency response
: 9.3.1
- frequency-domain aliasing
: 8.2.11
| 8.2.11
- FS (Fourier Series)
: 14.3
- FT (Fourier Transform)
: 14.2
- fundamental theorem of algebra
: 3.4
- Gaussian function
: 15.3.1
- generalized function
: 14.2.2
- geometric sequence
: 7.1
- geometric sequence frequencies
: 16.4
- geometric series
: 7.1
| 7.1
- geometric signal theory
: 6
- graphical convolution
: 8.2.3.2
- Hann window
: 9.1.5
- Hanning window
: 9.1.5
- Heisenberg uncertainty principle
: 15.3.1
- Hermitian spectra
: 8.4.3
- Hermitian symmetry
: 8.4.2
- Hermitian transpose
: 7.10
| 13
- hexadecimal
: 12.1.2
- ideal lowpass filter
: 8.4.13.1
- identity matrix
: 13.1
- IDFT
: 2.2
| 8.1
- imaginary part
: 3.5
- impulse response
: 9.3
- impulse signal
: 9.3
- impulse train
: 14.3.1
- impulse, continuous time
: 14.2.2
- indicator function
: 8.4.4.1
- instantaneous frequency
: 5.1
- instantaneous phase
: 5.1
- integrable function
: 14.2.1
- intensity
: 11.2
- intensity level
: 11.2.2.3
- interpolation operator
: 8.2.8
| 8.2.8
- inverse DFT
: 2.2
| 8.1
- inverse DFT matrix
: 7.10
- irrational number
: 4.7
- just-noticeable difference (JND)
: 11.2
- lag
: 8.2.4
- lagged product
: 8.2.4
- linear combination
: 5.3.8.2
- linear number systems for digital audio
: 12.1
- linear phase FFT windows
: 8.4.4.2
- linear phase signal
: 8.4.4.1
- linear phase term
: 8.4.4
| 8.4.4.1
| 8.4.4.1
- linear transformation
: 13.1
- linear, time-invariant filters and convolution
: 9.3
- linearity of the DFT
: 8.4.1
- logarithm
: 11.1
- logarithmic number systems for audio
: 12.2
- logarithms
- changing the base : 11.1.1
- of imaginary numbers : 11.1.2
- loudness
: 11.2.2.3
- lowpass filter (ideal)
: 8.4.13.1
- Lp norms
: 6.5.1
- Maclaurin series
: 10.3
- magnitude of a sinusoid
: 5.1
- main lobe
: 7.7
- mantissa
: 11.1
- matched filter
: 8.2.3.2
- Matlab
: 18
- Matlab/Octave examples
: 18
- matrix
: 13
- matrix multiplication
: 13.1
- matrix transpose
: 13
- maximally flat
: 10.2
- mean of a random variable
: 12.3
- mean of a signal
: 6.5
| 12.3
- mean square
: 12.3
- mean value
: 12.3
- modulo
: 8.1.2
- modulo indexing
: 8.1.2
- moments of a function
: 12.3
- monic polynomial
: 3.1
- Mth roots of unity
: 4.13
- mu-law companding
: 12.2.3
- multiplication in the time domain is convolution in the frequency domain
: 8.4.6
- multiplication of large numbers
: 11.1
- multiplying two numbers convolves their digits
: 8.2.3.4
- natural logarithm
: 11.1
- non-removable singularity
: 10.5
- nonlinear system of equations
: 3.1
- norm properties
: 6.5.2
- normalized inverse DFT matrix
: 7.10
- normalized DFT
: 7.8
| 8.4.9
- normalized DFT matrix
: 7.10
- normalized DFT sinusoid
: 7.5
| 8.4.8
- normalized DFT sinusoids
: 7.8
- normalized frequency
: 8.1
| 14.1
- Nth roots of unity
: 7.2.1
- number systems for digital audio
: 12
- floating point : 12.2.1
- fractional fixed point : 12.1.3
- how many bits are enough : 12.1.4
- logarithmic : 12.2
- logarithmic fixed point : 12.2.2
- mu law : 12.2.3
- one's complement fixed point : 12.1.2.1
- PCM : 12.1.1
- two's complement fixed point : 12.1.2.2
- when byte swapping is needed : 12.1.5
- number theoretic transform
: 17.3.2
- Nyquist limit
: 8.4.13
- Nyquist rate
: 8.4.13
- Nyquist sampling theorem
: 16
- octal
: 12.1.2
- Octave
: 18
- odd functions
: 8.3
- Ohm's law
: 11.3
- operators
: 8.2
- alias : 8.2.11
- downsampling : 8.2.10
- flip : 8.2.1
- interpolation : 8.2.8
- repeat : 8.2.9
- shift : 8.2.2
- stretch : 8.2.5
- orthogonality
: 6.6.7
| 7.10
- orthogonality of DFT sinusoids
: 7.3
- orthogonality of sinusoids
: 7.2
- orthonormal
: 7.10
- overlap-add
: 8.4.13.2
- Padé approximation
: 10.2
- parabola
: 3.2
- Parseval's theorem
: 8.4.8
- PCM
: 12.1.1
- peak amplitude
: 5.1
- periodic
: 8.1.2
| 14.3
- periodic extension
: 7.7
| 8.1.2
- periodic interpolation
: 8.4.13
- periodogram method for power spectrum estimation
: 9.5
- phase
: 5.1
- phase negation
: 8.4.2
- phase response
: 9.3.3
- phasor
: 5.3.8.1
| 5.3.8.1
- phon amplitude scale
: 11.2.2.3
- polar coordinates
: 3.6
- polar form of a complex number
: 4.13
- polynomial
- factoring :