next Interpolation Theorems
previous Illustration of the Downsampling/Aliasing Theorem in Matlab
up The Fourier Theorems   Contents   Global Contents
global_index Global Index   Index   Search


Zero Padding Theorem (Spectral Interpolation)

A fundamental tool in practical spectrum analysis is zero padding. This theorem shows that zero padding in the time domain corresponds to ideal interpolation in the frequency domain (for truly time-limited signals):



Theorem: For any $ x\in{\bf C}^N$

$\displaystyle \zbox {\hbox{\sc ZeroPad}_{LN}(x) \leftrightarrow \hbox{\sc Interp}_L(X)}
$

where $ \hbox{\sc ZeroPad}()$ was defined in Eq. (7.3), followed by the definition of $ \hbox{\sc Interp}()$.

Proof: Let $ M=LN$ with $ L\geq 1$. Then

\begin{eqnarray*}
\hbox{\sc DFT}_{M,k^\prime }(\hbox{\sc ZeroPad}_M(x))
&=& \su...
...M} \\
&\isdef & X(\omega_{k^\prime }) = \hbox{\sc Interp}_L(X).
\end{eqnarray*}

Thus, this theorem follows directly from the definition of the ideal interpolation operator $ \hbox{\sc Interp}()$. See §8.1.3 for an example of zero-padding in spectrum analysis.


next Interpolation Theorems
previous Illustration of the Downsampling/Aliasing Theorem in Matlab
up The Fourier Theorems   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)