next Index
previous Tables
up MATHEMATICS OF THE DISCRETE FOURIER TRANSFORM (DFT)   Contents   Global Contents
global_index Global Index   Index   Search

Bibliography

1
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions,
New York: Dover, 1965.

2
R. Agarwal and C. S. Burrus, ``Number theoretic transforms to implement fast digital convolution,'' Proceedings of the IEEE, vol. 63, pp. 550-560, April 1975,
also in [36].

3
J. B. Allen and L. R. Rabiner, ``A unified approach to short-time Fourier analysis and synthesis,'' Proc. IEEE, vol. 65, pp. 1558-1564, Nov. 1977.

4
M. Bosi and R. E. Goldberg, Introduction to Digial Audio Coding and Standards,
Boston: Kluwer Academic Publishers, 2003.

5
L. Bosse, ``An experimental high fidelity perceptual audio coder,'' tech. rep., Elec. Engineering Dept., Stanford University (CCRMA), March 1998,
Music 420 Project Report, available online at http://www-ccrma.stanford.edu/~jos/bosse/.

6
K. Brandenburg and M. Bosi, ``Overview of MPEG audio: Current and future standards for low-bit-rate audio coding,'' Journal of the Audio Engineering Society, vol. 45, pp. 4-21, Jan./Feb. 1997.

7
C. S. Burrus, ``Notes on the FFT,'' March 1990.

8
C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms,
New York: John Wiley and Sons, Inc., 1985.

9
J. P. Campbell Jr., T. E. Tremain, and V. C. Welch, ``The proposed federal standard 1016 4800 bps voice coder: CELP,'' Speech Technology Magazine, pp. 58-64, April-May 1990.

10
D. C. Champeney, A Handbook of Fourier Theorems,
Cambridge University Press, 1987.

11
D. G. Childers, ed., Modern Spectrum Analysis,
New York: IEEE Press, 1978.

12
R. V. Churchill, Complex Variables and Applications,
New York: McGraw-Hill, 1960.

13
J. Cooley and J. Tukey, ``An algorithm for the machine computation of the complex Fourier series,'' Mathematics of Computation, vol. 19, pp. 297-301, April 1965.

14
J. Dattorro, ``The implementation of recursive digital filters for high-fidelity audio,'' Journal of the Audio Engineering Society, vol. 36, pp. 851-878, Nov. 1988,
Comments, ibid. (Letters to the Editor), vol. 37, p. 486 (1989 June); Comments, ibid. (Letters to the Editor), vol. 38, pp. 149-151 (1990 Mar.).

15
J. R. Deller Jr., J. G. Proakis, and J. H. Hansen, Discrete-Time Processing of Speech Signals,
New York: Macmillan, 1993.

16
P. A. M. Dirac, The Principles of Quantum Mechanics, Fourth Edition,
New York: Oxford University Press, 1958-2001.

17
DSP Committee, ed., Programs for Digital Signal Processing,
New York: IEEE Press, 1979.

18
P. Duhamel and M. Vetterli, ``Improved Fourier and Hartley algorithms with application to cyclic convolution of real data,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 35, pp. 818-824, June 1987.

19
P. Duhamel and M. Vetterli, ``Fast Fourier transforms: A tutorial review and state of the art,'' Signal Processing, vol. 19, pp. 259-299, April 1990.

20
M. Frigo and S. G. Johnson, ``FFTW: An adaptive software architecture for the FFT,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Seattle, vol. 3, (New York), pp. 1381-1384, IEEE Press, 1998,
available online at http://www.fftw.org/.

21
G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Edition,
Baltimore: The Johns Hopkins University Press, 1989.

22
R. M. Gray and L. D. Davisson, An Introduction to Statistical Signal Processing,
Cambridge University Press, 2003,
available online at http://www-ee.stanford.edu/~gray/sp.pdf.

23
J. Gullberg, Mathematics From the Birth of Numbers,
New York: Norton and Co., 1997,
[Qa21.G78 1996] ISBN 0-393-04002-X.

24
F. J. Harris, ``On the use of windows for harmonic analysis with the discrete Fourier transform,'' Proceedings of the IEEE, vol. 66, pp. 51-83, Jan 1978.

25
M. Heideman, D. Johnson, and C. S. Burrus, ``Gauss and the history of the FFT,'' IEEE Signal Processing Magazine, vol. 1, pp. 14-21, October 1984,
also in the Archive for History of Exact Sciences, vol. 34, no. 3, pp. 265-277, 1985.

26
S. Johnson, Prime-Factor FFT Algorithm,
http://www.wikipedia.org/wiki/Prime-factor_FFT_ algorithm, 2003.

27
T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation,
Englewood Cliffs, NJ: Prentice-Hall, Inc., April 2000.

28
S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1993.

29
D. Kolba and T. Parks, ``A prime factor FFT algorithm using high-speed convolution,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 29, pp. 281-294, August 1977,
also in [36].

30
T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, ``Splitting the Unit Delay--Tools for Fractional Delay Filter Design,'' IEEE Signal Processing Magazine, vol. 13, pp. 30-60, January 1996.

