next Existence of the Fourier Transform
previous Discrete Time Fourier Transform (DTFT)
up Continuous/Discrete Fourier   Contents   Global Contents
global_index Global Index   Index   Search


Fourier Transform (FT) and Inverse

The Fourier transform of a signal $ x(t)\in{\bf C}$, $ t\in(-\infty,\infty)$, is defined as

$\displaystyle X(\omega) \isdef \int_{-\infty}^\infty x(t) e^{-j\omega t} dt, \protect$ (E.1)

and its inverse is given by

$\displaystyle x(t) = \frac{1}{2\pi}\int_{-\infty}^\infty X(\omega) e^{j\omega t} d\omega. \protect$ (E.2)



Subsections
next Existence of the Fourier Transform
previous Discrete Time Fourier Transform (DTFT)
up Continuous/Discrete Fourier   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)