next The Discrete Fourier Transform (DFT)
previous Norm of the DFT Sinusoids
up The DFT Derived   Contents   Global Contents
global_index Global Index   Index   Search

An Orthonormal Sinusoidal Set

We can normalize the DFT sinusoids to obtain an orthonormal set:

$\displaystyle {\tilde s}_k(n) \isdef \frac{s_k(n)}{\sqrt{N}} = \frac{e^{j2\pi k n /N}}{\sqrt{N}}
$

The orthonormal sinusoidal basis signals satisfy

$\displaystyle \left<{\tilde s}_k,{\tilde s}_l\right> = \left\{\begin{array}{ll}
1, & k=l \\ [5pt]
0, & k\neq l \\
\end{array}\right.
$

We call these the normalized DFT sinusoids.


next The Discrete Fourier Transform (DFT)
previous Norm of the DFT Sinusoids
up The DFT Derived   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)