31
W. R. LePage, Complex Variables and the Laplace Transform for Engineers,
New York: Dover, 1961.

32
M. J. Lighthill, Introduction to Fourier Analysis,
Cambridge University Press, January 1958.

33
L. Ljung and T. L. Soderstrom, Theory and Practice of Recursive Identification,
Cambridge, MA: MIT Press, 1983.

34
J. Makhoul, ``Linear prediction: A tutorial review,'' Proceedings of the IEEE, vol. 63, pp. 561-580, April 1975.

35
J. D. Markel and A. H. Gray, Linear Prediction of Speech,
New York: Springer Verlag, 1976.

36
J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1979.

37
J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach,
Englewood Cliffs, NJ: Prentice-Hall, 1998,
Tk5102.M388.

38
B. Noble, Applied Linear Algebra,
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1969.

39
D. O'Shaughnessy, Speech Communication,
Reading MA: Addison-Wesley, 1987.

40
T. Painter and A. Spanias, ``Perceptual coding of digital audio,'' Proceedings of the IEEE, vol. 88, pp. 451-513, April 2000.

41
A. Papoulis, Probability, Random Variables, and Stochastic Processes,
New York: McGraw-Hill, 1965.

42
A. Papoulis, Signal Analysis,
New York: McGraw-Hill, 1977.

43
T. W. Parks and C. S. Burrus, Digital Filter Design,
New York: John Wiley and Sons, Inc., June 1987.

44
A. D. Pierce, Acoustics,
http://asa.aip.org/publications.html: American Institute of Physics, for the Acoustical Society of America, 1989.

45
J. R. Pierce, ``private communication,'' 1991.

46
M. H. Protter and J. Charles B. Morrey, Modern Mathematical Analysis,
Reading MA: Addison-Wesley, 1964.

47
L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing,
New York: IEEE Press, 1972.

48
L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals,
Englewood Cliffs, NJ: Prentice-Hall, 1978.

49
C. Roads, ed., The Music Machine,
Cambridge, MA: MIT Press, 1989.

50
C. Roads, The Computer Music Tutorial,
Cambridge, MA: MIT Press, 1996.

51
W. Rudin, Principles of Mathematical Analysis,
New York: McGraw-Hill, 1964.

52
L. L. Sharf, Statistical Signal Processing, Detection, Estimation, and Time Series Analysis,
Reading MA: Addison-Wesley, 1991.

53
J. O. Smith and P. Gossett, ``A flexible sampling-rate conversion method,'' in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, San Diego, vol. 2, (New York), pp. 19.4.1-19.4.2, IEEE Press, March 1984,
expanded tutorial and associated free software available at the Digital Audio Resampling Home Page: http://www-ccrma.stanford.edu/~jos/resample/.

54
J. O. Smith III, Techniques for Digital Filter Design and System Identification with Application to the Violin,
PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), June 1983,
available as CCRMA Technical Report STAN-M-14. Portions available online at http://www-ccrma.stanford.edu/~jos/.

55
J. O. Smith III, Digital Waveguide Modeling of Musical Instruments,
http://www-ccrma.stanford.edu/~jos/waveguide/, 2003.

56
J. O. Smith III, Introduction to Digital Filters,
http://www-ccrma.stanford.edu/~jos/filters/, 2003.

57
J. O. Smith III, Introduction to Matlab and Octave,
http://www-ccrma.stanford.edu/~jos/matlab/, 2003.

58
H. V. Sorenson, M. T. Heideman, and C. S. Burrus, ``On calculating the split-radix FFT,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-34, pp. 152-156, Feb. 1986.

59
H. V. Sorenson, D. L. Jones, M. T. Heideman, and C. S. Burrus, ``Real-valued fast fourier transform algorithms,'' IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-35, pp. 849-863, June 1987.

60
K. Steiglitz, A Digital Signal Processing Primer with Applications to Audio and Computer Music,
Reading MA: Addison-Wesley, 1996.

61
S. S. Stevens and H. Davis, Hearing: Its Psychology and Physiology,
http://asa.aip.org/publications.html: American Institute of Physics, for the Acoustical Society of America, 1983,
copy of original 1938 edition.

62
R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Processing,
Reading MA: Addison-Wesley, 1988.

63
M. Unser, ``Splines: A perfect fit for signal and image processing,'' IEEE Signal Processing Magazine, vol. 16, pp. 22-38, November 1999.

64
V. Välimäki, Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters,
PhD thesis, Report no. 37, Helsinki University of Technology, Faculty of Electrical Engineering, Laboratory of Acoustic and Audio Signal Processing, Espoo, Finland, Dec. 1995,
available online at http://www.acoustics.hut.fi/~vpv/publications/vesa_phd.html.

65
P. D. Welch, ``The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging over short modified periodograms,'' IEEE Transactions on Audio and Electroacoustics, vol. 15, pp. 70-73, 1967,
reprinted in [11] and [47].

66
U. Zölzer, ed., DAFX - Digital Audio Effects,
New York: John Wiley and Sons, Ltd., 2002.


next Index
previous Tables
up MATHEMATICS OF THE DISCRETE FOURIER TRANSFORM (DFT)   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)