next Signal Reconstruction from Projections
previous The Pythagorean Theorem in N-Space
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search


Projection

The orthogonal projection (or simply ``projection'') of $ \underline{y}\in{\bf C}^N$ onto $ \underline{x}\in{\bf C}^N$ is defined by

$\displaystyle {\bf P}_{\underline{x}}(\underline{y}) \isdef \frac{\left<\underline{y},\underline{x}\right>}{\Vert\underline{x}\Vert^2} \underline{x}.
$

The complex scalar $ \left<\underline{x},\underline{y}\right>/\Vert\underline{x}\Vert^2$ is called the coefficient of projection. When projecting $ \underline{y}$ onto a unit length vector $ \underline{x}$, the coefficient of projection is simply the inner product of $ \underline{y}$ with $ \underline{x}$.

Motivation: The basic idea of orthogonal projection of $ \underline{y}$ onto $ \underline{x}$ is to ``drop a perpendicular'' from $ \underline{y}$ onto $ \underline{x}$ to define a new vector along $ \underline{x}$ which we call the ``projection'' of $ \underline{y}$ onto $ \underline{x}$. This is illustrated for $ N=2$ in Fig. 5.9 for $ \underline{x}= [4,1]$ and $ \underline{y}=[2,3]$, in which case

$\displaystyle {\bf P}_{\underline{x}}(\underline{y}) \isdef \frac{\left<\underl...
...ne{x}
= \frac{11}{17} \underline{x}= \left[\frac{44}{17},\frac{11}{17}\right].
$

Figure: Projection of $ \underline{y}$ onto $ \underline{x}$ in 2D space.
\scalebox{0.7}{\includegraphics{eps/proj.eps}}

Derivation: (1) Since any projection onto $ \underline{x}$ must lie along the line collinear with $ \underline{x}$, write the projection as $ {\bf P}_{\underline{x}}(\underline{y})=\alpha
\underline{x}$. (2) Since by definition the projection is orthogonal to $ \underline{x}$, we must have

\begin{eqnarray*}
(\underline{y}-\alpha\underline{x}) & \perp & \underline{x}\\ ...
...<\underline{y},\underline{x}\right>}{\Vert\underline{x}\Vert^2}.
\end{eqnarray*}

Thus,

$\displaystyle {\bf P}_{\underline{x}}(\underline{y}) = \frac{\left<\underline{y},\underline{x}\right>}{\Vert\underline{x}\Vert^2} \underline{x}.
$


next Signal Reconstruction from Projections
previous The Pythagorean Theorem in N-Space
up The Inner Product   Contents   Global Contents
global_index Global Index   Index   Search

``Mathematics of the Discrete Fourier Transform (DFT)'', by Julius O. Smith III, W3K Publishing, 2003, ISBN 0-9745607-0-7.

(Browser settings for best viewing results)
(How to cite this work)
(Order a printed hardcopy)

Copyright © 2003-10-09 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  (automatic links disclaimer)