next Symmetry
previous Linearity
up The Fourier Theorems   Contents   Global Contents
global_index Global Index   Index   Search


Conjugation and Reversal



Theorem: For any $ x\in{\bf C}^N$,

$\displaystyle \zbox {\overline{x} \leftrightarrow \hbox{\sc Flip}(\overline{X}).}
$

Proof:

\begin{eqnarray*}
\hbox{\sc DFT}_k(\overline{x})
&\isdef & \sum_{n=0}^{N-1}\ov...
...n) e^{-j 2\pi n(-k)/N}}
\isdef \hbox{\sc Flip}_k(\overline{X})
\end{eqnarray*}



Theorem: For any $ x\in{\bf C}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(\overline{x}) \leftrightarrow \overline{X}.}
$

Proof: Making the change of summation variable $ m\isdeftext N-n$, we get

\begin{eqnarray*}
\hbox{\sc DFT}_k(\hbox{\sc Flip}(\overline{x}))
&\isdef & \s...
...sum_{m=0}^{N-1}x(m) e^{-j 2\pi m k/N}}
\isdef \overline{X(k)}.
\end{eqnarray*}



Theorem: For any $ x\in{\bf C}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(x) \leftrightarrow \hbox{\sc Flip}(X).}
$

Proof:

\begin{eqnarray*}
\hbox{\sc DFT}_k[\hbox{\sc Flip}(x)] &\isdef & \sum_{n=0}^{N-1...
...-1}x(m) e^{j 2\pi mk/N} \isdef X(-k) \isdef \hbox{\sc Flip}_k(X)
\end{eqnarray*}

Corollary: For any $ x\in{\bf R}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(x) \leftrightarrow \overline{X}}$   $\displaystyle \mbox{($x$\ real).}$

Proof: Picking up the previous proof at the third formula, remembering that $ x$ is real,

$\displaystyle \sum_{n=0}^{N-1}x(n) e^{j 2\pi nk/N}
= \overline{\sum_{n=0}^{N-1}...
.../N}}
= \overline{\sum_{n=0}^{N-1}x(n) e^{-j 2\pi nk/N}}
\isdef \overline{X(k)}
$

when $ x(n)$ is real.

Thus, conjugation in the frequency domain corresponds to reversal in the time domain. Another way to say it is that negating spectral phase flips the signal around backwards in time.

Corollary: For any $ x\in{\bf R}^N$,

$\displaystyle \zbox {\hbox{\sc Flip}(X) = \overline{X}}$   $\displaystyle \mbox{($x$\ real).}$

Proof: This follows from the previous two cases.



Definition: The property $ X(-k)=\overline{X(k)}$ is called Hermitian symmetry or ``conjugate symmetry.'' If $ X(-k)=-\overline{X(k)}$, it may be called skew-Hermitian.

Another way to state the preceding corollary is

$\displaystyle \zbox {x\in{\bf R}^N\leftrightarrow X\,\mbox{is Hermitian}.}
$


next Symmetry
previous Linearity
up The Fourier Theorems   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)