next Sampled Sinusoids
previous Analytic Signals and Hilbert Transform Filters
up Complex Sinusoids   Contents   Global Contents
global_index Global Index   Index   Search

Generalized Complex Sinusoids

We have defined sinusoids and extended the definition to include complex sinusoids. We now extend one more step by allowing for exponential amplitude envelopes:

$\displaystyle y(t) \isdef {\cal A}e^{st}
$

where $ {\cal A}$ and $ s$ are complex, and further defined as

\begin{eqnarray*}
{\cal A}&=& Ae^{j\phi} \\
s &=& \sigma + j\omega
\end{eqnarray*}

When $ \sigma=0$, we obtain

$\displaystyle y(t) \isdef {\cal A}e^{j\omega t} = A e^{j\phi} e^{j\omega t}
= A e^{j(\omega t + \phi)}
$

which is the complex sinusoid at amplitude $ A$, frequency $ \omega$, and phase $ \phi$.

More generally, we have

\begin{eqnarray*}
y(t) &\isdef & {\cal A}e^{st} \\
&\isdef & A e^{j\phi} e^{(\...
... t} \left[\cos(\omega t + \phi) + j\sin(\omega t + \phi)\right].
\end{eqnarray*}

Defining $ \tau = -1/\sigma$, we see that the generalized complex sinusoid is just the complex sinusoid we had before with an exponential envelope:

\begin{eqnarray*}
\mbox{re}\left\{y(t)\right\} &=& A e^{- t/\tau} \cos(\omega t ...
...{im}\left\{y(t)\right\} &=& A e^{- t/\tau} \sin(\omega t + \phi)
\end{eqnarray*}


next Sampled Sinusoids
previous Analytic Signals and Hilbert Transform Filters
up Complex Sinusoids   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)