next Euler's Identity
previous More Notation and Terminology
up Complex Numbers   Contents   Global Contents
global_index Global Index   Index   Search

Elementary Relationships

From the above definitions, one can quickly verify

\begin{eqnarray*}
z+\overline{z} &=& 2 \, \mbox{re}\left\{z\right\} \\
z-\overl...
...left\{z\right\} \\
z\overline{z} &=& \left\vert z\right\vert^2.
\end{eqnarray*}

Let's verify the third relationship which states that a complex number multiplied by its conjugate is equal to its magnitude squared:

$\displaystyle z \overline{z} \isdef (x+jy)(x-jy) = x^2-(jy)^2 = x^2 + y^2 \isdef \vert z\vert^2 \protect$ (2.4)


next Euler's Identity
previous More Notation and Terminology
up Complex Numbers   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)