next Projection of Circular Motion
previous Complex Sinusoids
up Complex Sinusoids   Contents   Global Contents
global_index Global Index   Index   Search

Circular Motion

Since the modulus of the complex sinusoid is constant, it must lie on a circle in the complex plane. For example,

$\displaystyle x(t) = e^{j\omega t}
$

traces out counter-clockwise circular motion along the unit circle in the complex plane, while

$\displaystyle \overline{x(t)} = e^{-j\omega t}
$

is clockwise circular motion.

We call a complex sinusoid of the form $ e^{j\omega t}$, where $ \omega>0$, a positive-frequency sinusoid. Similarly, we define a complex sinusoid of the form $ e^{-j\omega t}$, with $ \omega>0$, to be a negative-frequency sinusoid. Note that a positive- or negative-frequency sinusoid is necessarily complex.


next Projection of Circular Motion
previous Complex Sinusoids
up Complex Sinusoids   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)