next The Radix 2 FFT
previous Fast Fourier Transform (FFT)
up Fast Fourier Transform (FFT)   Contents   Global Contents
global_index Global Index   Index   Search


Decimation in Time

When $ N$ is even, the DFT summation can be split into sums over the odd and even indexes of the input signal:

$\displaystyle X(\omega_k)$ $\displaystyle \isdef$ $\displaystyle \hbox{\sc DFT}_{N,k}\{x\} \isdef \sum_{n=0}^{N-1} x(n) e^{-j\omega_k n T}$  
  $\displaystyle =$ $\displaystyle \sum_{{\stackrel{n=0}{\vspace{2pt}\mbox{\tiny$n$\ even}}}}^{N-2} ...
...stackrel{n=0}{\vspace{2pt}\mbox{\tiny$n$\ odd}}}}^{N-1} x(n) e^{-j\omega_k n T}$  
  $\displaystyle =$ $\displaystyle \sum_{n=0}^{\frac{N}{2}-1} x(2n) e^{-j2\pi {k\over N/2} nT}
+ e^{j2\pi\frac{k}{N}}\sum_{n=0}^{\frac{N}{2}-1} x(2n+1) e^{-j2\pi {k\over N/2} nT},$  
  $\displaystyle \isdef$ $\displaystyle \hbox{\sc DFT}_{\frac{N}{2},k}\{\hbox{\sc Downsample}_2(x)\}$  
    $\displaystyle \mathop{\quad} +\;W_N^k\cdot\hbox{\sc DFT}_{\frac{N}{2},k}\{\hbox{\sc Downsample}_2[\hbox{\sc Shift}_1(x)]\}
\protect$ (H.1)

Thus, the length $ N$ DFT is computable using two length $ N/2$ DFTs. The complex factors $ W_N^k=e^{j\omega_k}=\exp(j2\pi k/N)$ are called twiddle factors. The splitting into sums over even and odd time indexes is called decimation in time. (For decimation in frequency, the inverse DFT of the spectrum $ X(\omega_k)$ is split into sums over even and odd bin numbers $ k$.)


next The Radix 2 FFT
previous Fast Fourier Transform (FFT)
up Fast Fourier Transform (FFT)   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)