next Negative Exponents
previous Properties of Exponents
up Proof of Euler's Identity   Contents   Global Contents
global_index Global Index   Index   Search

The Exponent Zero

How should we define $ a^0$ in a manner consistent with the properties of integer exponents? Multiplying it by $ a$ gives

$\displaystyle a^0 \cdot a = a^0 a^1 = a^{0+1} = a^1 = a
$

by property (1) of exponents. Solving $ a^0 \cdot a = a$ for $ a^0$ then gives

$\displaystyle \zbox {a^0 = 1.}
$


next Negative Exponents
previous Properties of Exponents
up Proof of Euler's Identity   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)