next Graphical Convolution
previous Convolution
up Convolution   Contents   Global Contents
global_index Global Index   Index   Search


Commutativity of Convolution

Convolution is commutative, i.e.,

$\displaystyle \zbox {x\ast y = y\ast x}
$

Proof:

\begin{eqnarray*}
(x\ast y)_n &\isdef & \sum_{m=0}^{N-1}x(m) y(n-m) =
\sum_{l=n...
...l)\\
&=& \sum_{l=0}^{N-1}y(l) x(n-l) \\
&\isdef & (y \ast x)_n
\end{eqnarray*}

where in the first step we made the change of summation variable $ l\isdeftext n-m$, and in the second step, we made use of the fact that any sum over all $ N$ terms is equivalent to a sum from 0 to $ N-1$.


next Graphical Convolution
previous Convolution
up Convolution   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)