next An Example Vector View:
previous The DFT
up Geometric Signal Theory   Contents   Global Contents
global_index Global Index   Index   Search


Signals as Vectors

For the DFT, all signals and spectra are length $ N$. A length $ N$ sequence $ x$ can be denoted by $ x(n)$, $ n=0,1,2,\ldots N-1$, where $ x(n)$ may be real ( $ x\in{\bf R}^N$) or complex ( $ x\in{\bf C}^N$). We now wish to regard $ x$ as a vector $ \underline{x}$5.1 in an $ N$ dimensional vector space. That is, each sample $ x(n)$ is regarded as a coordinate in that space. A vector $ \underline{x}$ is mathematically a single point in $ N$-space represented by a list of coordinates $ (x_0,x_1,x_2,\ldots,x_{N-1})$ called an $ N$-tuple. (The notation $ x_n$ means the same thing as $ x(n)$.) It can be interpreted geometrically as an arrow in $ N$-space from the origin $ \underline{0}
\isdef (0,0,\ldots,0)$ to the point $ \underline{x}\isdef
(x_0,x_1,x_2,\ldots,x_{N-1})$.

We define the following as equivalent:

$\displaystyle x \isdef \underline{x}\isdef x(\cdot)
\isdef (x_0,x_1,\ldots,x_{N-1})
\isdef [x_0,x_1,\ldots,x_{N-1}]
\isdef [x_0\; x_1\; \cdots\; x_{N-1}]
$

where $ x_n \isdef x(n)$ is the $ n$th sample of the signal (vector) $ x$. From now on, unless specifically mentioned otherwise, all signals are length $ N$.



Subsections
next An Example Vector View:
previous The DFT
up Geometric Signal Theory   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)