next Stretch Operator
previous Multiplication of Decimal Numbers
up Signal Operators   Contents   Global Contents
global_index Global Index   Index   Search


Correlation

The correlation operator for two signals $ x$ and $ y$ in $ {\bf C}^N$ is defined as

$\displaystyle \zbox {(x\star y)_n \isdef \sum_{m=0}^{N-1}\overline{x(m)} y(m+n)}
$

We may interpret the correlation operator as

$\displaystyle (x\star y)_n = \left<\hbox{\sc Shift}_{-n}(y), x\right>
$

which is the coefficient of projection onto $ x$ of $ y$ advanced by $ n$ samples (shifted circularly to the left by $ n$ samples). The time shift $ n$ is called the correlation lag, and $ \overline{x(m)}
y(m+n)$ is called a lagged product. Applications of correlation are discussed in §8.4.


next Stretch Operator
previous Multiplication of Decimal Numbers
up Signal Operators   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)